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Abstract 

This paper addresses the study of tensegrity active control in case of unknown events, such as 

applied loading or damage. It describes methodologies for self diagnosis and self repair. 

Response due to unknown events is measured and analyzed in order to support self diagnosis. 

Since tensegrities are self-stressed and flexible structures, they exhibit geometrical non-linear 

behavior. Applied loading and damage thus induce changes in structural response to 

perturbations. This property is also used to support self diagnosis. Self-diagnosis solutions 

result in sets of good candidate description of the unknown event. Candidate descriptions 

exhibit responses to unknown events and perturbations that are close to the response 

measured on the real structure. These solutions are successfully employed within the 

framework of shape control and self repair. Self-repair abilities are demonstrated through 

increasing stiffness and decreasing stresses with respect to the damaged state by modifying 

the self-stress state of the structure. Validity of the results is demonstrated experimentally on 

a full-scale active tensegrity structure. The proposed methodologies are attractive for 

tensegrity active control in situations of unknown events. 

CE Database subject headings: space structures, structural control, diagnosis, adaptive 

systems. 
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Introduction 

Most civil structures are passive and static. They are designed according to serviceability 

criteria and to resist extreme situations. While they deflect in a passive manner, they do not 

adapt actively to external loading. A more challenging functionality of civil structures is that 

they react and adapt actively to changing requirements, such as new loading and eventual 

damage. Sobek and Teuffel (2002) performed numerical studies on the control of lightweight 

structures that react to external stimuli, such as varying loadings or noise. Pawlowski and 

Holnicki-Szulc (2004) introduced a structure that could adapt to extreme loads. It detected 

impacts through a set of sensors and optimally distributed forces in the structure using 

structural fuses. Anshuman and Kumar (2005) analyzed a set of intelligent building façades 

from a social-psychology perspective. However no experimental study has demonstrated self 

diagnosis and self repair in civil structures. 

 

While structures that exhibit bionic behavior are an emerging research topic in civil 

engineering, bio-inspired systems have already been studied in domains such as electronics 

and informatics. The mathematician John Von Neumann (1966) is considered to be the 

pioneer of bionics. He proposed an automat that could self-repair and self-reproduce. 

Teuscher et al. (2003), Mange et al. (1999) and (1997), and Sipper et al. (1997) studied a 

fault-tolerant “Bio-Watch” that exhibited self-repairing characteristics and interacted with its 

environment. In computer science, Sterritt et al. (2005) postulated that autonomic computing 

systems are useful since they continue to be useful as conditions change. However, these 

examples come from virtual worlds of information science whereas civil structures exist in 

the physical environment. 
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Since tensegrities can be equipped with active control systems, they have the potential to 

exhibit bionic behavior. Tensegrities are lightweight and flexible structures. Stability is 

provided by the self-stress state between a tensioned cable net and compressed strut elements 

(Motro 1984). Shape control involves self-stress state modification in order to satisfy a 

serviceability objective (Shea et al, 2002, Fest et al, 2004; Domer and Smith, 2005). Few 

other studies have focused on tensegrity control. Kawaguchi et al. (1996) studied shape and 

stress control of prestressed truss structures. Difficulties were identified in validating 

numerical results through experimental testing. Averseng and Crosnier (2004) studied the 

control of a tensegrity grid in which the actuation system is connected to the supports. Other 

studies of tensegrity control involve only numerical simulation. Van de Wijdeven and de 

Jager (2005) proposed an example of 2D tensegrity vibration and shape control. 

Kanchanasaratool and Williamson (2002) proposed a dynamic model to study tensegrity 

feedback shape control. Skelton et al. (2000) concluded that since only small amounts of 

energy are needed to change the shape of tensegrity structures, they are advantageous for 

active control. Sultan (1999) proposed a formulation of tensegrity active control and 

illustrated it with the example of an aircraft motion simulator. Djouadi et al. (1998) described 

a theoretical scheme to control vibrations of tensegrity systems.  

 

Damage tolerance of tensegrities is a new research area. It is often assumed that local damage 

would cause a catastrophic collapse. Appropriate topologies have recently been demonstrated 

to tolerate local damage. Fu (2005) studied the failure modes of tensegrity domes and 

proposed design methods. Lazopoulos (2005) analytically studied the buckling of a strut in an 

elastic 6-strut and 24-cable tensegrity module and described its post-critical behavior. While 

these structures are damage tolerant, they do not have capabilities for self repair. 
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Self diagnosis is supported by system identification through model-based diagnosis. System 

identification involves determining the state of a system as well as values of key parameters 

through comparisons between predicted and observed responses (Ljung 1999). Thus, system 

identification is an attempt to solve an inverse engineering task. Causes have to be inferred 

from measured effects (Raphael and Smith 2003a). In structural engineering, this research 

area can be divided into three sub-areas: damage identification (Park et al. 2005), load 

identification (Vanlanduit et al. 2005) and structural property identification (Haralampidis et 

al. 2005). However these three areas have been validated only on simple structures. Only 

Maeck and DeRoeck (2003) and Logamarsino and Calderini (2005) tested their 

methodologies on full-scale civil structures. Errors due to measurement precision and 

modeling assumptions influence results. Solutions are usually a set of good candidate models 

rather then one single solution (Robert-Nicoud et al. 2005). Most of these studies focus on 

health monitoring tasks that do not extend to control in case of unknown events.  

 

This paper describes how self diagnosis, shape control and self repair can be integrated into 

tensegrity active control in cases of unknown events. Self diagnosis involves either loading 

identification or location of damage. Self-diagnosis solutions are used for control tasks such 

as shape control or self repair. Self repair involves stiffness increases and stress decreases 

with respect to damage state. Previous work at EPFL in the area of active tensegrity 

structures is reviewed in the following section. The following section on self diagnosis and 

self-repair describes new methodologies. Results and observations from experimental 

validation of these proposed methodologies are then discussed. The paper concludes with a 

discussion of the limitations of these methods, future work and conclusions. 
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Previous work at EPFL 

Research into active structures has been carried out at EPFL since 1996. The structure is 

composed of 5 modules and rests on three supports (Figure 1). It covers a surface area of 15 

m2, has a static height of 1.20 m and withstands a distributed dead load of 300 N/m2. It is 

composed of 30 struts and 120 tendons. Struts are fiber reinforced polymer tubes of 60mm 

diameter and 703 mm2 cross section. Tendons are stainless steel cables of 6 mm in diameter. 

The central node and star topology is a particularity of each module. This topology was first 

proposed by Passera & Pedretti, Lugano (Switzerland) to limit buckling lengths, thereby 

allowing more slender compression elements than more traditional tensegrity. The structure is 

equipped with an active control system: ten actuators change length of compressed struts and 

three displacement sensors measure vertical displacements at three nodes of the top surface 

edge. Fest (2002) contains a description of the laboratory structure and the control system. 

Shape control involves satisfying a serviceability objective: maintaining the slope of the top 

surface of the structure when the structure is subjected to a load. Slope is determined through 

vertical displacement measurements at three nodes: 37, 43 and 48 (Figure 2). This objective 

is a control criterion that could be useful for structures such as antennas, pedestrian bridges 

and temporary roofs. The most challenging part of the study is the determination of control 

commands (sequence of contractions and elongations of active struts) that modify the self-

stress state in order to satisfy this objective. Since behavior is geometrically non linear and 

highly coupled, there is no closed form solution for actuator movements given a required 

slope (Fest et al. 2003). A single objective stochastic search algorithm (Raphael and Smith, 

2003b) was selected as the best method to accommodate the exponentially complex generate-

test process that is needed to find control commands (Domer et al. 2003). 
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Domer and Smith (2005) studied the capacity of the structure and its control system to learn. 

Stochastic search is a generate-test strategy. Case-based reasoning was used to speed up the 

process. In order to take advantage of previous experience, previously successful control 

commands are stored in a case-base. When the structure is subjected to a load, a similar 

configuration is retrieved from the case base and its control command is adapted to the new 

task. As more cases are added to the case-base, the average time necessary to identify and 

adapt a control command decreases (Domer 2003). Since the structure is able to improve 

performance progressively using past experience, the structure learns.  

 

Adam and Smith (2006) proposed a multi-objective approach to support tensegrity shape 

control. Since more robust control commands were identified using this approach than with 

single objective control, the structure was observed to accommodate multiple loading events 

over its service life.  

 

In these previous studies, it was assumed that the load position and magnitude were known. 

However, these studies focused only on applied load cases and did not consider damage 

location and repair. Self diagnosis and self-repairing aspects are reviewed in the following 

section. Experimental results provide validation of the methodologies.  

 

Self diagnosis 

For the purpose of this paper, self diagnosis involves identifying load positions and 

magnitudes in cases of unknown applied loads, and damage location in cases of unknown 

damage. The methodology involves measuring and analyzing response of the structure to 

unknown events. Since tensegrities are self-stressed and flexible structures, they exhibit non-

linear behavior. Perturbations are applied through small actuator elongations. Damages and 
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applied loads induce changes in response to perturbations. Such changes are measured to 

support self diagnosis. Self diagnosis solutions are used to identify control commands in 

order to either control shape or self repair. In cases of applied loading, the control objective, 

is to satisfy the serviceability criterion of maintaining the value for top surface slope of the 

structure (Figure 3). In cases of structural damage, safety objectives become more relevant 

than serviceability. Self-repairing abilities are demonstrated as follows. To improve the safety 

of the damaged structure, the safety objective involves stiffness increases and stress 

decreases.  

 

System identification supports self diagnosis. This technique requires neither intensive 

measurements nor the use of force sensors. The methodology is based on comparing 

measured and numerical responses with respect to three indicators that reflect changes in 

structure response: top surface slope deviation, transversal rotation and influence vector. 

These three indicators are presented below: 

• Top surface slope deviation S: Since maintaining the top surface slope is the main 

shape control objective, it is also used as the main indicator (Figure 2): 
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where z’i is the vertical coordinate of node i event, zi the vertical coordinate of node i 

before event and L the horizontal distance between node 43 and the middle of segment 

37 – 48 (Figure 2). The slope units used throughout this paper are mm/100m. Zero 

slope deviation means that top surface slope is equal to initial top surface slope. 

• Transversal rotation, R: This second indicator is expressed as the rotation of segment 

37 – 43 (Figure 2): 

  ( ) ( )37483748 zzzzR −−′−′=  
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According to this definition, clockwise rotations are positive. 

• Top surface slope variations are induced by perturbations. They are formally 

expressed as follows: 

SSS ′−′′=Δ   

where S’’ is the slope after perturbation and S’ is the slope before perturbation. In the 

present study, perturbations are defined as a 1 mm elongation of actuators (Figure 2). 

Slope variations induced by each of the 10 actuators are put together in order to create 

influence vectors v. The influence vector is the third indicator. These vectors express 

the slope variation per mm of actuator elongation: 

[ ]TSS )10()1( Δ⋅⋅⋅Δ=v  

where ΔS(i) is the slope variation per mm of elongation of actuator i. Since 

tensegrities are self-stressed and flexible structures, applied loads and damages cause 

non-linear behavior. Effects are observed through modifications of influence vector. 

 

Load identification 

The load identification involves magnitude evaluation and load location. The methodology 

uses the three aforementioned indicators (Figure 4). In this study, loading is assumed to be 

single static vertical point loads. They are applied one at a time on one of the 15 top surface 

nodes (Figure 2). While the algorithm in this section is able to identify only single loads, a 

generalization of this algorithm to more complex loading is future work.  

 

The following steps lead to load identification: 

Step 1: Top surface slope deviation is the first indicator. Once loaded magnitude evaluation 

involves numerically determining, for each of the 15 nodes, which load magnitude can induce 

the same slope deviation as that measured on the laboratory structure. Dynamic relaxation 
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(Barnes 1977) is used for numerical simulation. This evaluation is performed iteratively for 

each node (Figure 2). Load magnitude is gradually increased until the numerically calculated 

slope deviation is equal to the measurement. The load is incremented in steps of 50N. Loaded 

nodes inducing a slope deviation in the inverse direction than the one measured are not 

considered. Load magnitudes and locations create a set of candidate solutions.  

Step 2: Transversal rotation is the second indicator. The candidate solutions that exhibit 

inverse transversal rotation with respect to laboratory structure measurements are rejected. 

Experimental measurements show that 0.1mm is an upper bound for precision error for 

transversal rotation. In cases where transversal rotation is less than 0.1mm, no candidate 

solutions are rejected. 

Step 3: The influence vector is the third indicator. It includes slope variations per mm of 

actuator elongations. The influence vector is evaluated for the laboratory structure through 

perturbations and slope variation measurements. For remaining candidate solutions, the 

influence vector is evaluated through numerical simulation of perturbations. The candidate 

influence vector that exhibits the minimum Euclidian distance with the influence vector of 

the laboratory structure subjected to the load indicates the candidate that is the closest to the 

laboratory structure. It is taken to be the reference candidate. 
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where ΔScan(j) is the numerically calculated slope variation of a candidate for perturbation 

applied through actuator j, ΔS(j) the measured slope variation for the perturbation applied 

through actuator j on the laboratory structure. Practical applications of system identification 

include consideration of errors. An upper bound for the error on slope variations for one 

single perturbation, ep, has been observed to be ep = 0.11 mm/100m. This error is related to 

variations in the actuation system and sensor system accuracy. Candidate solutions for which 
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the Euclidian distance with the reference candidate is less the 10 times ep are also considered 

load identification candidate solutions. 

  pcanref e⋅≤− 10vv  

This process results in a set of “good” candidate solutions. For each of these solutions, load 

magnitudes are modified to approach more closely measured top surface slope deviation with 

10 N increments. Improved candidates create the load identification solution set. In this set, 

candidate solution responses are close to the measured response of the laboratory structure. 

These solutions are used as input to identify a control command for the shape control task 

(Adam and Smith 2006). 

 

Damage location  

Traditional tensegrities do not exhibit redundant load path behavior. Rupture of one single 

element usually leads to catastrophic collapse. In this structure, module topology and module 

connections provide redundancy. The basic module contains more cables than the number 

required to provide stability. Moreover, module connection is provided by multiple cables 

and nodes. Since loads can follow multiple paths, the structure is redundant and consequently 

there is potential for tolerating and locating damage.  

 

Redundancy is quantified numerically. Cases of damage are simulated using dynamic 

relaxation. Damaged elements leading to structural collapse or progressive collapse through 

either strut buckling, loss of compression in a strut or cable rupture are called critical 

elements. Only one tenth of cables and the struts are critical elements (Figure 5). Critical 

cables are mostly located at the edge of the structure where loads can not pass through other 

elements without causing a failure. In cases of non critical element failure, the position of the 

broken element is identified through the damage location methodology described next.  
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In a similar way to the task of load identification, top surface slopes and influence vectors are 

used as indicators (Figure 6). Local damage induces top surface slope deviation. Slope 

deviation is measured on the damaged laboratory structure. Within the framework of damage 

location, a candidate is defined as the structure with one cable broken. A generalization of the 

proposed algorithm for more complex structures and damage is presented in the future work 

section. The following steps are carried out: 

Step 1: There are 91 non-critical elements in the structure. 91 candidates that correspond to 

the 91 non-critical elements in the structure are considered. A maximal error of es = 96 

mm/100m has been observed for slope deviation between the laboratory structure and 

numerical models in cases of damage. Candidate solutions that show an absolute value of the 

difference between measured slope deviation and candidate slope deviation that is less than 

this error, are retained. 

  scm eSS ≤′−′  

where S’m indicates the measured slope deviation and S’c the calculated slope deviation of the 

candidate. 

Step 2: The influence vector is used as the second indicator. Perturbations are applied to the 

damaged structure and to numerical models of candidate solutions. Candidates for which 

perturbations induce instability are not considered. The candidate with the minimum 

Euclidian distance between its influence vector and the influence vector of the damaged 

structure is taken to be the reference candidate. Its response to perturbations is the closest to 

the response of the laboratory structure. Since precision errors are considered, other candidate 

solutions for which the Euclidian distance between their influence vector and the influence 

vector of the reference candidate is less than the upper bound of slope variation error for 10 

perturbations are also taken to be good candidate solutions. These solutions are a set of 
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solutions whose response is close to the response of the damaged laboratory structure. These 

good candidate solutions are used as input to identify a control command for self-repair task. 

 

Self Repair 

In case of damage, safety becomes more important than serviceability. Self-repair measures 

have priority. The control objective is thus modified. The safety objective involves stiffness 

increases and stress decreases with respect to damage state. Since stiffness increase and stress 

decrease are conflicting objectives, a multi-objective search method is attractive to identify 

control commands that maximizes safety. For the purposes of this study, the structure 

approximate global stiffness indicator is expressed as follows: 
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where ΔS(Qi) is the slope variation induced by the vertical point load Qi = 1000 N, at node i. 

Since Qi is expressed in N and ΔS(Qi) in mm/100m, approximate global stiffness indicator 

unit is N/(mm/100m). 

Minimizing stress involves minimizing the stress in the element of the structure that is the 

closest to its capacity: 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

lim

max
N
NT  

where N is the stress in cable and Nlim the cable capacity. Previous studies showed that cables 

are always closer to their capacity than struts. 

 

To avoid subjectivity related to weight coefficients, a Pareto approach (Pareto 1896) is 

proposed to support multi-objective search for a self-repairing control command. Sets of 

Pareto optimal solutions are built according to stiffness and stress objectives. The 
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serviceability objective is of tertiary importance. Among the set of Pareto optimal solutions, 

the solution that exhibits the greatest slope compensation is selected to be the self repairing 

control command.  

 

Experimental testing, results and observations 

The proposed methodologies are validated through experimental testing on a full-scale active 

tensegrity structure (Figure 1). 

 

Load identification and shape control 

The load identification methodology is tested experimentally for 11 load cases (Table 1). 

These load cases are arbitrary applied to the top surface nodes (Figure 2). Their magnitudes 

range from 391 N to 1209 N. These loads represent a wide spectrum of possibilities.  

For example, examine load case 5. The laboratory structure is loaded with 859 N at node 32. 

Top surface slope deviation is the first indicator. The measured slope deviation is equal to 

133.6 mm/100m. In 7 top surface nodes out of 15, downward point loads can induce a slope 

deviation that is close to the one measured. This creates 7 candidate solutions which are listed 

in Table 2. 

Transversal rotation is the second indicator. The load on the laboratory structure induces a 

counterclockwise transversal rotation. Since candidates 1 and 2 exhibit clockwise transversal 

rotation, they cannot be solutions and are rejected. 

The influence vector is used as the third indicator. It contains top surface slope variation per 

mm of actuator elongations. Slope variations result from perturbations. The 10 actuators used 

for perturbations are indicated in Figure 2. Slope variations are presented in Table 3. 

Perturbations are numerically simulated on remaining candidate solutions of Table 2. Slope 
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variations and Euclidian distance between laboratory structure influence vector and candidate 

solution influence vectors are presented in Table 4.  

Euclidian distance between influence vectors indicates the similarity between laboratory 

structure and candidate solutions. Similarity is maximal when this Euclidian distance is 

minimal. It is minimal for candidate 4, 800 N at node 32. In other words, candidate 4 exhibits 

the closest response to the response measured on the laboratory structure subjected to 

perturbations. This is the reference candidate. The reference candidate Euclidian distance is 

equal to 6.7 mm/100m. Considering precision errors of the active control system, candidate 

solutions 5 and 6, 1050 N at node 51 and 500 N at node 48, both with Euclidian distances 

equal to 7.1 mm/100m are also accepted as solutions.  

Finally these three candidate solutions are improved by approaching the measured slope 

deviation with load magnitude increments of 10 N. The three solutions of load case 

identification are presented in Table 5. 

 

For these three solutions, control commands for slope compensation are identified using a 

multi-objective search algorithm (Adam and Smith 2006). The three control commands are 

applied to the laboratory structure. Slope compensation is defined to be the ratio between 

measured correction induced by the control command application and the initial slope 

deviation. It ranges between 91 % and 95 %, even if the control command is identified with a 

load identification solution that is not exactly the real applied load. These three solutions are 

considered equivalent (Figure 7). Slope deviation evolution is plotted against steps of 1mm of 

actuator travel. In this case, the best slope compensation of 95 % corresponds to the closest 

candidate: 770 N at node 32. 
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In order to generalize the results presented above, load case identification and slope 

compensation are performed on the 11 load cases listed in Table 1. Results are summarized in 

Table 6. The following observations can be made on the basis of these results: 

• In each of these sets, dispersion in top surface slope compensation is less than 15 %. 

Since this value is close to the slope deviation precision error, load identification 

solutions are considered to be equivalent.  

• The closest candidate is not always the one that is located at the same node as the 

applied load case. 

• The exact load location does not always lead to the best top surface slope 

compensation.  

These observations demonstrate the validity of examining a set of good solutions instead of 

the best solution with respect to a particular indicator. It also reveals the robustness of the 

methodology. In case of structural changes such as cable relaxation or support movements, a 

set of solutions that are the closest to the real structure configuration are identified. 

For maintaining robustness of the control system (Adam and Smith 2006), in each of these 

sets, the shortest control command is used for slope compensation. In other words, the control 

command for which the sum of the actuator strokes is minimal is applied to the laboratory 

structure. The corresponding slope compensation for each load case is presented in Figure 8. 

Slope compensation is better than 84 % for all load cases except for load case 7. Since slope 

compensation quality is evaluated at final state without taking into account the control 

command sequence application, load case 7, which exhibits high value of initial slope 

deviation, is an exception. Non-linear effects observed during control command applications 

become more significant when control commands are long. 
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Damage location 

The effectiveness of the damage location is reviewed in this section. Consider that cable 7 is 

broken. Top surface slope deviation is the first indicator. The slope deviation is measured on 

the laboratory structure. It is equal to 256 mm/100m. Among all possibilities, two candidate 

solutions induce a slope deviation that is close to the one measured on the laboratory 

structure (Table 7). 

Influence vector is the second indicator. It contains slope variations induced by perturbations 

on the laboratory structure. Slope variation values are measured and listed in Table 8. Slope 

variations due to perturbations are numerically simulated on the two remaining candidate 

solutions. Slope variation values and Euclidian distances are presented in Table 9. 

Euclidian distance is minimal for candidate 2: cable 43 broken. This candidate exhibits the 

closest response to the laboratory structure due to perturbations. It is considered to be the 

reference candidate. Reference candidate Euclidian distance is equal to 6.9 mm/100m. 

Considering errors, candidate 1, cable 7 broken, is also considered to be a good candidate 

solution for damage location with a Euclidian distance of 7.1 mm/100m. Candidates 1 and 2 

are the set of damage location solutions. These two solutions are used to identify a self-

repairing control command. 

 

Self Repair 

As described earlier, the objectives of self-repair are to increase the stiffness and lower the 

stresses with respect to the damage state. Experimental validation is demonstrated by not 

having the cable 7 on the structure (Figure 5). Cable 7 is one of the most tensioned non 

critical cables. Damage location solutions are used to identify the self-repairing control 

command using the presented multi-objective search method. At initial state, stiffness 

indicator is equal to 3.92 N/mm/100m and maximal tension in cable elements is equal to 7.8 
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kN. When cable 7 breaks, stiffness indicator falls to 3.56 N/mm/100m and highest tension 

increases up to 9.0 kN. Self repair increases stiffness indicator up to 3.78 N/mm/100m with 

the control command identified for cable 7 broken, 3.70 N/mm/100mm with the control 

command identified for cable 43 broken, respectively. The highest tension decreases to 8.8 

kN with the control command identified for cable 7 broken, 7.9 kN with the control 

command identified for cable 43 broken, respectively. The effects of damage and self repair 

are summarized in Figure 9 for the case when cable 7 is broken. Stiffness indicator values are 

experimental values, whereas stress values are numerical values only because the laboratory 

structure was not equipped with strain sensors. As the maximum value of the tension in the 

cables decreases during self-repair, the maximum value of compression in the struts 

increases. This is permitted since reserve capacity is higher in struts than in cables. 

 

Limitations and Future Work 

A more general implementation of the self diagnosis algorithm, with variable parameters for 

elements stiffness, support conditions, node friction and the use of stochastic search may lead 

to better solutions for more complex structures. A general representation of load case types, 

such as two or more point loads, continuous loads and lateral loads would also be attractive 

for the self-diagnosis algorithm. Self-diagnosis results revealed opportunities for control 

command learning that lead to two types of learning: reduction of control command 

identification time and increase of control command quality over time. 

 

Conclusions 

Self diagnosis, including load identification and damage location, provides solutions that are 

used efficiently for shape control and self-repair. More specifically, the following 

conclusions come out of the study on self diagnosis: 
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• System identification algorithms contribute to self-awareness in active structures and 

leads to successful self diagnoses.  

• Non linear response to applied loads and damage is successfully evaluated to support 

self diagnosis. 

• Experimental testing justifies the strategy of initial generation of a set of good 

solutions rather than direct (and often erroneous) assignment of one single solution.  

In cases of damage, safety becomes more important than serviceability. The following 

conclusions come out of the study on self repair: 

• Self-repairing abilities are successfully demonstrated through increasing stiffness and 

decreasing stresses with respect to the damaged state. 

• The possibility of controlling other objectives such as stiffness and stress by 

modifying the self-stress state of an active tensegrity structure is demonstrated. 

• The topology of the tensegrity structure in this study allows for redundant load-path 

behavior for some types of damage.  

The methodologies described in this paper are particularly attractive for active control in 

situations where there may be unanticipated applied loading and damage. 

 

Acknowledgments 

The authors would like to thank the Swiss National Foundation for supporting this work. 

They also thank B. Domer, P. Kripakaran and B. Rebora for discussions and advice. B. 

Domer also improved control and implemented the case-based reasoning study. E. Fest built 

the structure and the control system. B. Raphael provided support during programming of the 

control system. We are also grateful to Y. Robert-Nicoud for his advice, Passera & Pedretti 

SA (Lugano, Switzerland), Lust-Tec GmbH (Zürich, Switzerland) and P. Gallay for their 

contributions. 



 - 19 - 

Notation 

The following symbols are used in this paper: 

S = Top surface slope deviation 

zi  = Vertical coordinate of node i, at initial state 

z’i = Vertical coordinate of node i, after unknown event occurrence 

L =  Horizontal distance between node 43 and the middle of segment 37 - 48 

R = Transversal rotation 

∆S = Top surface slope variation 

S’’ = Slope deviation after perturbation 

S’ = Slope deviation before perturbation 

v = Influence vector 

vcan = Influence vector of a candidate 

∆Scan = Numerically calculated top surface slope variation of a candidate for a 

perturbation  

ep = Upper bound error on top surface slope variation for one single perturbation, 

between the laboratory structure and numerical models 

vref = Influence vector of reference candidate 

es = Upper bound error on top surface slope deviation between the laboratory 

structure and numerical models due to damage 

K = Global stiffness indicator 

T = Ratio between stress and capacity of the element that is the closest to its 

capacity 

N = Normal force 

Nlim = Normal force capacity 
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Figures 

 

 

Fig. 1. 5 module, 15 m2 active tensegrity structure used for tests 

 

 

Fig. 2. View of the structure from the top with the 10 actuators numbered in squares and upper nodes indicated 

by a circle. Slope S and transversal rotation R are indicated. Lines represent the top surface from both sides. 
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Fig. 3. Load identification and shape control in cases of applied loading 

 

 

Fig. 4. Indicators involved in load identification process 

 

 

Fig. 5. Critical elements are indicated in bold 

 

 

Fig. 6. Indicators involved in damage location process 
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Fig. 7. Shape control for load case 5: 859 N at node 32, for the three load identification solutions: 770 N at node 

32, 1000 N at node 51 and 490 N at node 48 
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Fig. 8. Slope compensation for the 13 tested load cases 

 

 

 

Fig.9. Damage effects and self-repair for broken cable 7 according to damage location solutions: cable 7 and 

cable 43 

 



 - 28 - 

Tables 

 

Table 1. Load Cases applied to the structure 

Load Case Loaded node Load magnitude [N] 
1 26 -625 
2 26 -900 
3 26 -1209 
4 32 -625 
5 32 -859 
6 32 -1092 
7 37 -550 
8 48 -391 
9 48 -550 

10 48 -700 
11 6 -1092 

 

Table 2. Candidates with their numerically calculated slope deviation 

Candidate Node Magnitude 
[N] 

Slope 
deviation 

[mm/100m] 

Trans. 
rotation 

1 37 -550 144.1 1.3 
2 39 -350 138.6 0.28 
3 26 -850 134.6 -0.10 
4 32 -800 137.4 -0.18 
5 51 -1050 138.5 -0.81 
6 48 -500 134.3 -1.18 
7 6 -1450 135.3 -0.90 

 

Table 3. Influence vector for load case 5 on the laboratory structure 

Perturbation Influence vector v 
[mm/100m]/mm 

1 6.0 
2 7.2 
3 -9.4 
4 -7.4 
5 -12.6 
6 -12.2 
7 9.4 
8 9.8 
9 -4.3 
10 -4.2 
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Table 4. Influence vector values and Euclidian distance for remaining candidates 

 Influence vector vcan [mm/100m]/mm 
Perturbations Candidate 3 Candidate 4 Candidate 5 Candidate 6 Candidate 7 

1 9.7 9.9 9.2 10.0 12.0 
2 9.7 9.9 9.2 10.0 12.1 
3 -4.3 -6.3 -4.5 -5.4 -6.6 
4 -4.3 -6.4 -4.5 -5.4 -6.6 
5 -11.2 -14.2 -11.6 -13.5 -15.4 
6 -11.0 -13.9 -11.3 -13.2 -15.1 
7 10.6 11.2 10.2 11.2 13.3 
8 10.5 11.2 10.1 11.1 13.2 
9 -4.3 -5.4 -3.6 -4.4 -3.9 

10 -4.2 -5.2 -3.5 -4.2 -3.7 
vv −can  7.9 6.7 7.1 7.1 10.6 

 

Table 5. Self-diagnosis solutions for load case 5: 859 N at node 32 

Candidate Node Magnitude 
[N] 

Slope 
deviation 

[mm/100m] 
4 32 -770 132.4 
5 51 -1000 132.9 
6 48 -490 131.6 
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Table 6. Summary of load identification solutions and shape control results 

Applied load case Self-diagnosis solution Shape control result 

Loaded 
node 

Load 
magnitude 

[N] 

Loaded 
node 

Load 
magnitude 

[N] 

Euclidian 
distance 

[mm/100m] 

Slope 
compensation 

[%] 

Sequence 
length 
[mm] 

51 -540 5.6 83 17.1 
26 -470 6.1 89 18.1 
39 -190 6.1 98 18.1 
37 -290 6.5 95 20.3 

26 -625 

48 -280 6.5 94 13.2 
51 -730 5.6 90 14.7 26 -900 26 -620 6.1 100 19.8 
51 -1010 1.8 93 18.7 26 -1209 26 -850 2.0 94 19.9 
39 -270 5.5 88 21.0 
51 -780 5.6 82 15.9 
32 -620 6.0 92 16.6 
37 -410 6.0 91 18.6 
48 -400 6.0 96 16.3 

32 -625 

26 -660 6.2 94 15.5 
32 -770 6.8 95 15.5 
51 -1000 7.1 91 20.5 32 -859 
48 -490 7.2 94 16.8 
32 -980 6.3 97 18.6 32 -1092 48 -620 7.0 99 18.4 
39 -350 5.9 74 17.7 37 -550 37 -530 6.0 73 16.3 
51 -700 5.2 95 13.0 
48 -360 6.0 88 15.4 
26 -600 6.1 94 17.0 48 -391 

32 -560 6.2 80 17.9 
48 -510 5.5 94 16.9 48 -550 32 -810 6.0 89 13.1 
48 -660 6.6 88 20.0 48 -700 32 -1050 7.2 85 21.2 
32 -610 4.3 84 13.9 6 -1092 48 -390 5.4 89 16.1 

 

Table 7. Candidate with slope deviation close to the measured one 

Candidate Broken cable Slope deviation 
[mm/100m] 

1 43 194 
2 7 340 
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Table 8. Influence vector values for the laboratory structure damaged: cable 7 broken 

Perturbation Influence vector v 
[mm/100m]/mm 

1 1.4 
2 0.8 
3 -1.7 
4 -2.1 
5 -3.7 
6 -3.4 
7 3.2 
8 2.3 
9 -1.0 
10 -0.6 

 

Table 9. Influence vector and Euclidian distance for remaining candidates 

Influence vector vcan 
[mm/100m]/mm Perturbations 

Candidate 1 Candidate 2 
1 6.3 3.4 
2 5.6 3.4 
3 -1.2 1.6 
4 -1.2 1.6 
5 -4.0 -2.8 
6 -4.0 -2.8 
7 3.6 1.1 
8 3.6 1.0 
9 -1.0 -2.3 

10 -1.0 -2.3 
vv −can  7.1 6.9 
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Figure captions 

Fig. 1. 5 module, 15 m2 active tensegrity structure used for tests 

Fig. 2. View of the structure from the top with the 10 actuators numbered in squares and 

upper nodes indicated by a circle. Slope S and transversal rotation R are indicated. Lines 

represent the top surface from both sides. 

Fig. 3. Load identification and shape control in cases of applied loading 

Fig. 4. Indicators involved in load identification process 

Fig. 5. Critical elements are indicated in bold 

Fig. 6. Indicators involved in damage location process 

Fig. 7. Shape control for load case 5: 859 N at node 32, for the three load identification 

solutions: 770 N at node 32, 1000 N at node 51 and 490 N at node 48 

Fig. 8. Slope compensation for the 13 tested load cases 

Fig.9. Damage effects and self-repair for broken cable 7 according to damage location 

solutions: cable 7 and cable 43 

 



 - 33 - 

Table captions 

Table 1. Load Cases applied to the structure 

Table 2. Candidates with their numerically calculated slope deviation 

Table 3. Influence vector for load case 5 on the laboratory structure 

Table 4. Influence vector values and Euclidian distance for remaining candidates 

Table 5. Self-diagnosis solutions for load case 5: 859 N at node 32 

Table 6. Summary of load identification solutions and shape control results 

Table 7. Candidate with slope deviation close to the measured one 

Table 8. Influence vector values for the laboratory structure damaged: cable 7 broken 

Table 9. Influence vector and Euclidian distance for remaining candidates 

 




