





## High performance low-firing temperature thick-film pressure sensors on steel

C. Jacq, T. Maeder, N. Johner, G. Corradini, Prof P.Ryser Laboratoire de Production Microtechnique, EPFL Caroline.jacq@epfl.ch http://lpm.epfl.ch

Aim of this project: Produce high-performance piezoresistive thick-film pressure sensors on steel substrates.

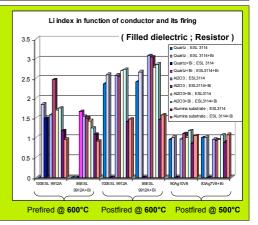
Reduce the firing temperature to avoid degradation of the steel mechanical properties: a series of thick-film materials systems (dielectrics, resistors and conductors) firing at temperatures <700°C has been developed for ferritic / martensitic steels.

- Main issue in these systems:
- · Materials interactions between resistor, conductor and dielectric
- · Termination effects
- · Adherence & solderability



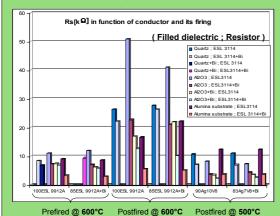
**Termination effects:** A serious problem with thick-film terminations is the increase of sheet resistance for the short resistors. In order to avoid this problem:

Dope the thick-film materials (dielectric, conductive and resistive materials) with Bi<sub>2</sub>O<sub>3</sub>


Modify the standard screen-printed sequence in order to decrease the firing temperature of the conductor.

•Quick assessment of the termination effects: "length index" LI:  $LI = \frac{\text{Value of short resistors}}{\text{Value of standard resistors}}$ 

- · Dominant parameters : conductor and its firing temperature.
- Strong inverse size effects for conductors fired at 600°C (especially for post-fired ones).
- Very small size effect for conductors post-fired at 500°C.


For this "good" group, smaller, secondary effect of the presence of Bi.

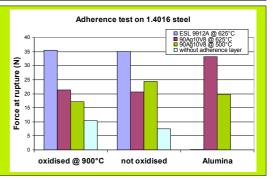
Best LI values (1 or slightly lower) are obtained with Bi in conductor or in both conductor+resistor.



## Sheet resistance (Rs) & Thermal coefficient of resistance (TCR)

- Addition of Bi<sub>2</sub>O<sub>3</sub> in the dielectric strongly decreases the sheet resistance
- The dielectric filled with Al<sub>2</sub>O<sub>3</sub> and doped with Bi<sub>2</sub>O<sub>3</sub> is favourable, because TCR is shifted towards 0.
- Doping ESL 3114 with Bi<sub>2</sub>O<sub>3</sub> gives good results, but is not necessary to achieve good TCR and termination properties.




## Best solution:

- Dielectric filled with alumina & doped with Bi<sub>2</sub>O<sub>3</sub>
- Commercial ESL 3114 resistor composition (fired at 625°C).
- Fritted Ag conductive composition post-fired at 500°C.



## Adherence and Solderabilty

- First dielectric layer filled with an adhesion promoter (Fe $_2$ O $_3$  powder, 25% vol.)
- Tests on both oxidised and unoxidised substrates (oxidation 1 hour at 900°C in air).
- · Solderability tested with different conductors.
- Bending tests on brass parts soldered with Sn-Ag (96.5%-3.5%) lead-free alloy
- Fe<sub>2</sub>O<sub>3</sub> filled dielectric is an efficient adherence layer (no rupture in substrate-dielectric interface).
- · No pre-oxidation required with this layer
- ESL9912A conductor exhibits the best strength.
- The wettability of the solder is a little worse with low firing conductors, even when fired at 625°C, which explain the worse results.

