142 DOI 10.1002/prca.200780009

Review

Proteomics Clin. Appl. 2008, 2, 142-157

Oxidation of proteins: Basic principles and perspectives

for blood proteomics

Stefano Barelli', Giorgia Canellini’, Lynne Thadikkaran', David Crettaz’,
Manfredo Quadroni?, Joél S. Rossier’, Jean-Daniel Tissot' and Niels Lion™ *

T Service Régional Vaudois de Transfusion Sanguine, Lausanne, Switzerland
2 |nstitut de Biochimie, Faculté de Biologie et de Médecine de Lausanne, Epalinges, Switzerland

3 DiagnoSwiss SA, Monthey, Switzerland

* Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique

Fédérale de Lausanne (EPFL), Switzerland

Protein oxidation mechanisms result in a wide array of modifications, from backbone cleavage or
protein crosslinking to more subtle modifications such as side chain oxidations. Protein oxida-
tion occurs as part of normal regulatory processes, as a defence mechanism against oxidative
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stress, or as a deleterious processes when antioxidant defences are overcome. Because blood is
continually exposed to reactive oxygen and nitrogen species, blood proteomics should inherently
adopt redox proteomic strategies. In this review, we recall the biochemical basis of protein oxi-
dation, review the proteomic methodologies applied to analyse redox modifications, and high-
light some physiological and in vitro responses to oxidative stress of various blood components.
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1 Introduction

Oxidative modifications to proteins have been for the most
part considered as deleterious, irreversible, and ultimately
leading to protein inactivation, degradation, and clearance [1,
2]. From decades of molecular studies of protein oxidation,
the picture has dramatically evolved, and protein oxidations
are now considered as two-faced modifications: on the one
hand, oxidation mechanisms take part in many normal reg-
ulatory processes (beside energy conversion), such as en-
zyme activity modulation [3], signalling [4, 5], or gene reg-
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ulation [6-9]. On the other hand, oxidative modifications also
appear when oxidative stress overcomes antioxidant defenc-
es, and are then damaging [10, 11]. The response of living
systems to oxidative stress is of primary importance in
understanding cellular defence and aging [12-15]. Disorders
of normal oxidative metabolism, or damages due to oxidative
stress, have also been proven to be key players in a broad
spectrum of diseases, from neurodegenerative disorders,
such as Alzheimer disease [16-22], to various kinds of cancer
[23-26], diabetes [27-29], and atherosclerosis [30-33].

From a molecular point of view, protein oxidation results
in a wide variety of chemical modifications, ranging from
protein backbone cleavage or protein crosslinking, to amino
acid side chain subtle modifications. Moreover, oxidative
damage can introduce new reactive chemical groups into
proteins, such as aldehyde and ketones, leave nonconven-
tional peptidic ends at both the N- and C-termini. Such an
array of modifications is difficult to tackle with a single ana-
Iytical approach, and large-scale studies of protein oxidations
have usually focused on the detection of a single modifica-
tion, such as cysteine or tyrosine oxidation, or a subclass of
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oxidation by-products, such as protein carbonyls. Whereas
these approaches are compulsory steps on the way to under-
stand oxidation processes and their effect on a large scale,
there is no way to date to get a full picture of a proteome
oxidative status.

Nevertheless some blood components are inherently
subjected to oxidative stress. For example, RBCs are typically
exposed to continuous fluxes of ROS due to their function;
platelets are exposed to ROS at sites of inflammation, where
coagulation happens. Additionally, protein oxidation mech-
anisms are of particular interest in transfusion medicine,
and have been hypothesised to be responsible for the “blood
storage lesion” [34—38]. Whether blood product oxidation is
due to exposure of blood to oxidizing agents during punc-
ture, handling, and blood product preparation (e.g., pathogen
inactivation procedures), or appears only during storage as a
result of aging or stress is still unclear. In this review, we give
a biochemical overview of protein oxidation processes, dis-
cuss the main methodological and instrumental approaches
for the study of protein oxidation on a large scale, and pres-
ent selected examples with relevance to blood analysis.

2 Biochemical overview

The gist of this section is not to give a comprehensive and
detailed overview of protein oxidation mechanisms; this has
been done elsewhere [39-44]. It is rather to provide an over-
view of protein oxidation products in terms of diversity and
chemical specificity in order to highlight the possible ana-
lytical workflows and current challenges in redox proteom-
ics. Oxidative modifications of proteins are due to attacks by
ROS such as hydrogen peroxide (H,0,), anion superoxide
(0;7), or hydroxyl radical (OH?®), and reactive nitrogen spe-
cies (RNS) such as nitric oxide (NO), nitrate (NO;"), nitrite
(NO; "), and peroxinitrites (ONOO™), as shown in Fig. 1 [45].
These species can appear as by-products of oxygen metabo-
lism, or be present in the environment, and their appearance
is the result of a complex interplay between the environment,
and the cellular enzymatic machinery. The attack of proteins
by these highly reactive species can lead to amino acid side
chain modifications, cleavage of protein backbone, genera-
tion of carbonyl derivatives and formation of crosslinked
protein complexes. Some reactions are limited and specific to
certain residues, whereas others give rise to widespread and
nonspecific modifications. Moreover, reactive oxygen and
nitrogen species are also responsible for damages to DNA
bases and sugar moieties, and degradation of lipids through
peroxidation, the by-products of which can in turn modify
proteins.

2.1 Protein backbone oxidation and cleavage
Protein backbone can be attacked by hydroxyl radicals on the

a-carbon of amino acids, resulting in the formation of a car-
bon-centred radical. Under anaerobic conditions, two such
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Figure 1. ROS and RNS. SOD stands for superoxide dismutase.

carbon-centred radicals can combine to form an intra- or
interprotein crosslinkage (see below). In the presence of
oxygen, a hydroxyl group can be added to this carbon-centred
radical. The hydroxylated o-carbon can then undergo peptide
backbone cleavage at the N-C bond through the a-amidation
pathway, which leaves an amide at the C-terminal side of the
N-terminal part of the protein, and a a-keto-acyl residue at
the N-terminal side of the C-terminal part of the protein [40,
42, 46-48].

The same carbon-centred radical can undergo further
attack by O,, that induces cleavage of the peptide backbone,
at the C—C bond through the diamide pathway, as shown in
Fig. 2A. The diamide pathway initially induces one cleavage,
leaving a diamide derivative on the C-terminal side of the N-
terminal part of the protein, and an isocyanate derivative on
the N-terminal of the C-terminal part of the protein, that
spontaneously form the derivatives shown in Fig. 2A [40, 46,
47).

Additionally, oxidation of glutamyl and prolyl residues
can also result in single backbone cleavage. As shown in
Fig. 2B, the cleavage at glutamyl residue leaves an amide at
the C-terminal side of the N-terminal part of the protein, and
a pyruvyl residue at the N-terminal side of the C-terminal
part of the protein, whereas the prolyl oxidation leaves two
protein fragments with conventional termini and releases a-
amino butyric acid [47].

Lastly, beta-scission can occur through radical attack on
the B (C3) position, as shown in Fig. 2C [40, 42, 49]: the
release of the side chain as a carbonyl compound leaves a
radical on the a-carbon, which is then prone to backbone
cleavage through mechanisms similar to that of the diamide
or a-amidation pathways.

2.2 Protein carbonyls

Protein carbonyls appear through side-chain oxidation of
proline, arginine, and lysine, as shown in Fig. 3 [13, 42, 50].
They can also result from backbone cleavage through the o-
amidation pathway or B-scission. Alternatively, they can be
introduced into proteins through Michael addition of unsa-
turated aldehydes produced by peroxidation of lipids (the
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main product being the addition of 4-hydoxy-2-nonenal on
cysteine, histidine, and lysine, as shown in ref. [51-54] and in
Fig. 4).

As carbonylation results in the introduction of reactive
aldehyde or ketone groups in the protein, they are easily
quantifiable (see below) and are indeed considered in prac-
tice as reliable markers of oxidative stress [55, 56].

2.3 Protein thiols and thioethers

Cysteinyl thiols can undergo a large array of oxidative mod-
ifications, depending on their accessibility in the protein
structure, and the species they can contact to. Moreover, as
cysteines play a pivotal role in protein structure through the
formation of disulphide bonds, their oxidation status is of
primary importance for protein function. In the recent years,
cysteine oxidation has been more and more recognised as a
basal regulation mechanism [57]. Free sulphydryl groups can
undergo direct, reversible oxidation to sulphenic acid, and
most often further irreversible oxidation to sulphinic and
sulphonic acid, as shown in Fig. 5. Free cysteines can also be
nitrosylated [58].

In addition, free sulphydryl groups can also form di-
sulphide bridges with low molecular weight sulphydryl
compounds present in the protein environment, such as free
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Prot; is the N-terminal side of the protein, and Prot, the C-terminal side.
(B) Protein backbone cleavage by oxidation of glutamyl and prolyl residues.
(C) B-Scission of side-chain residue (alanine, valine, leucine, or aspartate),
leaving a radical on the a-carbon, prone to backbone cleavage.

cysteine, and glutathione [59-62]. S-glutathionylation is in
most cases a permanent modification, except if a second
cysteine is present in the close vicinity, and is available for
disulphide bridge formation.

Together with cysteine, methionine belongs to the most
easily oxidisable amino acid. Its oxidation products are
shown in Fig. 6 [63]. The cyclic oxidation-reduction of
methionine through NADPH-dependant thioredoxin reduc-
tase is an important antioxidant mechanism [64-67]. Age-
dependent increase in methionine sulphoxide content of
proteins was reported for different tissues, notably ery-
throcytes [67].

2.4 Nitrotyrosine

Peroxynitrite (ONOO™) results from the reaction of super-
oxide (O,”) with NO (see ref. [45, 68-77] for review). It is a
strong oxidant with a short biological half-life. Once formed
intravascularly, it can directly undergo oxidation with several
biological targets or generate radicals resulting later in oxi-
dation and nitration reactions. Tyrosine nitration occurs via a
two-step mechanism: (i) a tyrosyl radical is formed, (ii) the
tyrosyl radical reacts with the free radical NO to form
3-nitrotyrosine (Fig. 7) [78]. The latter has been revealed as a
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Figure 4. Introduction of carbonyls into proteins through Michael addition of 4-hydroxy-2-nonenal on cysteine (top), histidine (middle),

and lysine (bottom) side chains.

biomarker of nitrosative stress and may serve as predictor of
coronary artery disease [73, 79].

2.5 Protein crosslinking

As mentioned above, protein backbone can be attacked by
hydroxyl radicals on the a-carbon of amino acids, resulting in
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the formation of a carbon-centred radical. In the absence of
oxygen, two such carbon-centred radicals can combine to
from a covalent intra- or interprotein crosslink. Additionally,
intra- or interprotein crosslinks can appear through cysteine
oxidation via the formation of disulphide bridges. Lastly,
other crosslinks induced by oxidation of specific residues
have been reported, such as dityrosine formation [80], or
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Figure 6. Methionine oxidation products.

sulphur—nitrogen crosslinking (for example, Cys-Lys and
Cys—Arg) [81].

3 Methodologies for redox proteomics

The field of redox proteomics inherits a whole armada of
methodologies for the analysis of protein oxidation products
from classical biochemistry studies. Nevertheless, proteom-
ics aim at analysing the whole proteinaceous content of a
given sample, and identifying all modifications present
down to the single amino acid level. At the same time, oxi-
dative modifications are nonstoechiometric, and present a
large diversity (protein fragments with both conventional
and nonconventional termini, hydroxylated protein back-
bone, carbonyls, oxidised cysteines and methionines, nitro-
tyrosines, crosslinked proteins, just to name the main mod-
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form hydrazone. Carbonyls can thus be quantified spectro-
photometrically by 2,4-dinitrophenylhydrazine (DNPH, the
structure of which is shown in Fig. 8). The results are usually
expressed in moles of carbonyls per gram of proteins [82, 83].
Such spectrophotometric assay is not exempt from biases,
such as the presence of excess DNPH [84], or nonprotein
carbonyls. Alternatively, ELISA assays have been developed
for the quantitation of DNPH-derivatised carbonyls [85-87].
The same chemistry can be used in combination with gel
electrophoresis, followed by an immunodetection [88, 89].
Alternatively, Yoo and Regnier [90] have developed a biotiny-
lation strategy for the specific labelling of carbonylated pro-
teins after 2-DE.

3.2 Carbonyl enrichment

Another possible strategy is to use DNPH derivatisation in
combination with anti-DNPH antibodies to immunoprecipi-
tate and enrich carbonylated proteins, which has been
demonstrated by England and Cotter in the study of ER pro-

www.clinical.proteomics-journal.com
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tein susceptibility to oxidation by 2-DE and MALDI-TOF MS
[91], and by Kristensen et al. [92] in rice leaf mitochondria
oxidation study with 2-D LC-MS/MS.

An alternative is to use affinity baits for the specific iso-
lation of carbonylated proteins. For example, one can use
biotin hydrazine for the derivatisation of ketones and alde-
hydes, and avidin columns for specific isolation of deriva-
tised peptides and proteins [93-98]. Interestingly, Mirzaei
and Regnier [97] compared three different strategies based
on biotin hydrazine tagging of carbonyls, affinity selection,
proteolysis, RP-HPLC, and MS, and found that performing
the affinity selection and chromatography at the protein level
before proteolysis and mass spectrometric protein identifi-
cation, was more informative because working with intact
protein allowed the detection of crosslinked or truncated
proteins. Using a similar approach, Roe et al. [99] directly
derivatised glass beads with a hydrazine group, allowing spin
down isolation of carbonylated proteins.

Regnier’s group also introduced a different tagging
reagent for carbonyls: Girard’s P reagent, which bears a
hydrazine group, together with a permanent positive charge.
Using this tagging reagent in combination with strong cati-
on exchange chromatography, authors were able to enrich
carbonylated peptides [100], and quantify them through iso-
topically labelled Girard’s P reagents [101].
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Lastly, Lee et al. recently introduced the so-called “Oxida-
tion dependent element coded affinity tags” (O-ECAT), which
are probes bearing one aminooxy group able to form a cova-
lent bond with aldehydes or ketones, and one metal-chelator
moiety. Antibodies against the metal-chelator moiety allow
the affinity selection of derivatised peptides and proteins,
and the probe can be loaded with various metals prior to any
labelling of carbonyls in order to provide relative quantifica-
tion information in MS [102].

3.3 Probing thiols oxidation

Methods for the study of protein thiols oxidation states have
been the subject of recent reviews [44, 103]. Briefly, most
techniques lie in the differential labelling of free sulphydryls
and oxidised ones, for example, through maleimide, iodoa-
cetamide, iodoacetate, and thiosulphate chemistries. For
example, Baty et al. [104, 105] first blocked free cysteines with
an alkylating reagent, then reduced the sample to make sul-
phydryls previously involved in disulphide bridges and glu-
thationylation available, and labelled them with a fluorescent
probe before 2-DE. Authors were thus able to study the effect
of oxidants (such as diamide or H,0,) on thiols oxidation
state, and therefore identify proteins susceptible to oxidation.
Similarly, Laragione [106, 107] used the same method with a
probe containing an affinity bait (biotin), and further detect-
ed initially thiol-oxidised proteins with a streptavidin—perox-
idase conjugate after Western blotting.

The same methodology can be applied for the specific
enrichment of oxidised-thiol containing proteins: free
thiols are first blocked, oxidised thiols are reduced chemi-
cally and further reacted with a probe containing an affinity
bait, such as biotin [108-112]. When isotope-coded-affinity-
tags (ICAT) reagents are used in this way, relative quantifi-
cation between two differentially oxidised samples can be
obtained [113, 114]. These techniques are useful to identify
oxidation-sensitive thiols, but fail to identify the type of
oxidation.

More specific is the probing of cysteines susceptible to
Sglutathiolation: Brennan et al. mimicked a particular oxi-
dative stress by adding biotin-GSSG-biotin to rat tissues;
upon excess GSSG, disulphide exchange occurs and glu-
thationylated proteins can be isolated by avidin columns.
Doing so, authors were able to study the proteome of thiols
susceptible to S-gluthationylation in heart tissues [115,
116].

Jaffrey et al. [117] also targeted a specific cysteine mod-
ification (S-nitrosylation, see Fig. 5) by first blocking
cysteines, reacting nitrosothiols with ascorbate to leave free
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cysteines, and finally reacting these cysteines with biotin-
containing reagents for specific enrichment of initially
S-nitrosylated proteins.

3.4 Nitrotyrosine

Most studies of tyrosine nitration [118] rely on immunologi-
cal detection thanks to commercially available anti-
nitrotyrosine mADb, whether in the ELISA format [119], in
which case it is difficult to distinguish between free circulat-
ing 3-nitrotyrosine and protein-bound nitrotyrosine, or in
Western blot format after 1-D or 2-DE [120-122]. Immuno-
precipitation with antinitrotyrosine antibodies allowed Nikov
et al. [123] to map nitration sites of HSA by MS.
Interestingly, Zhang et al. [124] have recently introduced
a methodology for selective isolation of nitrotyrosine-con-
taining peptides: first, primary amines are acetylated, and
free sulphydryls are blocked, nitrotyrosines are then reduced
to aminotyrosine, which are then acetylthioacetylated, and
the resulting group is deprotected to leave a free sulphydryl
group, which in turn allows specific enrichment of peptides
initially containing 3-nitrotyrosine. Doing so, authors were
able to dramatically enrich peptides containing 3-nitrotyr-
osine compared to a direct mass spectrometric analysis.

3.5 Mass spectrometric and bioinformatics
challenges

MS is now well established as a central identification tech-
nology in proteomics. Nevertheless, the identification and
location of PTMs remains a challenge in routine analysis
[125]. In the specific context of oxidative modifications, two
major difficulties arise due to heterogeneity of possible
modifications; first, whereas MS/MS is perfectly suited to the
detection and identification of chemical modifications on
amino acid side chains, the number of possible modifica-
tions (such as the different oxidation states of cysteine or
methionine, the presence of nitrotyrosine, to name only the
most standard ones) as well as the possibility of non specific
peptide cleavages dramatically increase the search space
when trying to match tandem mass spectra to peptide
sequences in the queried database. This in turn increases the
probability of false identification [126].

Even more complex are the cases of backbone cleavages
and interprotein crosslinking: because in bottom-up strate-
gies, sequence coverages of identified proteins are intrinsi-
cally low, it is very difficult to unambiguously identify a pro-
tein fragment or the site of crosslinking (see below for an
example about erythrocyte membrane proteins).

Additionally, many oxidised products are chemically
unstable, and form adducts with other compounds; for
example, one product of the hydroxylation of tyrosine is 3,4-
dihydroxyphenylalanine. The latter can be converted to
orthoquinone through metal catalysis, and then further
undergo Michael addition with a free cysteine [127]. Such
nonconventional and unexpected modifications are virtually
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impossible to track down with the large-scale tools of MS and
bioinformatics.

Another possible complication due to instrumental arte-
facts is the loss of side-chain modifications during tandem
MS. It has been observed that labile modifications are readily
lost during gas-phase fragmentation by CID [128]. One
promising solution to this problem is the development of
“softer” fragmentation techniques such as electron transfer
dissociation (ETD) and electron capture dissociation (ECD).
For example, Guan et al. [129] showed that CID of oxidised
methionine containing peptides resulted in the loss of
CH;SOH whereas ECD allowed fragmentation of the peptide
backbone while preserving the side-chain oxidation, thus
allowing direct location of the oxidised methionine.

Recently, Zhao et al. [130] proposed a complete method-
ology for single protein oxidation mapping based on high
resolution, high accuracy MS: they mimicked oxidation of
P21Ras by in vitro incubation with peroxynitrite or GSSH,
and analysed both tryptic digests (bottom-up protein MS)
and whole proteins (top-down protein MS) by CID and ECD.
They were not only able to map the oxidative modifications to
the protein, but also compare the reactivity of the different
sites susceptible to undergo oxidative modifications. But
such studies are possible at the single protein level, and data
interpretation is yet hardly amenable to automation for large-
scale studies.

4 Perspectives for blood proteomics
4.1 Red blood cells

The RBC proteome has been the subject of extensive efforts,
and more and more data accumulate through time [131-
141], providing a high quality dictionary of red blood cell
proteins. Red blood cells are inherently under continuous
oxidative stress, as they pass the lungs once a minute; they
contain high levels of O, and haemoglobin which auto-
oxidises to produce O,  and H,0,. The heme group of hae-
moglobin can serve as a Fenton reagent to initiate free radical
reactions [142]. Additionally, the RBC is often considered as a
sink for oxidative species [143-145]: approximately 40% of
intravascularly formed peroxynitrite diffuses into RBCs: the
peroxinitrite anion crosses the membrane via band 3,
a bicarbonate-chloride exchanger, whereas diffusion of
peroxynitrous acid is passive [146, 147].

The forefront of antioxidant defences has been identified
to be superoxide dismutase (SOD), glutathione peroxidase
(Gpx), peroxiredoxins (Prdx), and catalase, four enzymes that
are highly abundant in red blood cells, as shown in Fig. 9.
Superoxide dismutase catalyses the reduction of superoxide
to oxygen and hydrogen peroxide through its [Cu-Zn] centre.
Glutathione peroxidase catalyses the reduction of hydrogen
peroxide to water by the conversion of GSH to GSSG, which
can be recycled back to glutathione by the NADPH-depend-
ent glutathione reductase. Catalase directly reduces hydro-

www.clinical.proteomics-journal.com
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gen peroxide to water and oxygen in a two-step mechanism
thanks to its heme group. Peroxiredoxins catalyse the reduc-
tion of H,0, to water by oxidation of one cysteine (the peroxy-
datic one) to sulphenic acid; another cysteine (for the 2-cys
peroxiredoxin subclass) reacts with the sulphenic acid to form
a disulphide bridge. Its regeneration occurs through a thio-
redoxin /NADPH-dependent thioredoxin reductase system.
The overoxidation of the peroxydatic cysteine may abolish the
catalytic activity of peroxiredoxins [148].

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

The respective role of these enzymes in antioxidant
defence is still a matter of debate. Knockout mouse models
proved that the lack of peroxiredoxin I resulted in severe
haemolytic anaemia, and appearance of lymphomas, sarco-
mas, and carcinomas [149]. The lack of peroxiredoxin II was
also shown to result in haemolytic anaemia [150]. On the
other hand, patients having hereditary catalase deficiencies
were also shown to be victims of oxidative stress and pre-
sented a high prevalence of diabetes [151]. Gaetani et al. [152]
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also demonstrated that catalase is essential for the removal of
H,0, from RBCs, having an activity six times higher than
glutathione peroxidase. Peskin et al. [153] have recently
shown that peroxiredoxin 2 and catalase react with H,0, at
comparable rates. It was hypothesised that catalase and per-
oxiredoxin play complementary roles in H,0, detoxification/
signalling due to the different recycling mechanisms used
[154]; in RBCs, peroxiredoxin 2 was shown to accumulate as
a dimer under H,0, challenge, which was only slowly con-
verted back to the active monomer by the thioredoxin system.
This behaviour makes peroxiredoxin 2 ideally suited to H,0,
sensing at low concentration [155]. When H,0, concentra-
tion increases, catalase and glutathione peroxidase are nec-
essary to dispose of excess H,0, [156]. What is unknown is
the role of peroxiredoxin 2 dimer and overoxidised forms in
H,0, signalling.

Inside RBCs, oxidative stress induces haemoglobin
crosslinking to the cytoskeleton [38, 157], which brings the
heme centre in close vicinity to the phospholipid membrane
where it can act as a local Fenton reagent [142]. Oxidative
stress is also associated with protein degradation [158], band
3 clustering [159], phosphatidylserine externalisation [160],
activation of caspases [160-162], and down-regulation of gly-
cophorins [163], some of these being recognised as bio-
markers of senescence or “apoptosis”. In particular phos-
phatidylserine externalisation signals macrophages to recog-
nise and degrade the RBCs.

Recently, D’Amici et al. [140] analysed by 2-DE the
membrane proteome of RBC during storage, i.e., during
hypothesised oxidative stress. They were able to demon-
strate dramatic alteration and cleavage of band 4.2, 4.1,
band 3 and spectrin through the appearance of numerous
spots through time, in addition to slighter modifications
(hypothesised to be oxidative side-chain modifications) to
numerous cytoskeleton, cytoskeleton-anchored and mem-
brane proteins.

4.2 Platelets

Platelets are responsible for primary haemostasis through
adhesion to collagen, release of mediators and aggregation
with adjacent platelets. Platelets are exposed to ROS gen-
erated by the endothelial cells of the vessel walls; in addi-
tion, there is evidence that platelets can themselves pro-
duce ROS. Lastly, under inflammatory conditions, platelets
are exposed the phagocyte-dependent, acute production of
ROS [164].

Throughout haemostasis, the redox environment plays a
critical role, notably with respect to platelet integrins. Platelet
integrin olIbP3, a transmembrane fibrinogen receptor, is
under tight regulation by sulphydril oxidation: the oIIb sub-
unit contains 18 cysteines while the 3 subunit contains 56
cysteines. Part of them (located in the extracellular cysteine-
rich domain of the B subunit) is present as free sulphydrils
and remains available for redox regulation by extracellular
factors. Additionally, the reduction of disulphide bridges
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appears to be involved in the conversion of aIIbB3 to a fi-
brinogen-binding conformation, a phenomenon commonly
referred to as “integrin activation”. This modulation of
olIbB3 integrin affinity for collagen is the result of an
“inside-out” signal following platelet exposure to agonists or
to adhesive subendothelial proteins. Fibrinogen binding,
among other processes, is mediated by a protein disulphide
isomerase (PDI) as well as ERPS5, a thiol isomerase protein
that is recruited to the cell surface during platelet activation.
Similar mechanisms seems to account for other integrins,
such as a,B; for example.

4.3 Other blood cells

Ghezzi et al. [165] identified two cysteines (52Cys and 62Cys)
on cyclophilin A (CypA) as targets of glutathionylation in T
lymphocytes and characterised the basis for the reactivity
leading to this modification. Glutathionylation of these
cysteines might interfere with the formation of the CypA/
cyclosporin A complex or the binding of CypA with the HIV-1
capsid protein. It was shown that alterations in the anti-
oxidant defence enzymes contributed to the outcome in dif-
fuse large B-cell lymphoma, the patients with decreased
manganese-SOD and thioredoxin inhibitor VDUP1 having
the worst prognosis [166]. One explanation for this phenom-
enon is the modulation of glucocorticoid nuclear receptor
function, which is redox sensitive [167].

Regarding blood stem cells, it has been shown that
increasing levels of ROS act through defined mitogen-acti-
vated protein kinase pathways to limit the life span of cells in
vivo [168].

44 Igs

The oxidation of antibodies increases the hydrophilic nature
of the paratopes and increases their tendency to bind to
cationic surfaces even without strong surface-to-surface fit-
ting [169]. Studies on mAb during storage revealed clear
sites of oxidation [170-172]. Recent findings suggest the
existence of “redox-activated” autoantibodies that are not
detectable by conventional immunoassays [173, 174]. A
possible mechanism responsible for unmasking them may
requires nitrosylation of tyrosine residues in the hypervara-
ible or complementary determining region of Ig [175]. This
concept has potential consequences in the understanding of
the antiphospholipid antibodies syndrome, the opsonisation
of aging erythrocytes and of their immune elimination
[176].

4.5 Fibrinogen

Fibrinogen is a high abundant plasma protein and the
major plasma coagulation factor. It consists of two sets of
three disulphide-bridged chains (Aa, Bf, and 7y) of 610,
461, and 411 amino acid residues, respectively. Structure,
heterogeneity, function and assays were all reviewed else-
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where [177-180]. Western blot immunoassay showed that
fibrinogen, among other plasma proteins, is highly sus-
ceptible to attack by oxidants [181]. Oxidant-induced car-
bonyl formation in fibrinogen derives largely from amino
acid oxidation and not from oxidation of carbohydrate
groups [182].

Previous experiments showed that histidine and trypto-
phan residues in the amino-terminal disulphide knot were
affected by methylene blue light treatment (MBLT), which is
a photosensitiser used for virus inactivation [183]. Photo-
oxidation of an histidine in the BB-chain (16His) located only
one amino acid residue away from the thrombin-susceptible
bond was shown to impair fibrin polymerisation [184]. Addi-
tion of 1-histidine, a target of singlet molecular oxygen gen-
erated during MBLT, was able to protect fibrinogen from the
polymerisation defect in a dose-dependent manner [185].
Measurements of both the release of fibrinopeptide (by
HPLC) and the generation of fibrin monomers (by electro-
phoresis) confirmed that oxidation-induced inhibition of
clotting activity derived from an effect on fibrin monomer
polymerisation, not from inhibition of thrombin activity
[186]. S-nitrosothiols can induce changes in fibrinogen
structure by interacting at specific domains rich in aromatic
amino acids [187].

Oxidatively modified fibrinogen was also found to mod-
ulate blood rheological parameters [188]. Clinical implica-
tions of such results need obviously to be investigated fur-
ther. Oxidised forms of fibrinogen circulating in blood could
be interesting in several aspects, for example, for monitoring
oxidative stress, controlling coagulation processes and stud-
ying protein senescence mechanisms.

4.6 Photoinactivation of blood products

Photoinactivation of blood products involves the addition
of an exogenous agent or physicochemical manipulations:
its benefits (the inactivation of pathogens) need to be
balanced against deleterious effects on cells and plasma
proteins [189]. UV irradiation has been proposed for
pathogen inactivation of purified plasma proteins and clot-
ting agents used in transfusion medicine. However it has
been known for long that UV light exposure can damage
proteins through generation of ROS, which can in turn
damage proteins [190, 191]. Using 2-D DIGE and MALDI-
TOF-MS, Chan et al. [192] identified alterations in protein

Methylene  Light exposure Fibrinogen y Transthyretin
blue (M)

151

thiol reactivity, indicative of an oxidative damage. Authors
showed modification of various proteins involved in the
coagulation cascade, such as kininogen, thrombin, albu-
min, actin, complement factor 4, serum amyloid P, or
retinol binding protein.

MBLT stands as another option for pathogen inactivation
of fresh frozen plasma and was also evaluated in the same
terms [185, 193-195]. Figure 10 shows modifications of the
2-D pattern of fibrinogen vy chain, transthyretin, and apoli-
poprotein A-I upon prolonged light exposure in the presence
of various concentrations of methylene blue.

5 Conclusion

In this review, we have tried to highlight the complexities of
oxidative modifications to proteins, be it part of regulatory
processes, responses to oxidative stress or permanent dama-
ges induced by exogenous compounds. As far as blood com-
ponents are concerned, the selected examples described
below show that there are complex processes to detect oxida-
tive stress, and eliminate reactive oxygen and nitrogen spe-
cies. In parallel, reactive oxygen and nitrogen species play
physiological roles, such as the modulation of platelet acti-
vation for example.

Any blood proteomic approach should thus reveal the
presence of oxidised proteins, due to physiological modifica-
tions (as is the case in RBC metabolism and platelet activa-
tion), and depending on how the sample was punctured,
processed, and stored. The fact that most blood proteomic
studies do not report such modifications just reflect the dif-
ficulty of analysing oxidative modifications to proteins on a
large scale, mainly due to their diversity. Targeted strategies
to detect and quantify oxidative modifications in blood com-
ponents exposed various conditions (be it instrumental such
as puncture and storage parameters), physiological or bio-
medical (samples from healthy individuals or with specific
diseases) would be highly desirable and perfectly timely to
increase our knowledge of blood physiology, give a sound
Dbasis for the search of biomarkers in plasma or other blood
components, and practical recommendations for the hand-
ling, preparation and storage of blood products.

The authors have declared no conflict of interest.
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