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ABSTRACT

We present a method for fast calculation of the electromagnetic field near the focus of an objective with a high numerical
aperture (NA). Instead of direct integration, the vectorial Debye diffraction integral is evaluated with the fast Fourier
transform for calculating the electromagnetic field in the entire focal region. We generalize this concept with the chirp z
transform for obtaining a flexible sampling grid and an additional gain in computation speed. Under the conditions for the
validity of the Debye integral representation, our method yields the amplitude, phase and polarization of the focus field
for an arbitrary paraxial input field in the aperture of the objective. Our fast calculation method is particularly useful for
engineering the point-spread function or for fast image deconvolution.

We present several case studies by calculating the focus fields of high NA oil immersion objectives for various am-
plitude, polarization and phase distributions of the inputfield. In addition, the calculation of an extended polychromatic
focus field generated by a Bessel beam is presented. This extended focus field is of particular interest for Fourier domain
optical coherence tomography because it preserves a lateral resolution of a few micrometers over an axial distance in the
millimeter range.
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1. INTRODUCTION

The plane wave spectrum (PWS) method is a well-known and efficient technique for calculating the propagation and
diffraction of electromagnetic (EM) fields. Its efficiency lies in the ability to propagate EM fields from one plane to another
using the fast Fourier transform (FFT). This concept is the essence of the Debye approximation and is often used for the
calculation of the EM focus field.1, 2 However, for focal field calculations in microscopy, in particular for optical systems
with high numerical aperture (NA), this classical problem turns into a computational challenge due to the highly oscillatory
behaviour of the involved functions. In addition, polarization effects cannot be neglected rendering the calculation long
and tedious. Recent techniques in microscopy and tomography such as the extended focus field,3 microscopy beyond the
Abbe resolution limit and point-spread function engineering as advanced by S. Hell and his group,4 or rigorous ab initio
calculations for fluorescence fluctuation spectroscopy5 amplify the demand for fast focus field calculations.

In this paper we revisit the Debye approximation and proposea novel and flexible implementation of the Debye in-
tegral incorporating the effects of amplitude, phase and polarization in an overall manner. This new implementation is
particularly suited for rapid numerical evaluation and requires substantially less effort for calculating the amplitude, phase
and polarization of an EM field distribution generated by a high NA microscope objective. Section 2 introduces the Debye
approximation (c.f. Leutenegger et al. for details6). Section 3 presents selected examples, firstly the calculation of a few
focus fields obtained with a standard 100× 1.45NA oil immersion objective, and secondly, the calculation of an extended
polychromatic focus field (Bessel beam).
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Figure 1. Optical setup. The objective is represented by theaperture stopA with radiusR, the principal planesP1 andP2 with vertex
pointsV1 andV2, and the fociF1 andF2. The focal lengthf is given asf = F1V1. The pointP is the intersection point of a ray withP2

and shows the relation of the positionr atP1 of the incident wave~Ei to the propagation angleθ atP2 of the transmitted wave~Et.

2. THEORY

This section establishes the basic formalism based on the Debye diffraction integral and the formulation of this integral as
a Fourier transform.6 The basic optical layout and the respective coordinate systems are shown in Fig. 1. We assume that
this imaging system obeys Abbe’s sine condition, which is usually fulfilled for microscope objectives.

A coherent, monochromatic, paraxial wave field crosses the aperture stopA, propagates towards the principal planeP1

and is transferred to the principal planeP2. At P2, the wave field is refracted and focused towards the focal point F2. The
point P lies on the principal planeP2 and illustrates the focusing of a ray atP2 towards the focal pointF2. The spherical
surfaceP2 is centered atF2 and the deflection angleθ at the positionP is given by

sinθ =
r
R

NA
nt

(1)

wherer is the off-axis coordinate of the incident wave onP1, R the aperture stop radius,NA the numerical aperture of the
objective andnt the index of refraction behind theP2 surface. Because the apertureA is placed in the back focal plane, the
imaging system is telecentric. Within our representation,the wave propagation from the aperture planeA to the principal
planeP1 can be calculated in most cases with classical Fourier optics principles.

For calculating the transmitted field~Et(θ, φ) atP2, the incident field~Ei(r, φ) atP1 is typically decomposed into a radial
(p-polarized) and a tangential component (s-polarized). Hence, the amplitude, phase and polarization of the transmitted
field atP2 is

~Et(θ, φ) = tp

(

~Ei · ~ep

)

~er + ts

(

~Ei · ~es

)

~es (2)

wheretp(θ, φ) and ts(θ, φ) are the transmission coefficients and~ep(θ, φ), ~er(θ, φ) and~es(θ, φ) the unit vectors for p- and
s-polarization, respectively. Accumulated phase distortions (aberrations) atP2 as well as attenuations (apodization) caused
by the objective are integrated in the complex transmissioncoefficientstp andts. As we assume the incident field to be
paraxial, the axial componentEiz is small against the lateral componentsEix,y and can be neglected even if the incident
phase is not constant. In the Debye approximation, the transmitted field ~Et is theplane wave spectrum of the focus field~E
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nearF2. Therefore, the electric field~E at a point (x, y, z) near the focusF2 is obtained by integrating the propagated plane
waves, that is

~E(x, y, z) = −
i f
λ0

"

Ω

~Et(θ, φ)ei(kzz−kx x−kyy) dΩ = −
i f
λ0

Θ
∫

0

sinθ

2π
∫

0

~Et(θ, φ)ei(kzz−kx x−kyy) dφdθ . (3)

The phase factoreikzz accounts for the phase accumulation when propagating alongthez-axis, whereas the terme−i(kx x+kyy)

represents the phase difference of the wave front at off-axis points (x, y, z) with respect to the on-axis point (0, 0, z). The
integration extends over the solid angleΩ under whichP2 is observed atF2, i.e. sinΘ = NA/nt. The wave vector~kt is
simply given by

~kt(θ, φ) = k0nt
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where k0 =
2π
λ0
. (4)

The evaluation of Eq. (3) is usually performed with a direct numerical integration taking into account the coordinate
transformations, which results in the Richard-Wolf integral representation.7, 8 Instead of the common ansatz, a (θ, φ)-
sampling with constant dΩ = sinθ dθ dφ was introduced. Besides minimizing the number of sampling points alongθ, the
calculation of the integrand and its integration can be merged in a single matrix product resulting in a further reduction
of the computation time. This evaluation of the Debye diffraction integral (3) is quite fast but still much slower than
the conventional computation of a Fraunhofer diffraction integral. However, Eq. (3) can be easily rewritten as a Fourier
transform by splitting the phase factor into a lateral and anaxial term, and by performing the integration overP1 instead of
P2. Using Eq. (1) and (4), the integration step dΩ for a sampling overP2 is projected ontoP1, which yields

dΩ =

(

NA
Rnt

)2 r dr dφ
cosθ

=

(

NA
Rnt

)2 dx dy
cosθ

=
1

k2
t

dkx dky

cosθ
. (5)

Insertion of this sampling step into Eq. (3) results in

~E(x, y, z) = −
i f

λ0k2
t

"

r<R

(

~Et(θ, φ)eikzz/ cosθ
)

e−i(kx x+kyy) dkx dky . (6)

Extending now the integration over (kx, ky) ∈ R2 by setting| ~Et| = 0 for r > R allows to rewrite the Debye diffraction
integral as a Fourier transform of the weighted field~Et, which finally results in

~E(x, y, z) = −
i f

λ0k2
t

Fx,y

(

~Et(θ, φ)e
ikzz/ cosθ

)

. (7)

This is the main result of this section. The Debye integral isnow expressed as a two-dimensional Fourier transformFx,y

of the field distribution in the apertureA projected onP2, which can be evaluated with the fast Fourier transform (FFT)
or the chirp z transform (CZT).6 The similarity of this expression with the conventional Fraunhofer diffraction integral is
obvious. For a low NA imaging system, the weighting factor isapproximated by 1/ cosθ ≈ 1 and Eq. (7) is equivalent to
the Fraunhofer diffraction integral.

3. APPLICATIONS

In this section, we present several case studies by calculating the focus fields achieved with a standard high NA oil im-
mersion objective. The focus fields in the vicinity of the interface into the aqueous sample are presented for three cases:
(1) a simple glass–water interface, (2) a glass-supported gold film–water interface and (3) a glass-supported silver film–
water interface. Last but not least, the calculation of an extended polychromatic focus field generated by a Bessel beam is
presented. This extended focus field is of particular interest for Fourier domain optical coherence tomography (FDOCT)
because it preserves a lateral resolution of a few micrometers over an axial distance in the millimeter range.
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3.1 Focus fields with oil immersion objectives

Current state of the art oil immersion objectives provide a very high lateral and axial resolution for imaging in the vicinity
of a cover slide–sample interface. These objectives allow for instance total internal reflection excitation in the evanescent
field penetrating only a fraction of a wavelength into the sample, which provides an outstanding axial confinement for
highly surface-sensitive measurements. The following calculations outline the performance ideally achieved by a common
oil immersion objective in case of confocal illumination. The calculations assume a 100×1.45NA oil immersion objective
with an aperture diameter ØA = 6mm and anx polarized laser beam with 633nm wavelength and a Gaussiane−2 beam
waist ofwA = 5mm at the apertureA.

Figure 2. Transmitted field components
Ixyz ∝ |Et,xyz |

2. The x component is
shown in red,y in green andz in blue,
respectively.

Figure 3. Focus field at the cover glass–water interface obtained with a
100×1.45NA oil immersion objective. The incident laser beam has a Gaus-
siane−2 waist of 5mm to overfill the objective apertureA of 6mm diameter.
The laser beam isx polarized and has a wavelength of 633nm.

As a first example, the focus field at a cover glass–water interface is calculated. The intensity distribution of the
transmitted field~Et is shown in Fig. 2. At supercritical angles, i.e. for the outer aperture region where NA> 1.33, the
evanescent field is easily identified by its characteristic intensity increase. As the incident polarization is linear along thex
axis, thex component (red) is dominant except for a strongz component (blue) in the evanescent field. Figure 3 shows the
corresponding focus field in the aqueous sample. The focus field is outlined with iso-intensity surfaces ofI = e−1..−4Imax.
In a confocal laser scanning microscope, a lateral resolution of∆x ≈ 220nm and∆y ≈ 180nm would be achieved.

As second example, the cover glass is covered with a 38nm thingold film and the focus field at the gold–water interface
is calculated. A relative dielectric constantεAu = −9.39+ 1.15i of gold is assumed. The film thickness of 38nm optimizes
surface plasmon coupling near the aperture edge as shown in Fig. 4. Due to the dominantz polarization and the angular
filtering by the plasmon coupling, the focus field in Fig. 5 shows a very particular profile similar to a tunnel along they
axis.

As third example, the cover glass is covered with a 55nm thin silver film and the focus field at the silver–water interface
is calculated. A relative dielectric constantεAg = −18.28+ 0.46i of silver is assumed. With a film thickness of 55nm,
the optimal surface plasmon coupling occurs for an NA of 1.40, which is well inside the aperture field shown in Fig. 6.
Figure 7 shows the focus field, which inherits its rotationalsymmetry from the incident field with radial polarization. In
the central peak, thez polarization is dominant whereasxy polarization prevails in the first side lobe. In comparison with
the previous example, the plasmon coupling through the silver is much stronger than through gold because the optimal film
thickness and the optimal incidence angle are both achievable with silver.
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Figure 4. Transmitted field components
(x red,y green,z blue).

Figure 5. Focus field at the cover glass–38nm gold film–water interface obtained
with a 100× 1.45NA oil immersion objective.

Figure 6. Transmitted field components
(x red,y green,z blue).

Figure 7. Focus field at the cover glass–55nm silver film–water interface obtained
with a 100×1.45NA oil immersion objective and radial polarization of theincident
field.

3.2 Extended depth of focus for Fourier domain optical coherence tomography

Optical coherence tomography (OCT) is a well-known, non-invasive, three-dimensional optical imaging method. Using a
broadband light source, axial sectioning is achieved by interfering the back-reflected light from the sample with unaltered
light from the reference arm of similar optical path length.In OCT, the axial resolution∆z is therefore (only) limited by
the (detected) bandwidth∆λ of the light source. As with conventional optical imaging, its lateral resolution∆r scales with
λ0/NA, whereλ0 is the free space wavelength and NA the numerical aperture ofthe imaging optics. Using a coherence
gating in OCT, it is therefore possible to decouple axial andlateral resolution. In addition, due to the coherent amplification,
OCT can achieve very high sensitivity for imaging the structure of transparent biological samples, i.e. small changes in
refraction index already yield sufficient contrast for quantitative measurements.

Instead of a sequential depth scanning with the reference arm, Fourier domain OCT (FDOCT) simultaneously reads the
full depth profile encoded in the measured interferogram spectrum.9, 10 The sample structure is then obtained by Fourier-
transforming these measured spectra. The main advantages of FDOCT are (a) a much faster acquisition as only lateral
sample scanning is required,11 (b) an improved phase stability due to fixed optical paths12 and (c) an even better sensitivity
(Fourier advantage). However, as the depth profile is recorded at once, a sharp image of lateral features is only obtained
within the depth of focus (DOF). As the DOF∝ NA−2 and∆r ∝ NA−1, enlarging the DOF usually means sacrificing lateral
resolution. This limitation was overcome by using a Bessel beam for the sample illumination.13 The Bessel beam provides
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Axicon Lens Objective

Figure 8. Sample illumination with a linear axicon and a telescope. The incident laser beam has a Gaussian waist of 3.4mm at λ0 = 785nm
wavelength. The power spectrum of the fs-pulsed Ti:Sapphire laser is shown in Fig. 9. The linear axicon (20mm clear aperture, 178˚
full cone angle, BK7 glass) induces a converging conical wavefront. The lens (fl = 450mm focal distance, 22mm clear aperture) and the
10× 0.30NA objective (fo = 16.4mm, ØA = 10mm aperture) image the Bessel pattern into the sample witha 28× demagnification.
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Figure 9. Ti:Sapphire spectrum transmitted into the sample. Central
wavelengthλ0 = 785nm, bandwidth∆λ ≈ 140nm.

Figure 10. Illuminating Bessel beam for an extended
DOF. Note the different scaling of thez axis.

a high lateral confinement (∆r in the order ofλ0) over a very long axial distancez, i.e. DOF� ∆r. Figure 8 shows the
optical setup for creating the Bessel beam. The collimated broadband laser beam with a Gaussian beam profile suffers a
conical wavefront distortion by passing through a linear axicon. This converging conical beam creates the desired Bessel
pattern in the overlap region behind the axicon. A telescopeconsisting of a lens and the microscope objective demagnify
this Bessel pattern and image it into the sample. Figure 9 shows the spectrum of the illuminating Bessel beam. Figure 10
shows the calculated Bessel beam consisting of an incoherent superposition of focus fields forλ ∈ [720nm, 870nm] with
1nm steps. The illuminating needle of 550µm FWHM length has a central spot diameter of 2∆r = 2.5µm only! Note also
that the initial linear polarization of the laser beam is well conserved because of the moderate NA.

4. CONCLUSIONS

We showed a fast and accurate implementation of the vectorial Debye integral for calculating the focus field of high NA
objectives for arbitrary amplitude, phase and polarization distributions of the input field. The numerical evaluationwith the
fast Fourier transform is very efficient and allows a high flexibility of the input field. With thegeneral chirp z transform, we
extended our calculations to low NA focus fields requesting anon-linear scaling as shown by Li and Hsu14, 15(c.f. Sec. 3.2
for example). For low NA, the method converges quite naturally to a focus field given by the Fraunhofer approximation.
In addition, we used a generalized pupil function (apodization) of high NA objectives taking into account amplitude and
polarization distributions. The pupil function incorporates the Fresnel transmission coefficients and can contain wave
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front aberrations as induced by real objectives. Based on these Fresnel coefficients, it is straightforward to include wave
propagation through stratified media as shown with example (2) and (3) in Sec. 3.1.

On a 2GHz Pentium 4 computer, the monochromatic focus fields of Sec. 3.1 were calculated in about a minute each
(2032 × 76 ≈ 3.1 · 106 points). The extended polychromatic focus field of Sec. 3.2 with a 1nm wavelength sampling was
calculated in about five hours (150× 2032 × 131≈ 810· 106 points).

In summary, our method allows fast and accurate calculations of the focus field in the entire focal region, which opens
the path to fast simulations for point spread function engineering and image deconvolution in three-dimensional light
microscopy.
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