Infoscience

Journal article

Mechanisms of Hox gene colinearity: transposition of the anterior Hoxb1 gene into the posterior HoxD complex

Transposition of Hoxd genes to a more posterior (5') location within the HoxD complex suggested that colinearity in the expression of these genes was due, in part, to the existence of a silencing mechanism originating at the 5' end of the cluster and extending towards the 3' direction. To assess the strength and specificity of this repression, as well as to challenge available models on colinearity, we inserted a Hoxb1/lacZ transgene within the posterior HoxD complex, thereby reconstructing a cluster with a copy of the most anterior gene inserted at the most posterior position. Analysis of Hoxb1 expression after ectopic relocation revealed that Hoxb1-specific activity in the fourth rhombomere was totally abolished. Treatment with retinoic acid, or subsequent relocations toward more 3' positions in the HoxD complex, did not release this silencing in hindbrain cells. In contrast, however, early and anterior transgene expression in the mesoderm was unexpectedly not suppressed. Furthermore, the transgene induced a transient ectopic activation of the neighboring Hoxd13 gene, without affecting other genes of the complex. Such a local and transient break in colinearity was also observed after transposition of the Hoxd9/lacZ reporter gene, indicating that it may be a general property of these transgenes when transposed at an ectopic location. These results are discussed in the context of existing models, which account for colinear activation of vertebrate Hox genes.

    Note:

    Department of Zoology and Animal Biology, University of Geneva, Sciences III, 1211 Geneva 4, Switzerland.

    Reference

    • UPDUB-ARTICLE-2000-003

    Record created on 2008-02-25, modified on 2016-08-08

Fulltext

  • There is no available fulltext. Please contact the lab or the authors.

Related material

Contacts

EPFL authors