Abstract

Vertebrate Hox genes are required for the proper organization of structures along the rostrocaudal axis. Hoxd-11 is expressed in the posterior part of the embryo, up to the level of prevertebra 27, and its expression boundary is reproduced by a Hoxd-11/lacZ transgene. Expression of this transgene anterior to prevertebra 27 is prevented by the silencing activity of a cis-acting element, region IX. Using transgenic mice, we show that Hoxd-11 repression by region IX is necessary to position the sacrum properly. This silencing activity depends on phylogenetically conserved sequences able to bind in vitro retinoic acid receptors and COUP-TFs. ES cells were used to generate mice carrying a subtle mutation that abolishes binding of nuclear receptors to region IX. Mutant mice display an anterior shift of their lumbosacral transition inherited as a codominant trait. In mutant embryos, expression of both Hoxd-11 and Hoxd-10 mRNAs in the prevertebral column is anteriorized. These results illustrate the sharing, in cis, of a single regulatory element in order to establish the expression boundaries of two neighboring Hoxd genes.

Details

Actions