Secretory component (SC), a glycoprotein with an apparent molecular weight of approximately 80,000, has been isolated from rabbit milk and found to be heterogenous in size and charge. Functionally intact IgA dimer has been dissociated from milk secretory IgA using a chaotropic agent and further purified to homogeneity. The interaction between SC and IgA dimer is a reversible time- and temperature-dependent process. At 23 degrees C, the association rate constant (2.4 x 10(5) M-1 min-1) and the dissociation rate constant (1.8 x 10(-3) min-1) have been measured independently and the affinity constant based on these rates (1.3 x 10(8) M-1) is similar to that calculated from Scatchard plots (1.9 x 10(8) M-1). One class of binding sites has been estimated from Scatchard plots in spite of the observed heterogeneity of SC. The interaction is tighter at low temperatures because the decrease in dissociation rate is greater than the decrease in association rate. The thermodynamic calculations reveal a delta G of -11.0 kcal . mol-1, a delta H of -8.9 kcal . mol-1 and a delta S of +7.0 cal. mol-1 degree-1. The pH range over which interaction occurs is rather large (5 to 8) with no significant differences in apparent Ka.