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ABSTRACT

This article treats the problem of learning a dictionary pro-
viding sparse representations for a given signal class, via ¢!
minimisation. The problem is to identify a dictionary &
from a set of training samples Y knowing that ¥ = ®X for
some coefficient matrix X. Using a characterisation of coef-
ficient matrices X that allow to recover any orthonormal basis
(ONB) as a local minimum of an ¢! minimisation problem, it
is shown that certain types of sparse random coefficient ma-
trices will ensure local identifiability of the ONB with high
probability, for a number of training samples which essen-
tially grows linearly with the signal dimension.

1. INTRODUCTION

In the last years sparse signals have received a lot of atten-
tion as the signal processing community started to realise
their usefulness. For instance they are easy to store and to
compute with and recently it has been discovered that they
are also quite easy to capture, using compressed sensing [6].
The drawback is that it is actually far from easy to find sparse
representations. Assuming that someone just gives you a dic-
tionary ® of K atoms ¢; € R?, a signal y and the knowledge
that this signal has an S-sparse representation, i.e. can be
written as linear combination of § atoms, the only way you
can generically be guaranteed to find this sparse representa-

tion is to search among all (IS{) subsets of S atoms for the
correct one. By now there are many results showing that
by making additional assumptions on the dictionary, having
low cumulative coherence [7, 10, 18] or satisfying a uni-
form uncertainty principle [3], sub-optimal algorithms like
(Orthogonal) Matching Pursuit or algorithms based on the
Basis Pursuit Principle, will give you the correct answer or
be very likely to. However, in any of the cited publications
you will more likely than not find a statement starting with
’given a dictionary ...’ which points exactly to the remain-
ing problem. If you have a class of signals and you would
like to find sparse approximations someone has to give you
the right dictionary. For many signal classes good dictionar-
ies like time-frequency or time scale dictionaries are known
and from theoretical study of your signal class you might be
able to identify one that will fit well. On the other hand, if
you run into a new class of signals, chances that the best fit
will already be known are quite slim and it can be quite a
time consuming overkill to develop a deep theory like that
of wavelets every time. An attractive alternative approach is
dictionary learning, where you try to infer the dictionary that
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will give you good sparse representations for your whole sig-
nal class from a small portion of training signals.
Considering the extensive literature available for the sparse
decomposition problem surprisingly little work has been
dedicated to theoretical dictionary learning so far. There ex-
ist several dictionary learning algorithms [8, 13, 1], but only
recently people have started to consider also the theoretical
aspects of the problem. Dictionary learning finds its roots
in the field of Independent Component Analysis (ICA) [4],
where many identifiability results are available, which how-
ever rely on asymptotic statistical properties, under indepen-
dence assumptions. Georgiev, Theis and Cichocki [9] as well
as Aharon and Elad [2] describe more geometric identifia-
bility conditions on the (sparse) coefficients of training data
in an ideal (overcomplete) dictionary. Both approaches to
the identifiability problem rely on rather strong sparsity as-
sumptions, and require a huge amount of training samples.
In addition to a theoretical study of dictionary identifiability,
both cited papers provide theoretical algorithms to perform
the desired identification. Unfortunately the naive implemen-
tation of these provably good dictionary recovery algorithms
seems combinatorial, which limits their applicability to low
dimensional data analysis problems and renders them fragile
to outliers, i.e. training signals without a sparse enough rep-
resentation. In this article we will study the question when a
dictionary can be learned via ¢'-minimisation [20, 17], and
thus by a non-combinatorial algorithm. First we will shortly
explain the minimisation problem that we use to find the dic-
tionary ® from a set of training signals y" = ®x",1 <n <N
(or in short ¥ = ®X) and recent results [11], giving con-
ditions on X for the pair (®,X) to be a local minimum of
the minimisation problem, in case ® is an orthonormal basis
(ONB). Then we will prove that if the entries of X follow
a certain type of sparse distribution these conditions will be
satisfied with high probability. We quantify how rapidly this
probability approaches one as the number N of training sig-
nals grows. Denoting p the proportion of zero entries in X,
the number of training samples N needed to guarantee the lo-
cal identifiability condition does not grow significantly faster
than Kp~7 for an exponent 2 < y < 3, i.e, for a fixed p it
essentially grows linearly with the dictionary size K = d.

2. DICTIONARY LEARNING VIA
(' -MINIMISATION

The idea of learning a dictionary via ¢! -minimisation is moti-
vated by the success of the Basis Pursuit principle for finding
sparse representation. So given a dictionary, i.e. a set of
K > d unit vectors or atoms @ € R4, 1 < k <K, that span
the whole space RY and which we collect as columns in the



d x K matrix ®, and a signal y € RY, finding the sparsest
representation amounts to solving the problem

min ||x||o, such that ®x =y e
X

where ||x||o counts the number of nonzero entries in the vec-
tor x. Despite not being a norm || - ||o is often referred to as
the 9-norm. However, being nonconvex and nonsmooth, (1)
is hard to solve. Enter Basis Pursuit, where we replace (1) by
its convex relaxation,

min ||x||;, such that ®x =y, 2)
X

and hope that the solutions coincide. That this is actually the
case whenever y is sufficiently sparse can be retraced in sev-
eral recent papers, e.g. [10, 7, 3, 18].

The connection to dictionary learning is now easily made.
Given N signals y" € R4, 1 <n <N, and a candidate dictio-
nary, we need to solve N minimisation problems

min [|x"]|1, such that ®x" = y", Vn.
xn

Collect all signals y" into a d x N matrix Y and all coefficients
X" into a K x N matrix X and define || X||; := X, ||[x]l1 =
Y i |Xin|- Using this notation we can write the N minimisa-
tion problems compactly as:

n}(inHXHl7 such that #X =Y.

If the minimum is attained at Xg then || Xa||; constitutes a
measure of the global sparsity that can be achieved with the
dictionary ®. Thus a natural criterion to select the best dic-
tionary within a collection & of admissible dictionaries is,

(®,X) = argréli)l(1||X||1, suchthat X =Y, @€ 2. (3)

The most general families of admissible dictionaries one can
imagine are the ones where just the number of atoms is fixed.
However, the more general Z is, the harder it is to find a
minimum simply because more dictionaries have to be con-
sidered. To simplify the search one can concentrate on more
structured families such as discrete libraries of orthonormal
bases (wavelet packets or cosine packets, for which fast dic-
tionary selection is possible using tree-based searches) or
structured overcomplete dictionaries such as shift-invariant
dictionaries or unions of orthonormal bases. In this paper we
will focus on the simplest non-overcomplete case (K = d)
with the set €'(d) of arbitrary orthogonal bases, parame-
terised by a unitary matrix ®. Further work is needed to
check how to extend our results to the set of oblique bases,
associated to square matrices ® with linearly independent
unit columns ||@||2 = 1, or even to overcomplete dictionar-
ies.

The special aspect of dictionary learning treated here is
how a coefficient matrix X has to be structured such that for
any orthonormal basis ® the pair (®,X) will constitute a
global minimum of (3) with input ¥ = ®X. In other words
when can a dictionary be uniquely identified from N sparse
training signals y" by ¢' minimisation. However since the
minimisers of (3) are only unique up to matching column
(resp. row) permutation and sign change of ® (resp. X),
and also because it is generally hard to find global minima,

we will reduce our ambition to finding conditions such that
(®,X) constitutes a local minimum, which we will call lo-
cal identifiability conditions. They guarantee that algorithms
which decrease the ¢! norm must converge to the true dictio-
nary when started from a sufficiently close initial condition.

3. LOCAL IDENTIFIABILITY CONDITION

As starting point for our analysis that certain random sparse
matrices will have the required structure, we use the result
developed in [11]. The local identifiability condition is ex-
pressed based on a block decomposition of the coefficient
matrix X as follows (see Figure 1):
o x; is the k-th row of X, and we define Ay the set indexing
its nonzero entries and Ay, the set indexing its zero entries;
e sy is the row vector sign(xy)a,;
e X; (resp. X;) is the matrix obtained by removing the k-th
row of X and keeping only the columns indexed by Ay
(resp. Ap) .
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\ \
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Figure 1: Block decomposition of the matrix X with respect
to a given row x;. Without loss of generality, the columns of
X have been permuted so that the first A columns hold the
nonzero entries of x; while the last #A; hold its zero entries.

Theorem 3.1 ([11]) Consider a K x N matrix X. Assume
that for each k, there exists a vector dy with

Xidy = Xpst and ||dy || < 1. )
Then, for any orthogonal matrix ®, the optimisation problem

min || X'||1,such that ®'X' = ®X,
& X/

where ®' is constrained to be any basis of unit vectors (i.e.,
not necessarily orthonormal but oblique), admits a strict lo-
cal minimum at ' = ®.

Note that an ONB @ in combination with any X exhibit-
ing the above property, will be a local minimum not only
among all pairs of ONBs and coefficients but among all pairs
of oblique bases and coefficients.

4. RANDOM SPARSE MODEL ON X

We now detail the random sparse model on X and outline the
proof that, when the number of training samples N is large,
the local identifiability condition of Theorem 3.1 is satisfied
with high probability. We will merely sketch the estimation
of the small probability that the condition is not satisfied.



4.1 The model

We assume that the entries xi,, of the K x N matrix X are
1.1.d with x, = Zx, Wk, Where zj, are i.i.d indicator variables
taking the value zero with probability 0 < p < 1, i.e. z ~
(1—p)01 + pdo, and wy,, are i.i.d., centered, of unit variance.

The important role of the indicator variables is to guaran-
tee a strictly positive probability that xy, is exactly zero. The
distribution of wy, seems to play a less important role. Here
we will assume that this distribution is ”subgaussian with pa-
rameter 37, in the sense that

Py, (W] > u) < exp(1—u®/B?), Yu > 0. )

Examples of distributions which fit this model are when wy,,
is Gaussian, or Bernoulli £1 with equal probability. The sub-
gaussian assumption will be used as a technical assumption
in the analysis carried below, but we believe that similar re-
sults can also be achieved with other distributions such as the
Laplacian distribution, which is not subgaussian and seems
more natural in the ¢! minimisation framework.

4.2 Geometric insight

For each index k we need to check if there is a vector dj with
[|di|lo < 1 such that Xxdy = Xs!. Geometrically speaking,
we need to verify if the vector u; := st[ lies in the image
by the linear operator X; of the unit cube Q™ = [—1, 1],
This will be true whenever we have simultaneously that:

e the vector u; belongs to the Euclidean ball B(0,r) of ra-
dius r, ie., [Juglla <r;

e the image of the unit cube Q™ by X, contains B(0, r).

4.3 Outline of the approach

To achieve our goal, we will prove that:

P1 with high probability 1 — Py, the matrix X; has roughly
(1—p) x N columns, and X; roughly p x N columns.

P2 with probability 1 — P»(ct), we have ||ug||3 < a(K —1)N.
This can be seen from the fact that u; is a sum of at
most N i.i.d zero-mean vectors (the columns of X multi-
plied by independent random signs), each with expected
squared norm (K — 1) x (1 — p) < K — 1. The probabil-
ity P»(a) decays exponentially fast to zero with . For
technical reasons we choose

p2+ﬁN

o=oa(p,K,N)= 4logﬁ

P3 with high probability 1 — P3, we have the inclusion

B(0,\/a- (K—1)-N) C X QM.

In the appendix we provide the main ideas indicating why
the three steps P1-3 are valid.

5. QUALITATIVE BEHAVIOUR

The overall probability that the coefficient matrixs X satisfies
the local identifiability condition of Theorem 3.1 is driven
by P, P>, P;. The sketches of the proofs provided in the
appendix indicate that while P; decreases exponentially fast
with N, P, and P3 do not decay as fast with N, and P, is

dominated by P;. Globally, the order of magnitude of the
overall probability decays is at least as fast as

[41og f(p,K,N)]¥ - f(p,K,N)~K=D

with 1
f(p.K,N):=p* ®=IN/(K — 1).

In other words, there is a constant C such that whenever the
number of training samples satisfies

NZ(K=1)-p > K14

for some value A, the probability that X does not sat-
isfy the local identifiability condition does not exceed
C(4logA)KA—(K=1),

This behaviour is good news for two reasons. Firstly,
for a given proportion p of zero entries in X, the number N
of training samples that is sufficient to guarantee with high
probability local stability of the ¢! learning criterion only
grows linearly with the ambient signal dimension K. Sec-
ondly, even for small p - i.e. for not really sparse matri-
ces X having relatively few zero coefficients - local iden-
tifiability with the ¢! minimisation criterion does not re-
quire exponentially many training samples, but rather. In-
deed, for the smallest possible dimension of a dictionary
learning problem, K = 2, N > p—3A, for large A, is suffi-
cient. For dictionary learning problems in higher dimen-
sions, K > 2, the number of training samples only needs
to grow like N/(K —1) > p~2A. If p?N/(K —1) > 1 the
probability that X yields a local minimum of the ¢! criterion
rapidly approaches one.

6. CONCLUSION

We have shown that coefficient matrices with entries follow-
ing a sparsely scaled Gaussian distribution make it possible
to identify an arbitrary orthonormal basis from N training
signals as a local minimum of an ¢! minimisation problem
(3). This holds with probability rapidly approaching one as
the number of training signals is growing large compared to
their dimensionality and their expected sparsity, i.e.
N>Kp7, with2<y<3
Since the dependence is linear in K and inversely sub-cubic
in p we need far less training samples to have good recovery
chances than suggested for instance by Aharon et al. in [2],
and local identifiability can also be guaranteed even though
many training samples have no sparse representation.
However with this result we have barely started to scratch
the surface of the theoretical aspects of the dictionary learn-
ing problem with finitely many training samples, and much
work will have to be invested into its extension. First of all
we need to investigate in more depth for which distributions
on wy, the current type of analysis is valid. This is deeply
connected with the properties of random projections of the
high-dimensional unit cube under X. The next step is dealing
with oblique bases. Results in [11] indicate that this implies
taking into account the coherence of ® in the concentration
of measure arguments sketched here. In order to make the
result more practically applicable to dictionary learning we
need to analyse the probability that spurious local minima of
the ¢; criterion exist. If they do not exist, descent algorithms



are bound to converge to the optimal dictionary for any ini-
tial condition. This is similar in spirit to the work of Vrins et
al [19]. Also it would be desirable to extend Theorem 3.1 to
redundant dictionaries, and analyse dictionary learning with
criteria which mix an ¢! term with an quadratic approxima-
tion error to account for noise in the model. Finally we want
to explore whether the recovery condition of Theorem 3.1
can be used to prove the optimality of other, more greedy,
dictionary learning algorithms. Preliminary results indicate
that this is the case for the “deflation” approach [5].

A. PROOF SKETCHES

Proof: (sketch of P1). The first statement P1 amounts to
measuring the probability that the sum fA; = ZI,:’:l Zjn Of N
i.i.d variables zi, ~ (1 — p)0; + pdy deviates from its ex-
pected value (1 — p)N by more than a given factor. Using
Hoeffding’s inequality we get for 0 < & < 1/2
&2
P(iAe> (1+&)(1 - pV) < exp(~(S(1-p)N)  (©)

2
P(tAx < (1-e)pN) <exp(—(L(1-pV). @)

For a fixed p < 1 this probability P; decays exponentially fast
with N, and will be negligible compared to P, and Ps.
Proof: (sketch of P2). In case the entries of the coeffi-
cient matrix follow a scaled Gaussian distribution the sec-
ond statement P2 essentially corresponds to bounding the tail
of a x2-distribution. Let A be an L x M matrix with entries
A1 = WimZim Where wyy, are i.i.d normally distributed and z;,,
are i.i.d indicator variables, as described in the signal model,
and s an M-dimensional vector with independent Bernoulli
entries (£1), which is independent of A. We want to bound
the tail of the random variable

L M

A2 = Y (Y, Wimzimsm)? =:

=1 m=1

Y7,

M=

-
I

1

For fixed indicator variables, ¥; = ):%:1 WimZimSm 1S @ sum
of i.i.d zero mean, unit variance Gaussian random variables,
hence it is again Gaussian with zero mean and variance ||z|3.
Thus ¥;/||z;||2 is Gaussian with zero mean and unit variance

and ¥, Y?/||z/3 follows a x>-distribution of degree L. Ob-
serving that ||z;||3 < M we obtain, as soon as &/ log(aL) > 2,

IF’(ZY,Z > a.L-M) < P(ZY,Z/HZ,H% > aL)
2-L/2

_ = (L2-1) ,-x/2
T(L/2) /aLx e dx

§/ et dx = 4o~ /4, (8)
oL

The last estimate we get since for x > oL we have
xL/2=De=x/2 < ¢=X/* because x/logx > oL/log(al) >
L—2 WithA=X;,s=s;,wehave L=K—1and M <N,
so with the chosen value for ¢ we obtain

pHﬁN ~(&=1)
P <G -1 )

1 .
whenever p?"¥=TN /(K — 1) > ¢, for a universal constant c;.

Proof: (sketch of P3). The third statement is strongly con-
nected to the notion of Kashin’s representations [12, 14], and
its analysis is more involved. Given M vectors {v,, }/_, C
R", which we can collect in an n x M matrix V, one says
that the vector @ € RM is a Kashin’s representation of level C
of the vector u € R" with V if u = ﬁxﬁle AV, ||a]le <
C||u||2- The two following statements are equivalent: (a) ev-
ery vector u € R" admits a Kashin’s representation of level
C with V; (b) the matrix V satisfies B(0,v/M/C) C VQM.
Random matrices V with i.i.d. subgaussian entries sat-
isfy the above property with high probability [16, 15, 14],
which is why we introduced the subgaussian assumption on
w (see Eq. (5)). This immediately yields the following lemma
(proved below) giving properties of the (K — 1) x $ matrix

XE = (xn)eknea:

Lemma A.1 Let 0 < py < 1. There are constants Ay >
2,c3,C3 with the following properties: for any 0 < p < pg
and any index set Q, if L :=1Q/(K — 1) > Ay then, except
with probability at most

A~ ED L oexp(—e3tQ),

every u € RE=1 admits a representation u = X}‘Zd with

T V=K -1
This lemma is slightly too weak to be applied directly in
our setting: typically we expect ||ug|l2 < \/a(K—1)N and

A > (1 —€)pN, hence the lemma applied to Q := Ay pro-
vides a representation uy = Xydy with ||di]je < C-/a/p
with C; = C3((1—&1)(1— p))~'/2. Since a grows to infinity
with N, this is not enough to obtain the desired result. How-
ever, if we can split X; = Xskz into L disjoint matrices ngz[ with
#Q, > #Q/(2L) which all lead to representations uy = ngzéd,f
satisfying (9), then it is possible to combine these represen-
tations as uy = %Zﬁzl ngzéd,f = X d;, with

€))

max ||} [|o . G [|ag |2

L T L-VEQ \/(1-p)(K-1)

. G [l |2
~ VL2 VO -p)K-1)EQ

When ||u]||> and #A; have their typical values given by P1-2,

we obtain
il < C3-\/2a/(pL).

Taking L > 2(C})? - at/p yields ||di/|. < 1 as desired. The
probability that these L matrices XSkZ/ do not simultaneously
satisfy the desired Kashin’s representation property is at most

IN

lld |

L
Py< Y (4, Y 4 2exp(—esty)), (10)
/=1

provided that for each block A, := §Q,/(K —1) > Ao.

We now focus on orders of magnitude to estimate P,
and assume L =~ ¢¢/p, which means there are two constants
0 < ¢ < C < o such that ¢cL < a/p < CL. If these con-
stants are sufficiently large, we can choose the partition of



Q such that all blocks have approximately the same size
8Qy =~ Q/L~ pN/L =~ pN/Oc hence Ay ~ p?>N/a(K —1).
The exponential term in (10) is dominated by the polynomial
one, hence P; is bounded by

Cla p2N _<K_1) p
—_
> (a(Kl)) ¢

Proof: (Lemma A.1).

—(K-1
ety -

al"l‘ﬁ

11
Notice that since wy, is subgglus2
sian with parameter 3, so is xg,. Moreover, ]E(xin) =
(1—p)E(w?) = 1 — p. First, we consider the matrix ¥ :=
(1—p)~'/2XE: its entries are independent, zero mean, sub-
gaussian with parameter B’ := B(1 — p)~/2 and variance 1.
We can therefore apply [14, Lemma 4.8] to conclude that the
columns of the matrix V := rlIl form an e-tight frame,

1Q
except with small probability at most 2exp(—c3(B’)1Qe?),
assoonas A :=fQ/(K—1)>A; := %f/)log%. The depen-
dence of c3(f’) and C5(B’) is polynomial, so they can be re-
placed with universal constants ¢3(f) and C3(f3) independent
of p for 0 < p < pg. Next, we apply [14, Theorem 4.6]: pro-
vided that A > 2, except with probability at most 2~ (K1) the

matrix V' := ; X0 k satisfies the “Uncertainty Principle with

parameters ) = C4f3/logA /A and 8 = ¢4 /A7, that is to say:
[V'd|l2 < n||d||2 for all d € RM such that fsupp(d) < M.
The constants ¢4 and Cy4 are universal. It follows that, except
with probability at most A~ (K1) 42 exp(—c3£24Q), the ma-
trix Vi= (1Q) /2 = (1 - p) 12V’ = ((1-p)tQ)~'/2x§
is an ée-tight frame and satisfies the UP with parameters
n(1 —p)~'/% and §. Obviously, there is some A, such
that if L > A;, ' :=V1+¢(1 —p)_l/zn 4 & < 1, there-
fore if A > max(2,4;,A,) we can apply [14, Theorem 3.9]
to conclude that each vector u € RK~! admits a Kashin’s
representation of level C := (1 -7 )’15"/2 with V, ie. :

ngza = X d with

1
u= o) Y heQnVn =

Fusz
o= el [EE
VIZp Q™ (1-n) VT=p V510
To conclude, we write
V810 = Ve /L A(K = 1) = s (K- Dv/EQ.
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