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Abstract

Software transactional memory (STM) is a promising technique for
writing concurrent programs. So far, most STM approaches have
been experimentally evaluated with small-scale pubenchmarks. In
this paper, we present several surprising results from implementing
and experimenting with STMBench7 — a large scale benchmark for
STMs. First, all STMs we used crashed, at some point or another,
when running STMBench?7. This was mainly due to memory man-
agement limitations. This means that, in practice, none of the tested
STMs was truly unbounded and dynamic, which are the actual mo-
tivations for moving away from hardware transactional memories
(HTM). Performance results we gathered also differ from previ-
ously published results. We found, for instance, that conflict detec-
tion and contention management have the biggest performance im-
pact, way more than other aspects, like the choice of lock-based or
obstruction-free implementation, as typically highlighted. Imple-
mentation of STMBench7 with various STMs also revealed several
programming related issues such as the lack of support for exter-
nal libraries and only partial support for object oriented features.
These issues prove to be a major limitation when adapting STMs
for production use.

Our work is by no means a bashing of prior work on STM:s.
All STMs we considered are very well designed and implemented.
What we highlight here is that providing genuinely unbounded
transactions is a hard and complicated task, but full of interest-
ing technical and research problems. Solutions to these problems
should be evaluated against large scale benchmarks, like STM-
Bench7.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.8 [Software Engineering]:
Metricsperformance measures

General Terms Measurement, Performance, Experimentation

Keywords Software transactional memories, Benchmarks

1. Introduction

Transactional memory (TM) systems are commonly regarded as a
way of making concurrent programming usable by a wider commu-
nity of programmers. TMs have first been designed in hardware [1].
Software transactional memories (STM) have been later proposed
to overcome the bound on transaction sizes that is typical for hard-
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ware solutions [2] and to support unbounded and dynamic trans-
actions, i.e., transactions with no bound on the number or sizes of
objects accessed.

There have been many recent proposals for STMs [2, 3, 4, 5,
6]. All of them were validated using well-known data structures
(linked lists, red-black trees, etc.). While these pbenchmarks can
exhibit performance differences between various STMs to a certain
extent, they have an important deficiency — they are too small in
scale. The goal of STMs is to provide support for implementing
real-world applications, such as big application and web servers,
on emerging multi-core and multi-processor architectures. Current
pbenchmarks do not provide sufficient insight about the behavior
of STMs in applications with large transactions that access many,
potentially complex, objects.

We recently proposed a more realistic benchmark for evaluating
STM implementations — STMBench7 [7]. The main characteristic
of STMBench7 is that it “stretches” the underlying TM system in
ways various pbenchmarks do not. The main “stretcher” is the size
of the data structure, which increases total memory requirements,
transaction length and the number of objects accessed in transac-
tions. STMBench7 was first implemented in Java with ASTM [8]
and two levels of locking. We then ported STMBench7 to C++ and
implemented it with four STMs: DSTM2' [6], RSTM [3], TL2 [4]
and TinySTM [5].2 The main reason for choosing these libraries
was their free availability and their representation of various STM
design choices. We could thus compare: managed (Java) against
unmanaged (C/C++) runtime, lock-based against obstruction-free
STMs and different conflict detection and contention management
techniques. We present here the main conclusions that resulted
from “stretching” these STM implementations with STMBench7.

Robustness All STMs we used had problems coping with the size
of a big data structure. In short, they all crashed. This means that, in
practice, none of these STMs were truly unbounded and dynamic.
Some STMs incur too high space overheads and could not fit in
the memory, others overflow internal data structures and either lead
to incorrect executions or crashes. These issues might not be sur-
prising given that memory management is particularly difficult in
STM environment. First, STMs require more memory than regular
programs as they have to maintain redo or undo logs. Also, deallo-
cating memory in environments without garbage collector is more
difficult as the reachability of memory blocks must be computed
before deallocation. It should be mentioned that, although these
libraries are not production quality, they were tested extensively
and work without problems in a number of different ubenchmarks.
Consequently, we did not expect to find them to crash, and that was
not our objective.

I'We were not able to make a fully functional version of STMBench7
with DSTM2 due to memory management related problems. We describe
problems we encountered below.

2 All STMBench7 versions are available for download at http://1pd.
epfl.ch/site/research/tmeval.
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It is interesting to contrast STM implementations with programs
that use locking at this point. When locking is used, no memory is
required for bookkeeping purposes and all memory blocks that are
to be deleted are protected with appropriate locks, so there is no
need to compute reachability before deleting them. Consequently,
memory management is much simpler and STMBench7 locking
implementations worked with standard memory allocation without
any problems.

Performance STMBench7 also provides a performance test that
stresses STMs differently than common pbenchmarks do. All
pbenchmarks tend to measure lower level aspects of the design,
like the overhead of each single interaction with the library or
the amount of cache invalidation caused. This is due to the small
transaction sizes used by pbenchmarks, which cause even very
small overheads to have a significant relative impact. STMBench7’s
larger transactions are not impacted so significantly by these over-
heads, and the higher-level design issues can be compared. Ap-
proaches that have higher overheads on single object accesses
might actually perform better with larger transactions, if they are
able to avoid overheads of aborting transactions or performing too
much work in transactions that are aborted later. Another important
consequence of running large transactions is their ability to fully
expose all superlinear performance overheads in the STM. The im-
pact of superlinear overheads is much higher on programs that use
larger transactions than on those that only use smaller ones.

Our experiments with STMBench7 led us to conclude that con-
flict detection and contention management have the biggest influ-
ence on performance. This contrasts previous conclusions, based on
pbenchmark experiments, that identified low level overheads, such
as the cost of accessing a single object, as the main performance
factor [9]. We identified the conflict detection technique that has
the highest performance for large transactions over a wide range of
contention levels, unlike [3], in which pbenchmark experimental
results did not favor any of the variants and proposed adaptive con-
flict detection. More specifically, in our experiments, techniques
that detect write/write conflicts early and read/write conflicts late
performed best. Both RSTM, with invisible reads, eager conflict
detection and global commit counter heuristic switched on, and
TinySTM use this kind of conflict detection. We also noticed an
interesting relation between contention management and conflict
detection. For example, Polka [10] contention manager works bet-
ter than Greedy [23] with lazy conflict detection, but it is opposite
with eager conflict detection. We were able to pinpoint the best
performing contention management technique given a conflict de-
tection choice. Our results are in contradiction with the previous
study [10] based on typical gbenchmarks that favored Polka.

Application programming One of the unique features of STM-
Bench7, when compared to other benchmarking approaches, is the
use of (a) external libraries that do not support STMs and (b) a
bigger subset of object-oriented features of the language (e.g. poly-
morphism). This serves as a sort of API (or usability) test for STMs,
because it highlights some of the problems an STM might have
when interfacing with external, non-transactional code. It also high-
lights the costs of using an STM in terms of either limited usability
(limiting the use of external libraries) or additional programming
effort (porting parts of external libraries to STM environment). For
example, no word-based STMs we used fully support use of exter-
nal libraries, which considerably increases the cost of using them.
This kind of information might be useful for both software devel-
opers and compiler vendors.

To summarize, our experiments with STMBench7 revealed the
following:

(a) all STMs we used crashed, in one way or another, mostly due
to problems related to memory management

(b) the choice of appropriate policies (e.g. conflict detection tech-
nique and contention management) has bigger impact on per-
formance than the choice of mechanisms (e.g. lock-based vs.
obstruction-free implementation)

(c) some tested libraries have serious usability issues, mainly with
object oriented features of the language and external libraries.

As we pointed out, mentioning various problems with particular
STMs does not have a purpose of bashing these libraries, but
merely of highlighting challenges underlying STMs.

The rest of the paper is laid out as follows. The next section pro-
vides some basic background information. The section describing
some of the most interesting bugs discovered using STMBench?7
follows. Next, we continue on to discuss some interesting perfor-
mance results and follow with the section that highlights the biggest
API limitations discovered. The last section summarizes our con-
clusions.

2. STM context

STMs can be word-based or object-based, depending on the gran-
ularity of memory accesses. Regarding the STMs we used, RSTM
and DSTM2 are object-based, while TL2 and TinySTM are word-
based. There are also two typical ways of implementing STMs
— lock-based and obstruction-free. The main part of RSTM is
obstruction-ﬁree,3 while TL2 and TinySTM use locks. DSTM?2 has
both lock-based and obstruction-free variants.

No matter what the underlying details of a TM are, its main task
is to detect conflicts among concurrent transactions and to deal with
them. Deciding what to do when conflicts arise is known as con-
tention management and is performed by a (conceptually) separate
system component called a contention manager. A concept closely
related to conflict detection is the one of validation. Validating a
transaction consists of checking its read set for consistency. Fig-
ure 1 illustrates conflict detection and contention management with
a simple example.

2.1 Conflict detection

Conflicts among concurrent transactions can be detected in a num-
ber of ways. In principle, the major factor is the point in the exe-
cution when read/write and write/write conflicts are detected. Both
kinds of conflicts can be detected at different phases during the
transaction execution.

RSTM supports four conflict detection approaches, each char-
acterized by (a) the point in the execution when writers acquire
objects — as soon as possible, called eager, or as late as possible,
called lazy and (b) the visibility of readers — they can be visible,
which allows writers to detect read/write conflicts or invisible [3].
RSTM also implements a global commit counter heuristic that re-
duces the cost of validation and also partially implements mixed
invalidation [11].

TL2 and TinySTM are both timestamp-based TM systems that
employ invisible reads. The difference in conflict detection is that
writers lazily acquire locks while in TL2 and eagerly in TinySTM.

2.2 Contention management

Once the conflict is discovered, it is resolved using some form of
contention management. A contention manager is a component that
decides what a given transaction (attacker) should do in case of a

3RSTM has also a lock-based implementation, but it does not allow use
of any external libraries, so we were not able to run STMBench7 with this
RSTM variant.
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Figure 1. An example of read/write conflict at time t2. In this
scenario, contention manager decides that T2 should wait (depicted
in dotted lines). After T1 commits at t3, T2 succeeds in writing at
t4 and commits at t5.

conflict with another transaction (victim). Possible outcomes are
aborting the attacker, aborting the victim or forcing the attacker to
wait for a while before trying again.

RSTM provides a plethora of contention managers, described
in detail in [10, 12]. Here, we give a short description of the
contention managers that are mentioned in the rest of this paper.
Polka assigns to every transaction a priority that is equal to the
number of objects the transaction accessed so far. Whenever the
attacker waits, its priority is temporarily increased by one. If the
attacker has a lower priority than the victim, it will be forced
to wait (using exponential backoff to calculate the wait interval),
otherwise the victim gets aborted. Greedy assigns each transaction
a unique, monotonically increasing timestamp on its start. The
transaction with the lower timestamp always wins. An important
property of Greedy is that, unlike other contention managers we
mention, it always avoids livelocks among transactions. Serializer
is very similar to Greedy except that it assigns a new timestamp
to a transaction on every restart. TL2 and TinySTM have a very
simple contention management technique — whenever there is a
conflict, the attacker gets aborted and restarted. Also, TL2 makes
the attacker wait for a while (exponential backoff) before restarting.

2.3 Benchmarking

The prevailing way of measuring the performance of STMs has
been the use of pubenchmarks. The main goal of pybenchmarks is to
test the mechanics of an STM itself and compare low-level details
of different implementations. Simple operations on simple data
structures of modest sizes serve this purpose well, as real applica-
tion work does not mask TM implementation overheads. However,
this also presents a danger for precisely the same reason, as some
of the design choices that might look justified with ubenchmarks
might actually lead to worse performance when more elaborated
data structures and operations are used.

Some more realistic benchmarking approaches besides STM-
Bench7 have also been considered. SPLASH-2 [13] is a suite of
highly parallel applications that was designed for comparing dif-
ferent architectural aspects of shared-memory multiprocessor com-
puter systems. In particular, it has been used as a benchmark for a
number of HTM systems [14, 15, 16]. The main drawback of using
SPLASH-2 for TM evaluations is the structure of SPLASH-2 pro-
grams. Threads in these programs use fine-grained synchronization
during short periods of their execution and spend most of the time
performing demanding calculations on data not accessed by other

Benchmark Data size | Name Tx Size Tx/s

Linked list 64 10°

uBench 128 Hash table 2 108

RB tree 7 10°

LT on 100,000 10T

STMBench7 | 700,000 | |1 o large 10.000 | 5
avg ~ 100

Table 1. Comparison of STMBench7 and pbenchmark average
sizes. Data and transaction sizes are reported in numbers of objects.
Sizes for typical pbenchmarks are given with the integer value
range of 256. Size of STMBench7 transactions with long traversals
on and off are given.

Workload type

Category Read [ Read-write | Write
Read-only ops 90 60 10
Update ops 10 40 90
Long Traversals 5

Short traversals 40

Short operations 45

Structure mods 10

Table 2. Default ratios for operation categories (in %)

threads. While this provides higher performance, it is in contrast to
expected TM usage patterns.

STAMP [17] is another, more recent benchmarking suite, which
is better suited to TM evaluations than SPLASH-2, because it uses
applications that spend most of the time executing transactional
code and, thus, correspond to the expected TM usage patterns
better. The main drawbacks of STAMP are the lack of (a) workloads
with very long transactions and (b) use of complex data types, like
strings or collections from standard libraries.

2.4 STMBench7

STMBench7 [7] was specifically targeted at benchmarking STMs.
Its data structure and operations, in large part inherited from the
007 [18] benchmark for object-oriented databases, represent a
workload typical for CAD/CAM/CASE software. This means that,
although CAD/CAM/CASE applications are probably not charac-
teristic of the future STM applications, STMBench7 workloads
correspond to realistic, complex, object-oriented applications and
as such represent very important target for STMs. Also, these work-
loads use transactions that are larger than in any other benchmark
we know of, thus providing insight into STM behavior in unique
scenarios.

STMBench7 exhibits a large variety of operations (from very
short, read-only operations to very long ones that modify large parts
of the data structure) and workloads (from static, read-dominated
to dynamic write-dominated). The data structure used by STM-
Bench7 is many orders of magnitude larger than in a typical
pbenchmark. Also, its transactions are longer and access a larger
number of objects. The difference between STMBench7 and typi-
cal pbenchmarks sizes is highlighted in Table 1. The size and vari-
ety of the STMBench7 transactions stress STMs in different ways
than pbenchmarks do. STMBench7 can be, as experience shows
very effectively, used as a crash, performance and API testing tool
for STMs.

A run of STMBench7 consists of creating a randomized data
structure and invoking a series of operations on it, each in a sep-
arate transaction. STMBench7 uses a tree-like data structure that
is depicted in Figure 2. There are four main categories of STM-
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Figure 2. The data structure of STMBench7 consists of a single
module that is connected to the tree consisting of six levels of com-
plex assemblies. The last level of complex assemblies is connected
to base assemblies. Base assemblies are connected to a number of
composite parts that form a shared design library. Each compos-
ite part is connected to a private graph of atomic parts that are, in
turn, connected to each other via connection objects. In addition,
the module has a manual and each atomic part has a documentation
object.

Bench7 operations. Long traversals are operations that access large
parts of the data structure, typically all assemblies and atomic parts.
Short traversals access much smaller number of objects, traversing
the data structure along a random path. Short operations perform
simple operations on a randomly selected object or its neighbours.
Structural modifications change the data structure itself by creating
or deleting objects or links among them. All structural modifica-
tions are performed in a way that prevents significant degeneration
of the data structure (making parts of the structure disconnected
from the root, for example). Operations are also classified into read-
only and update operations, according to the type of accesses they
perform. A distribution of operations that are invoked in a single
run of the benchmark is based on the workload type selected, which
can be read dominated, read/write and write dominated. In addition
to selecting a desired workload type, long traversals can be included
in the workload or not. This, in essence, leads to six different possi-
bilities. A precise distribution of operations for different workloads
is given in Table 2.

One peculiar characteristic of STMBench?7 is the initialization
of the data structure that is done in a single transaction. This
transaction is not included in the measurements, but, due to the
large size of the STMBench7 data structure, it turned out to be
a big problem for some STMs and represents a major part of
STMBench7 crash test.

STMBench7 with word-based STMs STMBench7 is inherently
object-based. Its implementations also use standard language li-

base STM domain l OO wrapper domain | user domain

e == - _ _ ™

handle /

\\
- -»

Itentative

Figure 3. Example of an object oriented wrapper for word-based
STMs. The figure shows an object handle that is accessed through
an underlying STM, the actual object that is accessed through a
wrapper and a transaction that uses the object. At time t1 trans-
action T1 opens the object for writing (shown in dashed lines). It
makes a copy of the object and transactionally writes the new ob-
ject’s address to the handle. Later on, at time t2 transaction T1
writes to the copy of the object. At time t3 the same transaction
opens the object for reading (shown in dotted lines) by transaction-
ally reading the value of the handle. This read returns the address
of the object’s copy and T1 can later read data from the copy of the
object (time t4).

braries (STL in C++ and standard Java library). To experiment with
STMBench7 using word-based STMs, like TL2 and TinySTM, we
implemented a thin object-oriented wrapper below STMBench7
(depicted in Figure 3). This wrapper can be thought of as an im-
plementation of an object-based STM on top of a word-based one.
The interface of this “composite” STM is very similar to the in-
terface of RSTMv3, as that allowed us to easily reuse the bulk of
benchmark’s core code.*

The wrapper represents every object by its handle, which is ac-
tually a single memory word pointing to the current version of the
object. The handle of the object is read and modified using underly-
ing word-based STM, while the wrapper manipulates different ob-
ject versions. Whenever a transaction opens an object for writing,
aredo copy of the object is created and its address is speculatively
written to the object’s handle using underlying word-based STM. If
the transaction commits, the redo version will become the current
one, through mechanisms of underlying word-based STM, and if it
aborts no change will be made. In addition, the wrapper maintains
the log of all objects opened for writing and deletes newly allocated
memory on aborts. Old object versions are deleted if the transaction
commits. When a transaction opens an object for reading it reads
the object handle using the underlying STM, which always returns
the correct version of the pointer to the object, avoiding read-after-
write hazards.

Besides object versioning, the wrapper also performs memory
management functions, mostly rollbacking allocations on aborts
and postponing deallocations of deleted objects until they are no
longer reachable from other transactions. We adopted an approach
similar to that of [19], McRT malloc [25] and RSTM [3]. Whenever
a transaction allocates an object, the address of the object is logged.
If the transaction aborts, it will delete all the objects that were
allocated inside it using this log, effectively rollbacking memory
allocation operations. When an object is deleted inside a transaction

4Initial implementation of STMBench7 for C++ was done with RSTM.
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Crash STM Cause
RSTM v2 16 MB/thread limit
Memory management | DSTM2 high overheads
TinySTM free on commit
Transaction size RSTM v3 1 MB/object limit
TL2 x86 0.9.0 | internal overflow

Table 3. Summary of crash situations.

the actual delete is performed only if the transaction commits.
Moreover, the object cannot be deleted immediately on commit, as
some ongoing transactions might still hold references to it. Because
of this, the object is deleted only when it is no longer reachable
from any running transaction. The system maintains one counter
per thread that counts the number of transactions executed in each
thread in order to decide when it is safe to deallocate transactionally
deleted objects.

Although our wrapper introduces additional overheads to word-
based STMs, it is needed in order to use TL2 and TinySTM with
C++ and non-transactional libraries. However, these overheads are
comparable to those of RSTM v3 and this allowed us to better com-
pare differences between lock-based and obstruction-free STMs, as
they do not get masked by other implementation details.

2.5 Experimental settings

We performed all measurements on a 4 processor dual core AMD
Opteron 8216 2.4 GHz 1024 KB cache machine with 8GB of RAM
and Linux kernel version 2.6.16.37. This provided us with 8 cores
to experiment on. Executables used in the experiments were created
using -03 and -DNDEBUG compilation settings of GNU g++. All
results were averaged over multiple runs, where the length and the
number of runs were chosen to reduce variations in collected data.
Experiments were performed with number of threads ranging from
1 to 24.

3. STMBench7 as a crash test

As we explain below, STMBench7 is highly effective in discover-
ing STM problems that lead to program crashes. Two main reasons
for STM crashing in our experiments were (a) memory manage-
ment related problems and (b) the inability of STMs to cope with
large transactions. Both of these reasons are rooted in the large size
of STMBench7 data structure which stresses memory manager due
to its high memory requirements and implies large transactions.
The problems we encountered are summarized in Table 3.

3.1 Memory restrictions

As already pointed out, and somewhat to our surprise, we discov-
ered that some STMs we considered could not cope with the mem-
ory size of STMbench7’s data structure. In these cases, it was not
possible to run STMBench?7 at all before fixing the problem. Others
had subtle problems with support for non-transactional data.

RSTM Implementation of STMBench7 in C++ immediately led
to the problem of exhausting the available memory with RSTM [3]
(version 2). RSTM v2 comes with a custom memory allocator, that
has an arbitrary limit of 16 MB of allocatable memory per-thread.
Given much higher memory requirements of STMBench7, it was
not possible to even start it. Version 3 of RSTM has a flexible
memory management module that allows the use of a wider range
of memory allocators, including the standard malloc/free pair,
which we could indeed use.

This bug, although quite easy to detect and fix, caused no prob-
lems with the pbenchmark tests, simply because none of them re-
quired allocating 16 MB of memory in a single thread.

DSTM2 DSTM?2 [6] is written in Java, which has a built-in
garbage collector that moves most of memory management related
issues from programmers to the run-time system. This means that
DSTM2, unlike RSTM, does not need any form of memory man-
agement in the library itself. DSTM?2 is an experimental library that
is very easy to extend and use with different STM algorithms in a
transparent way from the programmers’ perspective. To accom-
plish this, DSTM2 generates various classes during run-time (it
has to generate a “transactional” version for every class of shared
objects) and wraps every getter and setter method of these classes
into separate objects.

The first problem we encountered was the exhaustion of mem-
ory that JVM uses to store class definitions. The reason for this
was the way DSTM2 creates classes — one for every instance of
the class, although a single version would suffice. After reporting
this to the DSTM2 authors, we got the patched version of the li-
brary that did not exhibit the same problem. However, we were
still not able to allocate the required data structure, this time due
to the lack of heap memory. The problem persisted even when we
increased the JVM heap size to 8 GB. After inspecting this prob-
lem further, we found out that, for every data member of the ob-
ject, two wrappers, one for the getter and another one for the setter,
were created. Both of these wrappers had a reference to a different
instance of the java.lang.reflect.Method object. The size of
the referenced java.lang.reflect.Method objects was an order
of magnitude greater than the size of the rest of the data structure,
which caused JVM to run out of heap memory. We were able to cre-
ate a small patch that reused one java.lang.reflect.Method in
all wrappers. Although this reduced memory consumption, it did
not solve the problem either. DSTM?2 still introduces big per-object
overheads in its internal structures and this prevented STMBench7
initialization thread from finishing due to the JVM heap exhaus-
tion. Fixing this problem turned out to require significant rework of
the library, so we did not do it.

Because pbenchmarks do not create as many objects as STM-
Bench7, these problems were overlooked. It is worth mentioning
that the lock-based version of STMBench7 runs without any prob-
lems, with modest memory requirements (approximately 200 MB,
which is far from exhausting JVM heap), as it does not incur any
additional per-object overheads.

TinySTM TinySTM uses a simplified approach to memory man-
agement that is efficient in most cases and works correctly when
all transactional object accesses are performed through provided
load/store calls. The approach relies on a non-faulting load in-
struction, which can be simulated with appropriate signal handlers.
Whenever a transactional deallocation is invoked, all locations in
the block are transactionally written in order to prevent concurrent
transactions from modifying them. Memory deallocations are post-
poned until the end of the current transaction and are performed
only if the transaction commits.

Unfortunately, this memory management scheme caused crashes
in our object-oriented wrapper. The wrapper caches object point-
ers during the transaction for performance reasons, and this allows
concurrent transactions to access already deallocated objects. II-
legal memory accesses are handled by TinySTM signal handlers,
but they can cause memory corruption in rare cases when the same
memory block gets allocated again by a different transaction. This
typically happens in long transactions, when the old object handle
gets used long after the object is deallocated. The problem most
often manifests itself when copying large C strings, in cases when
new contents of the memory block do not contain any zeroes that
would stop the copying. Due to the resulting buffer overflows, heap
sometimes gets corrupted, causing the next malloc or free to
abort the program. Only in these cases we were able to detect the
problem.
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This problem is not obvious at all, as it seems that the non-
faulting load instruction should prevent it. STMBench7 was instru-
mental in discovering it due to the large size of its transactions and
data. Solving the problem required implementing object reachabil-
ity algorithm in the wrapper’s memory manager.

3.2 Transaction size

Some STMs had problems with the sizes of individual transactions,
as opposed to the size of the whole data structure. Here the number
of objects accessed matters, not their size, as transactions spend the
fixed amount of bookkeeping memory for each accessed object.

RSTM RSTM v3 comes with a reworked memory management
system that supports multiple possibilities for memory allocation.
These include standard malloc implementations and the new ver-
sion of RSTM’s custom allocator that removes the 16 MB per-
thread limit. However, there was still a problem that prevented the
initialization thread from completing when using RSTM’s custom
allocator. We were able to discover and fix a pretty interesting bug
that caused this. RSTM’s allocator allocates memory in chunks that
are at most 1 MB in size, which limits the maximum size of objects.
As there are no objects larger than 1 MB in STMBench?7, this did
not present a problem when allocating STMBench7 specific ob-
jects. RSTM, however, internally uses arrays for storing sets of ob-
jects that transactions access and these arrays grow with the number
of accessed objects. With large enough transactions, these arrays
will require more than 1 MB of memory and will cause the program
to crash. This practically limits the number of objects transactions
can access.

The pbenchmarks did not reveal this problem, as they never
access enough objects during a single transaction to cause over-
flows of allocated memory arrays. The long initializing transaction
of STMBench7 crashed, not allowing us to use the custom memory
allocator at all. To discover the problem was, again, harder than to
fix it and a small patch to RSTM’s custom allocator was enough.

TL2 The problem with the number of accessed objects in a single
transaction also occurred with TL2 [4] x86 version 0.9.0 [17] (see
Figure 4). TL2 stores addresses of all memory locations accessed
for reading in a transaction-local linked list. This list is preallo-
cated at the beginning of a transaction, for performance reasons. If
a transaction reads more locations than can be stored in the list, it
is aborted and restarted. Before the restart, the list is extended to
accommodate a larger number of accessed locations. Due to a pro-
gramming bug, transactions did not get aborted in the overflow case
at all. Instead, reads that caused overflow were not accounted for at
all and transactions were allowed to continue until commit time. At
that point the validation algorithm would not take overflown reads
in account and transactions could commit despite possible conflicts
caused by missed reads. This violates transactional semantics and
can even crash the program in some specific cases, which is how
we actually noticed the problem.

In particular, when two transactions are trying to delete the same
object, and the existing conflict passes undetected, both transac-
tions will mark the same object for subsequent deletion, which will
result in double delete of a memory block. Most of the time, TL2’s
signal handlers, that are used for emulating non-faulting load in-
struction on the x86 architecture, will catch the resulting segmen-
tation fault and mask the problem. In some rare cases, however,
the second free of the object causes subsequent malloc or free to
abort the program, due to heap corruption. Only in these cases does
the program crash and that is where we were able to notice the bug.
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Figure 4. TL2 x86 version 0.9.0 read list overflow problem exam-
ple, with the read set size of 3. Overflows of read set are depicted
in dashed lines. Although this example scenario should result in a
conflict, it does not because the read of the object 04 is missing
from T2’s read set.

A newer version of TL2 x86 fixed this problem by appropriately
handling overflows. This was also not a very hard problem to solve,
once it was discovered and STMBench7 helped us with that.’

4. STMBench7 as a performance test

We noticed that the biggest influence on the throughput of STM-
Bench7 experiments comes from the combination of the conflict
detection technique and the contention manager used in the under-
lying STM. Although other issues, like locking vs. non-locking im-
plementation, also influence the overall performance, they do not
impact it so significantly.

4.1 Locking vs. obstruction freedom

It was noticed previously [9, 24] that locking STMs have a perfor-
mance edge over obstruction-free ones. We ran experiments with
TL2 and TinySTM which are both lock-based STMs and got the
confirmation of this. However, this turned out not to be the STM
characteristic with the greatest influence on performance. Figure 5
shows that, with comparable conflict detection approaches, lock-
ing outperforms obstruction freedom, as TinySTM performs better
than the RSTM variant using invisible reads with eager acquire and
global commit counter heuristic. It also shows that the obstruction-
free strategies can perform better than suboptimal locking ones, as
the best RSTM variant outperforms TL2. This RSTM variant out-
performs TL2 mostly because of a superior conflict detection ap-
proach, which uses early detection of write/write conflicts.

4.2 Towards the ideal conflict detection approach

We observed best throughputs when using conflict detection ap-
proaches that have the same characteristics — they are able to avoid
unnecessary work and they avoid aborting potentially conflicting
transactions as much as possible. The best performing RSTM con-
flict detection approach is invisible reads with eager acquire and
global commit counter heuristic. This is precisely because this ap-
proach detects write/write conflicts early, so no further work is per-
formed in vain in that case, but tries to detect read/write conflicts
as late as possible, thus allowing more parallelism than techniques

5In this particular case, the authors of the library were able to find and
resolve the problem on their own, prior to our report.
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Figure 5. Comparison of different conflict detection approaches.

using visible reads do. This is also the main reason why TinySTM
outperforms TL2 drastically.

It can be conjectured that another step towards the ideal conflict
detection approach would be to allow for even more parallelism be-
tween concurrent transactions. In terms of existing conflict detec-
tion approaches, both TinySTM and the RSTM variant that uses in-
visible reads with eager acquire and global commit counter heuris-
tic could be changed to allow progress of both conflicting transac-
tions even after the read/write conflict is detected, until it is certain
that one of the transactions cannot commit. This change would let
both transactions commit (and avoid wasting work of aborted trans-
action) in cases when the transaction that performed the conflicting
read commits first. Having multiple versions of the same object, as
suggested in [20] and [21], could further help as this would allow
for more transactions to commit.

Visible reads 1t is worth mentioning that the visible reads ap-
proaches, which are commonly considered to be low-performing,
have quite good performance in our experiments. In STMBench7
experiments, the RSTM variant that uses visible reads with eager
acquire is second best performing RSTM variant and third overall
(Figure 5).

Some prior experimental results [3] showed that, for pbenchmarks,

invisible reads, even without global commit counter heuristic,’
in almost all cases outperform visible reads. This was attributed
to lower cache invalidation rate of the basic invisible reads ap-
proaches. However, in our experiments with RSTM, the quadratic
cost of incremental validation became overwhelming for long
transactions and basic invisible reads always have considerably
lower performance. One extreme is the case with long traversals
switched on, when runs with basic invisible reads do not finish a
single long traversal in minutes. Example measurements with long
traversals switched off are given in Figure 6. The difference is still
considerable, even up to two orders of magnitude. To make sure
that the reason for the low performance of basic invisible reads is
incremental validation, we turned it off and repeated the measure-
ments. As conveyed in Figure 6, the performance of basic invisible
reads without incremental validation comes close to the perfor-
mance of visible reads.

It might be quite surprising that basic invisible reads techniques,
even without incremental validation, do not outperform techniques
using visible reads. The reason is that RSTM visible reads with
eager acquire variant comes closer to the best performing conflict
detection techniques in terms of policy, as it detects doomed trans-

6 We will call them basic invisible reads.

Figure 6. Incremental validation cost (RSTM).

actions early on and thus prevents loss of work. However, it detects
read/write conflicts too early and that is why it does perform worse
than invisible eager variant that uses global commit counter heuris-
tic.

4.3 Towards the ideal contention manager

Similar observations that hold for conflict detection techniques
can be applied to contention management — contention managers
that work best (a) avoid aborting transactions and (b) if aborting
is necessary they try to abort the transaction that performed less
work. Although Polka [10] satisfies the second property, it aborts
the victim after waiting for a certain time period and thus does
not satisfy the first one. Two best performing contention managers
are Serializer [22] and Greedy [23]. These contention managers
use the elapsed time to measure the amount of work a transaction
performed and always prioritize the one that performed more work.
This means that “younger” transactions never abort “older” ones,
but wait instead. On the other hand, “older” transactions always
abort “younger” ones and are able to progress.

One interesting example of contention management is that of
TinySTM. In locking STMs, especially in the ones with eager
acquire like TinySTM, it is not easy to abort the victim as the
changes performed to memory locations are unknown. This is why
locking strategies usually abort the attacker or make it wait for a
while and retry. TinySTM does not wait at all — on every conflict
it aborts the attacker. It turns out that this approach works quite
well, as conveyed by Figure 5, although it causes a huge number
of aborts. A possible explanation for this is that in STMBench7
most operations access elements in roughly the same order, so
transactions that start sooner will arrive at the same point in the
data structure sooner. This represents a good approximation of the
amount of work performed.

4.4 Conflict detection and contention management

During our experiments we noticed the strong relation between
conflict detection techniques and contention management. Figure 7
shows that RSTM with the Polka [10] contention manager performs
better when using lazy than eager conflict detection. On the other
hand, Greedy works better with the eager approach. Similar obser-
vations can be made for other contention managers as well. This
shows that comparing different contention managers while fixing
a single conflict detection approach, or vice-versa, might not give
the most representative results. Another way of looking at this is
that the construction of a new contention manager requires prior
knowledge of the conflict detection technique that will underlay it.
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Figure 7. Relation between conflict detection techniques and con-
tention management (RSTM).

4.5 High concurrency levels

Running experiments with more threads than actual CPU cores re-
sults in unexpectedly sharp performance degradation in a number
of different cases (Figure 8). An STM cannot further improve per-
formance in these situations, as there is simply no more processing
resources available in the computer system, but it should degrade
performance gracefully. This is especially important once the STM
applications reach common users, as it cannot be expected, or it
might even be impossible, for the users to fine-tune all running ap-
plications according to the number of available cores.

The main reason for this significant performance impact is the
busy waiting performed by waiting threads. Busy waiting wastes
processors cycles, but even worse, it makes logically blocked
threads look busy to the underlying scheduler. Because of this, a
thread scheduling algorithm will assign cores to those threads, pos-
sibly preempting the ones that can actually make some progress.
This will slow down the overall system progress even further. The
problems with busy waiting are not noticeable with short transac-
tions, because busy waiting ends as soon as the transaction can
progress further, i.e., when the conflicting transaction finishes.
When transactions are short, this period is short as well and busy
waiting does not waste as much processor time as with longer
transactions. It is even beneficial, as it reduces the “reaction” time
of waiting threads by eliminating the overhead of thread switching.

We first noticed this problem with RSTM using the Serializer
contention manager [22]. To test whether the busy waiting was
the cause of the performance degradation, we replaced it with the
simplest form of real waiting by invoking yield() whenever the
contention manager decides to block the current transaction. As
Figure 8 demonstrates, this solved the problem.

The similar performance degradation occurred with TinySTM
and the reasons were pretty much the same — by aborting and
restarting transactions immediately, other threads are prevented
from using available CPUs. The simplest solution to the problem
was the same as above — before restarting, an aborted transaction
would first invoke yield. Interestingly enough, simple yielding
slightly improved performance of TinySTM, even when the number
of threads was lower than the number of available CPUs. We
attributed this to short backoffs a call to yield incurs even when
no thread switch happens. These backoffs reduce contention, and,
consequently, the number of aborts. To verify our assumption, we
implemented a very simple busy waiting backoff mechanism in
TinySTM. As conveyed by Figure 8, our assumption was correct.
This is similar to the conclusion of [26], which states that expensive

Figure 8. Preemptive vs non-preemptive implementations at high
concurrency levels.

action on abort may act as a backoff and reduce contention, which
results in improved performance.

5. STMBench7 as an API test

STMBench7 effectively highlights the problems that might be en-
countered by software developers or compiler vendors that start us-
ing a particular STM in production. The problems we identified fall
mainly into two categories — lack of support for external libraries
and lack of complete support for object oriented languages. For a
discussion of different set of API problems of library based STM
approach, the reader is referred to [27].

5.1 External libraries

Although STMBench7 uses only character strings and basic con-
tainers from standard libraries, this was enough to prevent the full
utilization of some STMs. For example, neither TL2 nor TinySTM
support the integration with any external library as they operate on
single memory words. Because it was not possible to implement
STMBench7 with a fully word-based approach without rewriting
big parts of the standard library, we had to work around this lim-
itation and we implemented a thin object oriented layer on top of
these libraries, as mentioned above. We encountered similar prob-
lems with RSTM and its support for privatization techniques. Due
to this limitation, we were not able to use privatization in STM-
Bench7. This did not cause any major problems for us as STM-
Bench7 is fully transactional.

Another problem that prevented the use of STL classes with
RSTM was RSTM’s implementation of STLAllocator. This allo-
cator is suitable for use with fully transactional implementation of
STL (which does not exist), as it replaces standard allocation and
deallocation routines with their transactional equivalents. When a
transaction that later aborts creates an object of a standard, non-
transactional STL class using RSTM allocator, the object’s mem-
ory gets deleted twice on abort — once by the object’s destructor
and once by a transactional abort rollback. This causes program
crashes and, effectively, prevents the programmer from using ob-
jects of standard STL classes. We had to replace transactional ver-
sions of memory allocation routines with non-transactional ones.
More generally, this led us to the conclusion that STMs that pro-
vide support for non-transactional versions of external classes need
to provide both transactional and non-transactional memory alloca-
tion mechanisms.
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5.2 Object-oriented features

We also ran into some less severe API-related problems that might
make the life of implementers harder. Most of them were pretty
easy to fix, but required a deeper knowledge of internal library de-
tails. An example of these issues is the lack of support for poly-
morphism in RSTM’s smart pointer implementation. None of the
pbenchmarks revealed this as all of them use simplistic class hi-
erarchies which do not require polymorphism at all. For exam-
ple, the most common pbenchmarks use classes only to represent
container objects (trees and lists) and their nodes. On the other
hand STMBench7 uses inheritance and polymorphism to represent
Assembly class, with its two subclasses — ComplexAssembly and
BaseAssembly. Every ComplexAssembly object holds its child
Assembly instances, which could either be ComplexAssembly or
BaseAssembly, in sets. It is important that the STM supports rep-
resentation of references to child classes as references to parent
classes in order for this to work. Once we discovered the problem
it was not that difficult to patch the library and solve it.

Another issue is related to the fact that TinySTM is not ori-
ented towards object-oriented programming and its memory man-
ager does not invoke destructors of memory blocks when they are
deallocated. Instead it just frees the memory block. This results
in problems with C++ code that relies on destructors for correct
functioning. The simplest solution in programs that only use ob-
jects, like STMBench?7, is to replace calls to free with calls to
delete, which will invoke the appropriate destructor. However, it
is not completely clear how to combine deallocation of objects and
plain memory blocks in a more general way.

6. Concluding Remarks

Although the ultimate goal of STMs is to help develop big pro-
grams running on thousands of processors, one might think that the
large-scale scenarios of STMBench7 are not of interest while de-
veloping a new STM right now.” However, observations made on
small-scale tests do not translate well to large-scale, thus testing of
larger-scale systems is necessary. Similarly, one might feel that it
is not yet the time to address usability issues of STMs, as they are
all still in an experimental phase, or that these problems could be
dealt with at different levels (e.g. in compilers) more elegantly. We,
however, think that if the STM technology is to be used by a wider
population, the cost of introducing it should be as small as possible.
It might not really be acceptable to rewrite whole standard libraries
of languages like C++ or Java, for example, like some word-based
STMs require.®

To summarize, this paper presents some of our conclusions
gathered during the implementation and experiments with STM-
Bench7 using different STMs. In short, STMBench7 can, very effi-
ciently, be used to test whether STMs are dynamic and unbounded
in practice. Strangely enough, all STMs we used turned out not
to be dynamic and unbounded, for various reasons that are mostly
related to memory management. Another important STMBench7
property is that it can be used to compare the performance of differ-
ent policies as opposed to comparing mechanisms. This is in con-
trast to most commonly used pbenchmarks. Finally, STMBench?7
can also be used to assess the costs of adopting STM solutions in
terms of usability and changes to external libraries, which might
be a very valuable information when adopting a particular STM for
use.

7 After all, TM technology is in its infancy and most libraries are aimed at
exploring different solutions to the problem, not at production use.

8 And even if this is to be done, it is helpful to know what the real limitations
of current approaches are and where can the compiler help.
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