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Abstract— In this article we present a signal model for classifi-
cation based on a low dimensional dictionary embedded into the
high dimensional signal space. We develop an alternate projection
algorithm to find the embedding and the dictionary and finally
test the classification performance of our scheme in comparison
to Fisher’s LDA.
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I. I NTRODUCTION

When dealing with very high dimensional signals, like
images or music, we are often interested in reducing their
dimension in order to process or store them more efficiently,
while at the same time keeping their key properties. A good
example from every day life is image compression,i.e. jpeg
[2]. The key property in this case are the images themselves.
In order to store them more efficiently we are looking for
a basis or dictionary which allows us to represent them as
superposition of a small number of its elements so that in
the end we can reduce each signal to a small number of
coefficients. Another field where dimensionality reductionis
important and which we are going to investigate is classi-
fication. The problem can be simply stated. Given a set of
N training signalsx ∈ R

d belonging to c classes and a
new signalxnew find out which class the new signal belongs
to. The probably simplest approach to solving this problem
is to calculate the correlation between the new signal and
the training signals and then give the new signal the same
class label as the training signal with which the correlation is
maximal. If we have collected the signals in classi as columns
of the matrix Xi and then combined these to a bigd × N
data matrixX = (X1 . . . Xc) = (x1

1 . . . xn1

1 . . . x1
c . . . xnc

c ),
the computational effort of this scheme amounts to calculating
the matrix vector productX⋆xnew and searching the resulting
correlation vector for its absolute maximum, i.e. is of the order
O(dN). There are however three disadvantages to this scheme.
It is computationally intensive, it requires a lot of storage space
- as bothN andd can be very large - and most importantly it
does not really work well. Let’s ignore the first two problems

for a moment and try to have a closer look at the third one.
When correlating two complete signals we are ignoring the
fact that the information that is related to the class labelsmay
not be the whole signal but just parts of it. Take as easy
example face recognition where our training data consist of
4 images of the same girl. In the first she is smiling, in the
second she has a red clown nose, in the third she is wearing
glasses and in the fourth has a red clown nose and glasses. If
we now get a picture of a smiling girl with a red clown nose
and glasses and want to know if she is smiling the correlation
scheme will give us the wrong answer, because the similarity
in the eye and nose region with picture 4 is larger than the
similarity in the mouth region with picture 1. The obvious
solution in this case is to concentrate on the mouth region
and the simplest way to translate the extraction of the mouth
region to a mathematical operation on our signals is a linear
operator, ie a multiplication with ap×d matrix A. If we now
use the correlation scheme on images of the signals under this
operator we will not only find the right solution, but can also
save storage space and computational effort. Instead of storing
the d × N matrix of all training signalsX we just need to
store thep × N matrix of relevant featuresF = AX . For
every new signal to classify we have to compute its image
fnew = Axnew , cost O(pd), and its correlation with the
featuresF ⋆fnew = (AX)⋆(Axnew), costO(pN), adding up
to O(p(d+N)) operations, which is smaller than the original
cost ofO(dN), as soon as

p <
dN

d + N
. (1)

While in our toy example it was obvious that to identify
a smile we should concentrate on the mouth region, this is
not the case in general. The only information helping us
choose the operator, i.e. find out which part of the signal
we should look at, is the training signals and their class
labels. The strategy is to choose the operator in a way that
it increases the similarity of signals in the same class and
decreases the similarity between classes. In our example,
even if we would not know that smiles tend to manifest
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themselves in the mouth region, by looking at all the smiling
images we could see that they vary a lot in the eye and nose
region, so in order to increase similarity we should ignore
these regions which at the same time would decrease the
similarity between the three smiles and the non smile. The
objective increase/decrease similarity seems rather vague but
it is exactly this - the definition of similarity - that leads to
different methods. Techniques based on principal component
analysis (PCA), cp. [5], choose an orthogonal projection that
minimises the scatter of all projected samples. Fisher’s Linear
Discriminant Analysis, cp [1], [3], tries to maximise the ratio
of between class scatter to within class scatter. In the approach
we take here the similarity and dissimilarity is defined based
on properties of the Gram matrix of the embedded images or
features,G = F ⋆F = X⋆A⋆AX . The Gram matrix is also
called kernel matrix and the mapping fromx 7→ Ax is called
the kernel function. From the labels we decide what shape
the ideal Gram matrixGbest should have, e.g.Gbest

i,j is one if
xi, xj are in the same class and zero if they are not, and then
we try to find the matrixAbest that results in a Gram matrix
that is closest to the desired shape in some matrix norm,

Abest = arg min
A

‖Gbest − X⋆A⋆AX‖.

In the special case where the norm is the Frobenius norm and
the matrixAbest is allowed to have the same rank as the signal
matrix, we can reformulate the problem as minimisation over
symmetric, semi-definite positive matricesK, which can later
be factorised into a productK = A⋆A.

Kbest = arg min
K=K⋆,K�0

‖Gbest − X⋆KX‖F .

Since the class of feasible matricesK is convex this optimi-
sation problem can be solved via semidefinite programming,
see [6]. However to do dimensionality reduction we need to
have p = rk(A) < rk(X). Writing the problem again as
minimisation over symmetric, semi-definite positive matrices,
we get as additional constraintrk(K) = rk(A) ≤ p, so the
set of feasible matrices is no longer convex and semi-definite
programming not applicable. To solve the problem we propose
to use an alternative projection algorithm, extensively studied
in [9], which has the additional advantage that we can easily
replace the matrixGbest by a set of matrices. In the next
section we introduce our class model and the resulting notion
of similarity and dissimilarity. From that we infer the concrete
properties of the embedding and subsequently discuss in how
far they are achievable, depending on the number of classes
and dimension of the embedding space. Section III is used to
explain the concept of minimisation via alternate projections
and customise the algorithm for our needs. In Section IV we
show some promising results about the performance of our
embeddings in comparison to existing schemes on the Yale
face database before finally drawing conclusions and pointing
out directions of ongoing further research.

II. CLASS MODEL

We want to characterise similarity and dissimilarity using
the Gram matrix of the embedded signals or features, a notion
based on the following class model. We assume that for every

class we have a class specific unit norm feature vectorfi.
These feature vectors live in a low-dimensional spaceR

p and
have only small correlations i.e.|〈fi, fj〉| < µ, i 6= j, meaning
they form a dictionary or frama ofc elements with coherence
µ. Signals in the same class,xk

i ∈ Xc are generated by taking
the class specific feature vectorfi, scaling it with ck

i , and
mapping it with an invertible linear transformT to the higher
dimensional spaceRd. Finally to model all the signal parts
that contain no class specific information we add noiserk

i ,
which is assumed to be orthogonal to the image ofT , i.e.
|〈rk

i , T v, |〉 = 0, ∀v ∈ R
p.

xk
i = Tfic

k
i + rk

i . (2)

If we seek the analogy of the elements in the above model with
our toy example the feature vectors correspond to the smiling
or non smiling mouth and the noise to the eyes, glasses and
(clown) noses. ApplyingT can be thought of as positioning the
small picture of the mouth in the correct place in the picture
of the whole face.
From the model we can directly see that the low dimensional
embedding we are looking for is just the orthogonal projection
onto the image ofT concatenated with the inverse ofT , since
like this all signals in the same class are mapped back to scaled
versions of the same feature vector. Assuming for the start that
the scaling factor is constant over all signals and classes,i.e.
ck
i = c, this leads to a Gram matrixG = X⋆A⋆AX of rank

p with the following shape. BlocksGii = X⋆
i A⋆AXi storing

inner products between embedded signals in the same class
and therefore the same feature vectors are constant toc2,

Gii(k, l) = 〈Axk
i , Axl

i〉 = 〈cfi, cfi〉 = c2,

while blocksGij = X⋆
i A⋆AXj , i 6= j storing inner products

between embedded signals in different classes and therefore
different feature vectors have entries of absolut value smaller
µ,

|Gij(k, l)| = |〈Axk
i , Axl

j〉| = |〈cfi, cfj〉| ≤ c2 · µ.

If we rescaleA by 1/c we can formulate the problem of
finding the right embedding as find a Gram matrix of the form
G = X⋆A⋆AX with rank rk(G) ≤ p, diagonal block entries
equal to one and off-diagonal block entries smaller thanµ.

Taking the desired dimension of the featuresp and their
maximal correlationµ as input parameters we could go
directly to the development of an algorithm constructing a
corresponding Gram matrix. However, it will be instructiveto
first get an idea which magnitudesµ we can expect depending
on the feature dimension and the number of different classes
c. The ideal case in terms of minimising the correlation would
be to haveµ = 0, meaning that the feature vectors form an
orthonormal system. The drawback in this case is that we
cannot have the dimensionality of the feature vectors, which
determines the computational cost, smaller than the numberof
classes simply because we cannot fit more thanp orthonormal
vectors into a space of dimensionp. Thus if we want to further
reduce the cost we have to relax our requirement from having
the inter-class correlations zero to having them small. The
question is how small. From frame theory, see [8], we know
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that forc unit norm vectorsϕi in R
p the maximal inner product

can be lower bounded as

max
i6=j

|〈ϕi, ϕj〉| ≥
√

c − p

p(c − 1)
=: µp,c (3)

This lower bound is met with equality if and only if the
frame is tight and equiangular, meaning that not only the
maximal inner product but all of them have to be equal toµp,c.
Frames attaining the bound are called Grassmannian Frames.
The problem with Grassmannian frames is that they are quite
elusive and do not exist for all combinations ofc andp, which
makes it unlikely that our features can be modelled as one.
On the other hand we know that it is not hard to construct
dictionariesR

p with a lot of elements and keep the maximal
correlation, i.e. the coherence, smaller than1/

√
p, cp [4].

As we want to find a collection of feature vectors forming an
incoherent dictionary or frame we can also view the problem
in the context of dictionary learning. Finding the embedding
is equivalent to finding a subspace of our signal space and
a dictionary of feature vectors, such that restricted to this
subspace every signal has the ultimate sparse approximation
Axk

i = fic
k
i . What sets the problem apart from regular

dictionary learning and thus makes it much easier is that
we know which dictionary element has to approximate which
signal through the labels.
Keeping these theoretical considerations in mind we now turn
to the development of an algorithm for constructing our desired
Gram matrix.

III. L EARNING A LOW-RANK EMBEDDING VIA

ALTERNATE PROJECTIONS

We want to learn an embedding A such that we get a Gram
matrix G = X⋆A⋆AX with rank rk(G) ≤ p, diagonal block
entries equal to one and off-diagonal block entries smallerthan
µ. So if we define the two sets of matrices

Hµ := {H : Hii(k, l) = 1,
|Hij(k, l)| ≤ µ, i 6= j} (4)

Gp := {G : G = X⋆A⋆AX, rk(A) ≤ p} (5)

and equip the space of allN × N matrices with the
Frobenius norm we can write the problem as

min ‖G − H‖F s.t G ∈ Gp, H ∈ Hµ. (6)

One line of attack is to use an alternate projection method,
i.e. we fix a maximal number of iterations and maybe some
additional stopping criterion, initialiseG0 = X⋆X and then
in each iterative step do:

• find a matrixHk ∈ argminH∈Hµ
‖Gk−1 − H‖F

• find a matrixGk ∈ arg minG∈Gp
‖Hk − G‖F

• check ifGk is better than what we have so far and if yes
store it

After the last iteration we can extract our embedding and
the feature dictionary from the best matrixGk0 , which by
definition is of the formGk0 = X⋆A⋆AX . If both sets
are convex the outlined algorithm is known as Projection
onto Convex Sets (POCS) and guaranteed to converge. Non

convexity of possibly both sets, however, results in much more
complex behaviour, i.e. instead of converging the algorithm
just creates a sequence(Hi, Gi) with at least one accumulation
point. We will not discuss all the possible difficulties herebut
refer to the inspiring paper [9], where all details, proofs and
background information can be found and wherein the authors
conclude that alternate projection is a valid strategy for solving
the posed problem.
So let’s start investigating the two minimisation problems. The
first problem, given a matrixG find

arg min
H∈Hµ

‖G − H‖F (7)

is easy to solve since we can choose every component
H·,·(k, l) in every blockHij independently, i.e.

Hii(k, l) = 1,

Hij(k, l) = min{µ, |Gij(k, l)|} · sign(Gij(k, l)), i 6= j.

Bear in mind that if G is Hermitian alsoH will be
Hermitian. The second problem, given a matrixH find

arg min
rk(A)≤p

‖X⋆A⋆AX − H‖F (8)

is more intricate and so in order to keep the flow of the
paper we will postpone its solution to the appendix. Note
that in case the number of training signals per class is
unbalanced the above problem should be replaced by its
reweighted version, i.e. using matlab notation multiply the
expression inside the norm from the left and the right by
Ω = diag(ones(1, n1)/n1, . . . , ones(1, nc)/nc). The analysis
remains the same when replacingX by XΩ andH by ΩHΩ.
Let us now turn to investigate how the proposed scheme
performs in practice.

IV. N UMERICAL SIMULATIONS & COMPARISON

We tested the dictionary based class model and the arising
algorithm on the Yale Face Database1, which contains 165
grayscale images of 15 individuals. There are 11 images per
subject, one per different facial expression or configuration:
center-light, w/glasses, happy, left-light, w/no glasses, normal,
right-light, sad, sleepy, surprised, and wink. To test the perfor-
mance and compare it to Fisher’s LDA, cp. [1], we centred and
normalised all images and employed the leave one out strategy.
Taking every image in turn we used all the others to calculate
the embedding, gave the image the label of the training image
it was most correlated with under the embedding and counted
how often this gave us the correct label. In case of the Fisher
embedding we used the relative correlation|〈u,v〉|

‖u‖2‖v‖2

. This
was done for the number of projectionsp varying from 5
to 14. To calculate the dictionary based embedding we fixed
the number of iterations to 500 and kept the one giving the
minimal distance toHµ, where we once choseµ =

√
c−p

p(c−1)

and onceµ = 1/
√

p. The results are displayed in Figure 1.

Note that forµ =
√

c−p
p(c−1) our scheme always outperforms

the Fisher faces, and forµ = µ = 1/
√

p all but once. For
feature dimensionsp close to the number of classesc the

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Fig. 1. Comparison of Fisher’s to the dictionary based embedding for two
choices forµ

improvement is not drastic but becomes more significant as
the feature dimension decreases. While the performance of
the Fisher faces derails the dictionary based scheme turns out
to be quite stable. Also we can see that it is stable in the choice
of the maximally allowed inter class correlation or coherence
µ.

V. D ISCUSSION

In the numerical section we demonstrated the promising
performance of the embedding developed from the dictionary
based signal model in combination with simple maximal cor-
relation classification using all training signals. The question
though is why did we use all embedded training signals for
testing? According to the modelA should map all training
signals in the same class to the same feature vector, so
correlating with embedded signals from the same class should
give the same result,

∀k : 〈Axk
i , Axnew〉 = 〈fi, Axnew〉.

Manipulating the expression a bit more,

〈fi, Axnew〉 = 〈A⋆fi, xnew〉 =: 〈si, xnew〉,

we see that we could actually classifyxnew directly from
its correlation with the classification vectorssi := A⋆fi =
A⋆Axk

i . If we collect these vectors in the matrixS =
(s1 . . . sc), then the basic computational effort to classify is
the multiplicationS⋆xnew . Since S is of sized× c but as the
image of the feature vector matrix has only rankp it can be
decomposed into ad×p and ap× c matrix, e.g. by a reduced
QR-decompositionS = QR, giving a computational cost for
S⋆xnew of O(p(d + c)) as opposed toO(p(d + N)), the cost
of direct correlation.
The logical next step is to construct these classification vectors
not through the embeddingA but directly by looking for ad×c
matrix S of rank p, such thatG = S⋆X consists of blocks
Gi = S⋆Xi with entries

∀k : Gi(i, k) = 1,

|Gi(j, k)| ≤ µ, i 6= j,

which can again be calculated via alternate projection. Since
the procedure is similar to the one described above, redefine
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Fig. 2. Comparison of Fisher’s embedding, the dictionary based embedding
and the classification vectors

G andH, or the one used to calculate sensing dictionaries, cp.
[7] and add a rank constraint, we will not detail it here but
just show the test results for the leave one out strategy on the
Yale Face database,µ =

√
c−p

p(c−1) cp Figure 2.
As can be seen the classification vectors perform as well

as the embeddingA, thus further confirming the usefulness
of our signal model.

However remember that so far we have worked with the
assumption that for each signal the contribution of its feature
is constant, i.e.

xk
i = Tfic

k
i + rk

i andck
i = c. (9)

The first step in generalising the model is to allow this
contribution to vary. Thinking back to our toy example this
would for instance help to identify the smile under varying
lighting conditions. While the energy in the mouth region is
strong or weak compared to the rest of the image, the shape of
the mouth remains the same. As a consequence of giving up
the requirement that the contribution of the features is constant
the correlation of two embedded signals will depend on their
size. Thus if we want to see the underlying structure of the
feature vectors we have to consider the relative instead of
the absolute correlation of the embedded signals, i.e. denoting
again withA the orthogonal projection onto the image ofT
concatenated with the inverse ofT , we have

〈Axk
i , Axl

i〉
‖Axk

i ‖2‖Axl
i‖2

= 1

for two signals in the same class and

〈Axk
i , Axl

j〉
‖Axk

i ‖2‖Axl
j‖2

= µ, i 6= j

for two signals from different classes. The problem of find-
ing the embedding can now be formulated as findA such
that the weighted Gram matrix, in matlab notationGω =
diag(1./‖AX‖2)X

⋆A⋆AXdiag(1./‖AX‖2) has rankp and
is close to the ideal shape. Again we can attack this problem
via alternate projections. However preliminary results show
that in order to avoid overfitting some more care has to be
taken. We need to assume a balanced common contribution
of all signals per class and thatT and in consequenceA are
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not too badly conditioned, making the problem much more
intricate and necessitating further study.

The second step in generalising the model is to allow more
than one feature vector per class. If we collect all feature
vectors corresponding to the same class as columns in the
matrix Fi, we can model each signal as

xk
i = TFic

k
i + rk

i (10)

where ck
i is a vector instead of a scalar andrk

i is assumed
to be orthogonal to the image of all features in all classes.
To see how this multiple feature model could be useful think
again of face recognition. Assume we have 2 people and of
each one picture with glasses, one with a clown nose and one
smiling. To separate them we do not know on which region
to concentrate, as mouth, eye and nose region are equally
important or disturbed. On the other hand if we learn one
image per person without glasses, clown nose and smile, which
should be reasonably (un)correlated with the training images
we may have a problem to identify a picture of the first person
with glasses and a clown nose. The disturbance in the eye and
nose region will mask any information we can get from the
mouth region. If we however learn three features per person,
i.e. eyes, nose and mouth and sum their absolute contribution
we will be less affected by disturbances and able to identifya
person from his image even if just one feature, in this example
the mouth, is active.
While this class model seems very promising, it is obviously
also more complex and will require a lot of further study.
So we need to find out how exactly to model theck

i -
balanced? or sparse?, how to model the inter and intra class
correlations between features - should they form a higher order
Grassmannian frames in analogy to the single feature model?
Depending on our choice we need so seek the appropriate way
to sum the contribution of the features, e.g. asq-norm for
which q. Finally we need to find a way to learn the features
that is not based on the Gram matrix, which will not contain
relevant information anymore, but that is rather similar tothe
direct learning of the classification vectors.

APPENDIX

We want to find the solution to

arg min
rk(A)≤p

‖X⋆A⋆AX − H‖F . (11)

First, we can square the objective function. Then we know
that the Frobenius norm is invariant under multiplication
with a unitary matrix. Therefore we can simplify the above
expression using the singular value decomposition (SVD) ofX
and the reduced SVD, which we get by splitting the diagonal
matrix S into its part containing thes ≤ min(d, N) non
zero singular values, and the unitary matricesU, V into the
parts corresponding to the non zero singular values and the
remainder.

X = U
d×d

· S
d×N

· V ⋆

N×N

= (U1, U2)

(
S1 0
0 0

) (
V ⋆

1

V ⋆
2

)

= U1
d×s

· S1
s×s

· V ⋆
1

s×N

We now replaceX in the squared version of (11) by its SVD,

arg min
rk(A)≤p

‖V S⋆U⋆A⋆AUSV ⋆ − H‖2
F | · V, V ⋆·,

and multiply the expression, whose norm we want to minimise,
from the right withV ⋆ and from the left withV . Doing some
matrix-juggling, which we skip for conciseness, we finally
arrive at

arg min
rk(A)≤p

‖S⋆
1U⋆

1 A⋆AU1S1 − V ⋆
1 HV1‖2

F

+ 2‖V ⋆
1 HV2‖2

F + ‖V ⋆
2 HV2‖2

F .

Since the two rightmost terms in the above expression are
independent ofA it is equivalent to

arg min
rk(A)≤p

‖S⋆
1U⋆

1 A⋆AU1S1 − V ⋆
1 HV1‖2

F .

Using the eigenvalue decomposition ofV ⋆
1 HV1 = WΣW ⋆,

which exists and has only real eigenvalues becauseH and
thereforeV ⋆

1 HV1 are Hermitian, we can further simplify to

arg min
rk(A)≤p

‖W ⋆S⋆
1U⋆

1 A⋆AU1S1W − Σ‖2
F .

For the last simplification observe that any feasible matrixA
can be written as

A = AU
︸︷︷︸

C

U⋆ = (C1, C2)

(
U⋆

1

U⋆
2

)

= C1U
⋆
1 + C2U

⋆
2 ,

where rk(A) = rk(C1) + rk(C2) becauseU is unitary.
However since the secondC2U

⋆
2 does not change the objective

function we know that the minimal argument in is not unique
and that for the minimum itself we have

min
rk(A)≤p

‖W ⋆S⋆
1U⋆

1 A⋆AU1S1W − Σ‖2
F =

min
rk(C1)≤p

‖W ⋆S⋆
1C⋆

1C1S1W − Σ‖2
F =

min
rk(B)≤p

‖B⋆B − Σ‖2
F .

Thus it suffices to find a matrixB minimising the last
expression and then reconstruct a projection matrix by setting
A = BW ⋆S−1U⋆

1 .
As Σ is a diagonal matrix alsoB⋆B should be diagonal,
which together with the considerations thatB⋆B is positive
semidefinite and of rank maximallyp leads to the problem of
approximating the vectorσ = (σ1 . . . σs) = (Σ11 . . .Σss) by
a vector with maximallyp non zero, positive entries.

min
‖b‖0≤b,bi≥0

‖b − σ‖2
2.

The solution to this problem finally is easy to find, ie choose
bi = σi if σi is among thep largest positive components of
σ and zero otherwise. Backtracing our steps, denoting byI =
(i1 . . . ip) the index set of thep largest positive components
(or all if there are less thanp) and writingW = (w1 . . . ws),
we get our final projection matrix as:

A =






√
σi1w

⋆
i1

...√
σip

w⋆
ip




 S−1U⋆

1 .
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