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1 Introduction

Since the late 70’s, several public key cryptographic algorithms have been proposed. Diffie
and Hellman [4] first came with this concept in 1976. Since that time, several other public
key cryptosystems were invented, such as the well known RSA [22], ElGamal [5] or Rabin [21]
cryptosystems. Roughly, the scope of these algorithms is to allow the secure exchange of a
secret key that will later on be used to encrypt a larger amount of data. All these algorithms
share one particularity, namely that their security rely on some mathematical problem which
is supposed to be hard (computationally speaking) to solve. For example, it is well known
that the ability to factorize easily the product of two large primes without any indication
about the primes, would lead to break the RSA cryptosystem. Since those early days, most
of the assymetric encryption algorithms that have been proposed relied on the same hard
mathematical problems. Yet, it is well accepted that we should not put all the cryptographic

eggs in one basket. This is the reason why Goldreich, Goldwasser, and Halevi proposed in 1997
(exactly 10 years after RSA) a new public-key cryptosystem [7] which security was based on
lattice reduction problems. This cryptographic schemes is known as the GGH cryptosystem.
Unfortunately, only two years later, Nguyen proposed an attack against GGH [15] which
proved that in practice, GGH would not provide the security it originally claimed to have.
The attack involved a so called lattice reduction algorithm, known as LLL [12].

The aim of this work is to provide the necessary background to understand the GGH
cryptosystem and the attack that goes with it. The basis reduction algorithm LLL has many
other applications in cryptography. As an example, we will review a very recent attack [17]
against the GNU Privacy Guard software [9], which is a widely used free implementation of
Zimmermann’s famous software [20]. The necessary background about lattices, LLL, . . . will
be recalled in sections 2 and 3. Section 4 will review the GGH cryptosystem and Nguyen’s
attack against it. Finally, Section 5 will show how lattice reduction techniques can break the
ElGamal [5] digital signature scheme implementation in GPGv1.2.3.

2 A Survey on Lattices and Related Issues

2.1 Lattices

If u = (u1, . . . , un) and v = (v1, . . . , vn) are elements of R
n, we denote by 〈u,v〉 = ∑n

i=1 uivi
their scalar product. We also denote ‖ u ‖ the Euclidean norm of u, i.e., ‖ u ‖=

√

〈u,u〉 =
√

∑

i u
2
i . Finally, ‖ u ‖∞= maxi |ui| and ‖ u ‖1=

∑n
i=1 |ui| respectively denote the infinity

norm and the L1-norm of u.
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Definition 1. Let f1, . . . , fd be linearly independent vectors of R
n. Then

L =
d
∑

i=1

Zfi =

{

d
∑

i=1

uifi | ui ∈ Z

}

is called a lattice. The fi’s are a basis of the lattice L. We denote a lattice L generated by
f1, . . . , fd by L(f1, . . . , fd). If the fi’s are considered like the rows of a d× n matrix F, then

L =
{

uF | u ∈ Z
d
}

.

In that case, we also denote the lattice L(F) and call F a basis for the lattice L.

It can be shown that a lattice basis always has the same number of linearly independent
vectors. This number is called the rank of the lattice (and is equal to d in the preceding
definition). In this work, we restrict ourselves to full-ranked lattices, that is, lattices of
rank equal to n. In the subsequent, we therefore consider a (full-ranked) lattice L of basis
f1, . . . , fn ∈ R

n. The determinant det(L) of L is defined by

det(L) =

∣

∣

∣

∣

∣

∣

∣

det







f1
...
fn







∣

∣

∣

∣

∣

∣

∣

,

where the fi’s are considered as row vectors. To see why the determinant of a lattice is well
defined, it is sufficient to note that two different basis f1, . . . fn and g1, . . . ,gn of the same
lattice L can be related by a unimodular matrix. More precisely, if we denote

F =







f1
...
fn






and G =







g1
...
gn






,

then there exists some n× n matrix P, such that det(P) = ±1, and such that

F = P× G .

Consequently, the determinant of a lattice L is independent of the choice of the basis. In two
dimensions, it has a very simple interpretation, as it simply is the area of the parallelogram
defined by (f1, f2) (see Figure 1). In dimension n, the determinant of the lattice is the volume

det(L)f2

f1

Figure 1: Interpretation of the determinant of a lattice in dimension 2
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of the parallelepiped spanned by the fi’s. This interpretation of the determinant leads to
Hadamard inequality, which states that

det(L) ≤
n
∏

i=1

‖ fi ‖ .

2.2 Dual Lattice

We consider a basis f1, . . . , fn ∈ R
n of a lattice L, where each fi’s is considered as a row vector,

and we denote

F =







f1
...
fn






.

Definition 2. The dual lattice L∗ of a lattice L(f1, . . . , fn) is defined by

L∗ = {g ∈ R
n | 〈g, f〉 ∈ Z for all f ∈ L} .

With the above notations, if f ∗1 , . . . , f
∗
n ∈ R

n are such that

〈f∗i , fj〉 =
{

1 if i = j

0 otherwise,

then the f∗i ’s are a basis of L∗. The columns of the matrix F−1 are thus a basis of L∗.
Therefore, it is easy to see that (L∗)∗ = L and that det(L) · det(L∗) = 1.

2.3 The Shortest Vector Problem (SVP)

When considering a lattice L, a typical problem is to find a shortest non-zero vector in L, i.e.,
a vector u ∈ L \ {0} such that ‖ u ‖≤‖ v ‖ for any v ∈ L \ {0}. As the set of vector norms
is discrete and lower bounded by 0, this shortest vector always exists. Its length is denoted
‖ L ‖. The Shortest Vector Problem (SVP) refers to the problem of finding a lattice vector
of length ‖ L ‖. Finding a non-zero u ∈ L such that ‖ u ‖≤ f(n) ‖ L ‖, where f(n) is some
bound depending on n, is the approximation problem corresponding to SVP. Very recently,
it was proved [1] that SVP is NP-hard for randomized reduction. That is, a probabilistic
Turing machine can solve any problem in NP in polynomial time, provided that it has access
to an oracle which (when taking as an input a basis of a lattice L) returns a solution of
the shortest vector problem. Therefore, it is natural to wonder about the approximation
problem of SVP. No polynomial-time algorithm is known for approximating SVP to within a
polynomial factor of n. Nevertheless, the LLL algorithm [12] achieves to approximate SVP
to within f(n) = 2(n−1)/2 (as we shall see in Section 3) in polynomial time.

2.4 The Closest Vector Problem (CVP)

The Closest Vector Problem (CVP) is somewhat similar to SVP. In CVP, one considers a
vector x ∈ R

n (not necessarily in the lattice) and wants to find a point u ∈ L minimizing
the distance between x and u, i.e., minimizing ‖ x − u ‖. Finding a lattice vector u such
that for all v ∈ L, ‖ u− x ‖≤ f(n) ‖ v− x ‖ is the approximation problem corresponding to
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CVP. It has been shown [8] that SVP is not harder than CVP, that is, given an oracle which
approximates CVP to within a factor f(n), there exists a routine which approximates SVP
to within the same factor f(n) in polynomial time. Approximating CVP in polynomial time
to within a factor 2n/2 can be performed via Babai’s nearest plane algorithm [2]. However, in
practice, the heuristic embedding method [7, 15] (which we shall detail in Section 3.5) is often
preferred [18].

2.5 The Smallest Basis Problem (SBP)

We consider a lattice L defined by an arbitrary basis f1, . . . , fn. The problem is to find the
smallest basis for L. Of course, the exact definition of SBP depends on the exact meaning of
the word smallest.

Definition 3. Let f1, . . . , fn ∈ R
n be the rows of the n× n matrix F and a basis of a lattice

L. Let f∗1 , . . . , f
∗
n ∈ R

n be the columns of F−1 and a basis of the dual lattice L∗ of L. The
size of the basis is defined by

size(f1, . . . , fn) =

∏n
i=1 ‖ fi ‖
det(L) .

The dual size of F is the size of F−1 and is denoted

size
∗(f1, . . . , fn) =

∏n
i=1 ‖ f∗i ‖
det(L∗) = det(L)

n
∏

i=1

‖ f∗i ‖ .

In our case, SBP will correspond to the problem of finding the basis of smallest size. We
note that, according to Hadamard inequality, the size of a basis is always greater than 1, with
equality if the basis is orthogonal. This is the reason why in [7], the size of a basis is referred
to as the orthogonality defect of the basis. It has been shown [10] that SBP is NP-hard.

3 Approximating SVP and CVP with LLL

3.1 Orthogonal Basis

We note that finding a shortest non-zero vector is trivial whenever the basis f1, . . . , fn of the
lattice is orthogonal (i.e., 〈fi, fj〉 = 0 for all i 6= j).

Lemma 1. If f1, . . . , fn is an orthogonal basis of L, the shortest vector of the basis is a shortest

non-zero vector of L.
Proof. Suppose 〈fi, fj〉 = 0 for all i 6= j and suppose that the fi’s are ordered such that
‖ f1 ‖≤ · · · ≤‖ fn ‖. A shortest non-zero vector x of L can be written x =

∑n
i=1 λifi, where

λi ∈ Z. Therefore,

‖ x ‖2 = 〈x,x〉

=
n
∑

i,j=1

λiλj〈fi, fj〉

=
n
∑

i=1

λ2
i 〈fi, fi〉 (as the basis is orthogonal)

=
n
∑

i=1

λ2
i ‖ fi ‖2.
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3 APPROXIMATING SVP AND CVP WITH LLL

Therefore, as f1 ∈ L and as x is the shortest vector, we have:

‖ x ‖2 ≤ ‖ f1 ‖2 ⇒ (λ2
1 − 1) ‖ f1 ‖2 +

n
∑

i=2

λ2
i ‖ fi ‖2 ≤ 0,

so that, as x 6= 0, (λ2
1, λ

2
2, . . . , λ

2
n) = (1, 0, . . . , 0), and thus (λ1, λ2, . . . , λn) = (±1, 0, . . . , 0).

As this implies that x = ±f1, this concludes the proof.

The preceding lemma obviously solves the shortest vector problem whenever the basis of
the lattice is orthogonal. A general solution would therefore be to use the Gram-Schmidt
orthogonalization process in order to find an orthogonal basis for the lattice. But this is not
always possible, as the orthogonal basis that one obtains after the process is not always a
basis of the lattice. Nevertheless, finding an almost orthogonal basis for a lattice is possible.

3.2 The Gram-Schmidt Orthogonalization Process

Given a basis f1, . . . , fn of R
n, the Gram-Schmidt orthogonalization process computes an

orthogonal basis f ?1 , . . . , f
?
n. Figure 2 illustrates the process in dimension 2. Considering an

f1 = f?1

f?2

projection of f2 over f?1f2

〈f2,f
?

1
〉

‖f?

1
‖

f
?

1

‖f?

1
‖

Figure 2: Gram-Schmidt orthogonalization process in dimension 2

arbitrary basis f1, f2 ∈ R
2, it is easy to see that an orthogonal basis is obtained by taking

{

f?1 = f1

f?2 = f2 − 〈f2,f
?
1 〉

‖f?1 ‖2
f?1 .

The process in dimension n is similar, and described by Algorithm 1. In matrix representation,

Algorithm 1 The Gram-Schmidt orthogonalization process

Require: an arbitrary basis f1, . . . , fn ∈ R
n.

Ensure: an orthogonal basis f ?1 , . . . , f
?
n of the vector space spanned by f1, . . . , fn.

1: f?1 = f1
2: for i = 2 to n do

3: f?i = fi −
i−1
∑

j=1

µi,jf
?
j where µi,j =

〈fi,f?j 〉
‖f?j ‖2

4: end for
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we obtain














f1
f2
f3
...
fn















=















1 0 . . . . . . . . . 0
µ2,1 1 0 . . . . . . 0
µ3,1 µ3,2 1 0 . . . 0
...

...
µn,1 . . . . . . . . . . . . . . . 1















×















f?1
f?2
f?3
...
f?n















,

which we denote F = M × F?, and where M is called the Gramian matrix. As the elements
µi,j of the matrix M are not necessarily in Z, the f ?i ’s may not be lattice vectors.

3.3 Reduced Basis

Theorem 1. With the above notations, let Uk =
∑

i≤k Rfi, i.e., Uk is the vector space spanned
by f1, . . . , fk. Then,

1. Uk =
∑

i≤k Rf?i

2. f?k is the projection of fk onto U⊥k−1, so that ‖ f?k ‖ ≤ ‖ fk ‖

3. det(F) = det(F?).

Note that the second result of the preceding theorem comes from the fact that f ?k is a
projection of fk, so that its length can only decrease during that process. The third point is
a direct implication of the matrix representation of the basis vectors.

Theorem 2. (Hadamard inequality) Let f1, . . . , fn ∈ R
n be a basis a lattice L. Then,

det(L) ≤ ‖ f1 ‖ · · · ‖ fn ‖ ≤ nn/2 max
i=1,...,n

‖ fi ‖∞ .

Proof. We have

det(L) = |det(F)| (by definition)
= |det(F?)| (by Theorem 1)
= ‖ f?1 ‖ · · · ‖ f?n ‖ (as the f?i ’s are orthogonal)
≤ ‖ f1 ‖ · · · ‖ fn ‖ (as ‖ f?k ‖≤‖ fk ‖ by Theorem 1).

The second inequality simply comes from the fact that ‖ fk ‖ ≤ n1/2 ‖ fk ‖∞.

It is now possible to give a lower bound on the length of a shortest vector of a lattice, by
mean of the basis obtained after the Gram-Schmidt orthogonalization process.

Proposition 1. Let f1, . . . , fn ∈ R
n be a basis of the lattice L. Then, for all nonzero f ∈ L,

min
i=1,...,n

‖ f?i ‖ ≤ ‖ f ‖,

where f?1 , . . . , f
?
n are the orthogonal vectors obtained using the Gram-Schmidt orthogonalization

process.
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3 APPROXIMATING SVP AND CVP WITH LLL

Proof. As f ∈ L, we can write f =
∑k

i=1 λifi, where λi ∈ Z and k ≤ n such that λk 6= 0.
Therefore,

f =

k
∑

i=1

λi

i
∑

j=1

µi,jf
?
j (with µj,j = 1)

= λkf
?
k +

∑

1≤i<k
νif

?
i (where νi ∈ R).

Thus, as the f?i ’s are orthogonal,

‖ f ‖2 = λ2
k ‖ f?k ‖2 +

∑

1≤i<k ν
2
i ‖ f?i ‖2

≥ ‖ f?k ‖2 (as λk ∈ Z \ {0})
≥ min

i=1,...,n
‖ f?i ‖.

If the f?i ’s always were lattice vectors, Proposition 1 would solve SVP, as the smallest
vector of the orthogonal basis would be a shortest vector of the lattice. But it is not the case.

Definition 4. Let f1, . . . , fn be linearly independent vectors of R
n. Let f?1 , . . . , f

?
n be the

corresponding Gram-Schmidt orthogonalized basis. The basis f1, . . . , fn is said to be reduced

if
‖ f?i ‖2≤ 2 ‖ f?i+1 ‖2

for i = 1, . . . , n− 1.

Using the notion of reduced basis, it is possible to give a bound on a shortest vector.
Although it is weaker than the one given by Proposition 1, this bound has the advantage of
being function of lattice vectors.

Theorem 3. If f1, . . . , fn is a reduced basis of a lattice L, then, for all nonzero vector f ∈ L,

‖ f1 ‖ ≤ 2
n−1

2 ‖ f ‖ .

Proof. As f1, . . . , fn is a reduced basis, we have

‖ f1 ‖=‖ f?1 ‖≤ 2
1
2 ‖ f?2 ‖≤ 2 ‖ f3 ‖≤ · · · ≤ 2

i−1
2 ‖ f?i ‖≤ · · · ≤ 2

n−1
2 ‖ f?n ‖ .

Thus, for all i = 1, . . . , n, we have

‖ f1 ‖≤ 2
i−1
2 ‖ f?i ‖≤ 2

n−1
2 ‖ f?i ‖,

so that
‖ f1 ‖≤ 2

n−1
2 min

i=1,...,n
‖ f?i ‖ .

Proposition 1 allows to conclude.

We conclude that if, given an arbitrary basis of a lattice L, it is possible compute a reduced
basis of this lattice in a reasonable amount of time, then SVP is approximated to within a

factor 2
n−1

2 by the first vector of the reduced basis.
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3 APPROXIMATING SVP AND CVP WITH LLL

Algorithm 2 The LLL basis reduction algorithm

Require: an arbitrary basis f1, . . . , fn ∈ R
n of a lattice L.

Ensure: f1, . . . , fn is a reduced basis of L.
1: Compute f?1 , . . . , f

?
n, the Gram-Schmidt orthogonal basis of f1, . . . , fn.

2: i← 2
3: while i ≤ n do
4: for j = i− 1, . . . , 1 do
5: fi ← fi − dµijc
6: Update the f?i ’s
7: if i > 1 and ‖ f?i−1 ‖> 2 ‖ f?i ‖ then
8: Swap fi−1 and fi and update the f?i ’s
9: i← i− 1

10: else

11: i← i+ 1
12: end if

13: end for

14: end while

3.4 Basis Reduction with LLL

The LLL algorithm [12] solves the problem of computing a reduced basis of a lattice given
an arbitrary basis. It is described by Algorithm 2, where dµijc denotes the integer closest to
µij , i.e., dµijc =

⌊

µij +
1
2

⌋

.

Theorem 4. Given an arbitrary basis of a lattice L, the LLL algorithm computes a reduced

basis of L in polynomial time.

Proof. For a proof of this result, see [25].

We conclude that SVP is approximated to within a factor 2
n−1

2 by the first vector of a
reduced basis, which can be computed in polynomial time with LLL. The next section shows
how LLL may sometimes be used to approximate CVP.

3.5 The Embedding Method

The embedding method [7, 15] is an heuristic technique used to approximate CVP by reducing
it to SVP. Let L be a lattice of basis f1, . . . , fn, also denoting the rows of the n× n matrix F,
and let x ∈ R

n (not necessarily in the lattice). The embedding method constructs a lattice
L′ of dimension n+ 1 defined by the rows of the matrix

F
′ =

(

F 0

x 1

)

.

Considering that L and L′ almost have the same dimension, and as det(L′) = det(F ′) =
det(F ) = det(L), we hope that ‖ L ‖≈‖ L′ ‖. Let u ∈ L be a point minimizing the distance
to x, and let u =

∑

i uifi. Then

(−u1, · · · ,−un, 1)×
(

F 0

x 1

)

= (x− u, 1)
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is a short vector of L′, which we actually hope to be a shortest vector. If it is, approximating
SVP in L′ leads to an approximation of CVP in L.

4 Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosys-
tem

The Goldreich-Goldwasser-Halevi (GGH) Cryptosystem [7] was introduced at the CRYPTO’97
conference. It was based on the computational intractability of typical lattice problems and
was considered as an alternative to other classical public key cryptosystems, which security
often relies on the intractability of integer factorization or discrete log computation in finite
integer rings. Only two years after its publication, Nguyen showed [15] that the GGH cryp-
tosystem does not ensure the security it initially seemed to provide. In the following sections,
we will briefly discuss the GGH trapdoor function (on which the GGH encryption scheme is
based), and review Nguyen’s attack against it.

4.1 The GGH Trapdoor Function

We consider two basis B and R of the same lattice L. The basis R is chosen such that its dual
size is small (we will denote size

∗(R) the dual size of a basis R) and is kept secret. The basis
B is derived from R in way such that size

∗(B) is large, and is made public. The public basis
B together with a positive real number σ define the function

fB,σ : R
n × {±σ}n −→ R

n

(u, e) 7−→ uB + e .

We consider u as an element with coordinates chosen uniformly at random from the range
{−n, . . . , n}, and e as a uniformly distributed random element of {±σ}n. The function fB,σ

can then be evaluated in (u, e):
c = fB,σ(u, e).

4.2 Inverting the GGH Trapdoor function

When c is given, inverting the GGH trapdoor function corresponds to solve a CVP instance,
where u is the lattice point (close to c) that one wants to recover and where ‖ e ‖ is the
distance between this lattice point and c. Inverting fB,σ can be easily performed using the
secret basis R and a technique due to Babai, called the Round-off algorithm [2]. The idea is
to represent c in the basis R and then to round the coefficients (which are real values as c is
not a lattice point) to the nearest integers. This will produce a lattice point close to c which
should correspond to uB. Recovering e can then simply be done by subtracting the preceding
point to c. More precisely, we compute cR−1, and then

⌈

cR−1
⌋

(i.e., we round the coefficients
to the nearest integers). The last computation should reveal the coordinates of uB in the
basis R, so that

⌈

cR−1
⌋

R should correspond to the point uB. We recover u by computing
⌈

cR−1
⌋

RB−1. Finally, e can be recovered by subtracting
⌈

cR−1
⌋

R to c. Choosing a basis
R with a small dual size and small value for σ is capital for the inversion to work properly.
What the above process should do, is to correct the small error introduced by adding e to
uB.

Lemma 2. The private basis R succeeds in inverting fB,σ if and only if
⌈

eR−1
⌋

= 0.
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˚

cB
−1

˝

B

uB =

˚

cR
−1

˝

R

r1

r2 b2

b1

c

Figure 3: Comparison of B and R for inverting fB,σ

Proof. Obviously, once uB is recovered, computing e = c − uB is easy. Thus, the inversion
process works if and only if

⌈

cR−1
⌋

R corresponds to the original lattice point uB. But

⌈

cR−1
⌋

R =
⌈

(uB + e)R−1
⌋

R =
⌈

uBR
−1 + eR−1

⌋

R = uB +
⌈

eR−1
⌋

R

as uBR−1 only has integer coefficients, so that
⌈

cR−1
⌋

R is equal to uB if and only if
⌈

eR−1
⌋

=
0.

It seems natural to wonder if B can used instead of R in order to invert fB,σ. The following
example illustrates what happens in such a case.

Example 1. Take the following example in dimension 2 (illustrated on Figure 3):

R =

(

3 8
8 −4

)

=

(

r1
r2

)

and B =

(

46 −4
27 −4

)

=

(

b1

b2

)

.

As det(RB−1) = 1, R and B are basis of the same lattice. We have size
∗(R) ≈ 1.006 whether

size
∗(B) ≈ 3.97. We pick σ = 1, u = (2, 2) and e = (−σ,−σ) = (−1,−1). The evaluation

of fB,σ in (u, e) returns c = (21, 7). If we try to correct e using R we obtain eR−1 =
(−3/19,−5/76), so that

⌈

eR−1
⌋

= 0. The same computation using the public basis leads to
eB−1 = (−31/76,−25/38), so that

⌈

eB−1
⌋

= (0,−1). Figure 3 illustrates the result of the
inversion process with either B or R.

It is now clear that error can be corrected by R, provided that σ is small enough. The
following theorem approximates its size.

Theorem 5. Let R denote the private basis used to invert fB,σ, and let ρ be the maximum

value of the L1-norm of the columns of R−1. If σ < 1
2ρ , then the private basis R succeeds in

inverting fB,σ.

Proof. According to Lemma 2, the inversion succeeds when
⌈

eR−1
⌋

= 0. This is obviously
the case when maxi |〈e, r∗i 〉| < 1/2, where r∗i denotes the ith column of R−1. As |〈e, r∗i 〉| ≤ σ ‖
r∗i ‖1, we can easily obtain a sufficient condition for the inversion of the trapdoor function to
be successful.
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From the preceding theorem, it is now clear that σ shall not be chosen to big, unless R

will not be able to recover the original lattice point, but should not be too small in order to
avoid the public basis B to be also able to correct errors. The following theorem studies what
happens when security is privileged compared to the probability of inversion errors.

Theorem 6. Let R denote the private basis used to invert fB,σ, and let γ/
√
n be the maximum

value of the infinity norm of the columns of R−1. Then the probability Pe that an inversion

error occurs is bounded by

Pe ≤ 2n exp

(

− 1

8σ2γ2

)

.

Proof. Let d = eR−1. According to Lemma 2, an inversion error occurs as soon as |di| > 1
2

for some i. As the di’s are independent, Pe ≤ nPr[|di| > 1
2 ]. Denoting ρij the i, j’th element

of R−1, we have

E[di] = E





n
∑

j=1

ejρji



 =
n
∑

j=1

E[ejρji] =
n
∑

j=1

E[ej ]E[ρji],

as e and R−1 are independent. But as each ej is uniformly distributed in {±σ}, E[ej ] = 0, so
that E[di] = 0. Moreover, as the infinity norm of each column of R−1 is bounded by γ/

√
n,

then ejρij is a random variable in
[

− σγ√
n
, σγ√

n

]

. Using Hoeffding’s bound (see Appendix A),

we obtain

Pr

[

|di| >
1

2

]

< 2 exp

(

− 1

8σ2γ2

)

,

which concludes the proof.

To give an idea of the possible parameters size, the authors considered the case where the
probability of error is 10−5, the dimension n = 120, and for which the maximum Euclidean
norm of the columns of R−1 is 1/30. For these values, the preceding theorem gives approxi-
matively 2.5 as an upperbound on σ. Practical values of σ in higher dimensions could thus
be around 3.

4.3 The Original Security Analysis

It is legitimate to wonder how hard is the GGH trapdoor function inversion problem. In the
original publication, several attacks were considered. The first thing an attacker could do,
is to reduce the size of the public basis B, so that B will always be considered as a basis
reduced via a reduction algorithm (such as LLL). The most obvious attack is to use the
public basis B instead of the private basis R in the inversion of fB,σ. This is the situation that
was illustrated by Example 1. A more detailed study of this attack, together with practical
experiments, lead the authors to consider it inefficient for a dimension n greater than 100. A
refinement of the preceding attack is to use Babai’s nearest plane algorithm [2] which (just as
the round-off algorithm) also approximates CVP. The nearest plane algorithm gives a much
better approximation, yet attack on the GGH trapdoor with this algorithm are not feasible
from dimensions around 150. Finally, the embedding method (which we detailed in Section
3.5) is another method to approximate CVP and is effective until dimensions around 120. The
authors conjectured that, if the reduction algorithm used is LLL, their scheme was secure for
dimensions above 150. Yet, better reduction algorithm do exists [23], so that their conclusion
is that the GGH trapdoor function should be secure for dimensions around 250-300.

11



4 CRYPTANALYSIS OF THE GOLDREICH-GOLDWASSER-HALEVI
CRYPTOSYSTEM

4.4 Introduction of Nguyen’s Attack against the GGH Trapdoor Function

We suppose that the GGH trapdoor function fB,σ is evaluated in (u, e) ∈ Z
n × {±σ}n in

order to obtain
c = uB + e . (1)

Let s = (σ, . . . , σ) ∈ Z
n. As e ∈ {±σ}n, it is clear that

c+ s ≡ uB (mod 2σ).

If we let v = c+ s we are left with a modular system of equations

v ≡ uB (mod 2σ), (2)

with unknown u. Suppose this system has a unique solution, i.e., suppose that B is invertible
modulo 2σ. Let u2σ = vB−1 mod 2σ denote the solution of (2). As c = uB + e, we have

c− u2σB = (u− u2σ)B + e.

But as u2σ = u mod 2σ, we have 2σ | u− u2σ. Therefore, we can write

u− u2σ = 2σu′,

which gives
c− u2σB

2σ
= u′B +

e

2σ
. (3)

We notice the similarity between (1) and (3). In (1), c and B are known, the attacker being
left with a CVP instance which is hard to solve, as e (or more exactly σ) was chosen for this
instance to be so. On the other hand, the rational point c−u2σB

2σ and the basis B are also
known in (3). Yet the CVP instance the attacker has to solve is much easier, as the distance
between the lattice point and the rational point is much smaller. Indeed, as e

2σ ∈ {±1
2}n, we

have ‖ e

2σ ‖=
√
n

2 , which is much smaller than ‖ e ‖= σ
√
n. If the new CVP instance is easy

to solve (using for example the embedding method), the attacker will recover e

2σ and thus e,
so that the original CVP instance (1) is also solved.

We have seen that, provided that (2) has a unique solution which can be found, the GGH
trapdoor can be inverted by an attacker. The following section studies the probability for
this to happen.

4.5 Invertible Matrices

We consider the modular system

v = uB (mod N), (4)

similar to (2), and wonder how often this system only has one single solution when N is small.
We will consider that the entries of B mod N are uniformly distributed in ZN . Clearly (4)
only has one single solution if and only if B is invertible modulo N , i.e., if and only if det(B)
is coprime with N . The following theorem evaluates how often this can happen.

12



4 CRYPTANALYSIS OF THE GOLDREICH-GOLDWASSER-HALEVI
CRYPTOSYSTEM

Table 1: Ratio of invertible matrices ofMn(ZN ), for n = 200.

N 2 3 4 5 6 7 8 9 10

ratio (%) 28.9 56.0 28.9 76.0 16.2 83.7 28.9 56.0 22.0

Theorem 7. Let N be a positive integer, and let p1, . . . , p` be the distinct prime factors of

N . We consider the ring of n× n invertible matrices of ZN . The ratio of invertible matrices

is equal to

∏̀

i=1

n
∏

k=1

(1− p−ki ) .

Proof. LetMn(ZN ) denote the ring of n× n matrices with coefficients in ZN . Consider the
case where N = pα, where p is a prime number and α is a positive integer. A matrix of
Mn(Zpα) is invertible modulo pα if and only if its determinant is coprime with pα, i.e., if
and only if its determinant is not divisible by p. Therefore, the ratio of invertible matrices in
Mn(Zpα) is the same as inMn(Zp). The number of invertible matrices inMn(Zp) is equal to
the number of linearly independent families of n vectors b1, . . . ,bn. Clearly, once b1, . . . ,bk
are fixed, bk+1 can be chosen amongMn(Zp) \ {λ1b1 + · · ·+λkbk | λ1, . . . , λk ∈ Zp}, which
is a set of cardinality pn − pk. Therefore, the number of linearly independent families of n
vectors is

n−1
∏

k=0

(pn − pk) = pn
2

n
∏

k=1

(1− p−k) .

When N = pα1
1 · · · p

α`
` involves ` distinct prime powers, the Chinese Reminder Theorem finally

proves that the number of invertible matrices of Mn(ZN ) is the product of the numbers of
invertible matrices of eachMn(Zp

αi
i
). This leads to the announced result.

For the considered dimensions of n, the ratio of invertible matrices is almost constant. As
an illustration, Table 1 gives examples of ratios for different typical values of N . Recall that
in our case, practical values of N = 2σ are around 6.

4.6 Further Notes and Conclusion

We conclude from the preceding study, that GGH is not as secure as it first seemed to be.
The original hard to solve CVP instance can be reduced to an easier CVP instance which will
(most of the time) lead to an information that can help to solve the original CVP instance.
In [15, 16], the discussion is not limited to the case where (2) only has one solution. Another
study, similar to the one presented in Section 4.5, evaluates the size of the kernel of n × n
matrices in Zp. For the particular case where N = 2σ = 6, it lead to the results shown on
Table 2. We see that, even if the matrix B is not invertible, it has great chances of having a
small kernel. If we go back to (2), we see that two distinct solutions u and u′ are such that

(u− u′)B ≡ 0 (mod 2σ) ,

so that the solutions of (2) can derived from the kernel of B and one particular solution of the
system (note that computing the kernel of a matrix modulo a prime can be done in polynomial

13



5 BREAKING GPGV1.2.3 IMPLEMENTATION OF ELGAMAL SIGNATURE

Table 2: Ratio of matrices ofMn(Z6) of small kernel, for n = 200.

Kernel Size 1 2 3 4 6 Other Cases

ratio (%) 16.2 32.4 12.1 7.2 24.3 5.1

time, see [3, p.57-65]). We conclude that the number of solutions of (2) is small, so that even
when B is not invertible, solving the hard CVP instance (1) can be done by solving a small
number of easier CVP instances like (3).

Finally, after the publication of the GGH cryptosystem, a set of 5 challenges with di-
mensions going from 200 to 400 were published on the Internet [6]. Although GGH was
conjectured secure for dimensions higher than 300, experimentations [15] allowed to break
the first four challenges, including one in dimension 350.

5 Breaking GPGv1.2.3 Implementation of ElGamal Signature

The GNU Privacy Guard [9] is a free implementation of the OpenPGP [19] standard, which
is based on Zimmermann well known software PGP [20]. Because PGP uses IDEA, a patented
symmetric encryption algorithm, and as it is not sure if the source code will stay open, GnuPG
was developed in the late 90s. GPG v1.2.3 was released in August 22nd, 2003. By the end
of 2003, Nguyen discovered several flaws in this version of GPG [14, 17]. Basically, Nguyen’s
attack allows to recover the signer private key in less than a second on a PC, given only one
signature of an arbitrary message, provided that the user chose ElGamal signature scheme at
setup time. It seems that the flaw which is exploited in this attack has been also present in
earlier version of GPG. Fortunately, choosing ElGamal as a digital signature scheme was not
the default option proposed to the user, so that the attack only concerns those who explicitly
choose ElGamal signature scheme. Nevertheless, Nguyen’s attack lead the developers of GPG
to make a new version of GPG available [11, 9], from which ElGamal signatures and ElGamal
sign+encrypt keys have been removed. In the following we will only give the information
needed to understand the attack against GPGv1.2.3 ElGamal signature. For more details,
the reader should refer to [17]. In the next sections, we will recall how ElGamal signatures
work, briefly explain how these signatures are implemented in GPGv1.2.3, and finally explain
Nguyen’s attack.

5.1 ElGamal Signature Scheme

The ElGamal [5] signature scheme is defined as follows. The public parameters are a prime
number p and a generator g of the cyclic group Z

∗
p. To setup the public/private key pair,

one take a random x ∈R Zp−1 and compute y = gx mod p. The private key is x, and the
corresponding public key is y. Signing a message M is done by first hashing the message via
a cryptographic hash function H,

m = H(M) ∈ Zp−1.

Then a random k ∈R Z
∗
p−1 allows to compute

a = gk mod p

b = (m− ax)k−1 mod (p− 1).

14



5 BREAKING GPGV1.2.3 IMPLEMENTATION OF ELGAMAL SIGNATURE

Table 3: The Wiener table used to generate ElGamal public parameter p

Bit-length of p 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840

qbit 119 145 165 183 198 212 225 237 249 259 269 279 288 296

The signature is σ = (a, b).
A given signature is valid if the following congruence holds:

yaab ≡ gm (mod p).

Indeed, if the signature is valid, we have

ax+ bk ≡ m (mod p− 1),

so that
yaab ≡ gaxgbk ≡ gax+bk ≡ gm (mod p).

In the subsequent we will abusively denote by m ∈ Zp−1 the message to be signed.

5.2 GPGv1.2.3 Implementation of ElGamal Signature Scheme

In GPGv1.2.3 the public parameter p is a large prime chosen in way such that the complete
factorization of p−1 is known. Moreover, all the prime factors of p−1

2 should have a bit-length
greater that qbit, which is function of the bit-length of p itself. The correspondence is given by
the Wiener table (see Table 3). We can see that we always have 4qbit < log2 p. Although the
private exponent x should be chosen at random in Zp−1, the developers chose to generate an x
of bit-length 3qbit/2, for efficiency reasons. This means that x, instead of having a bit-length
of order log2 p, has a much smaller bit length. This particularity is at the origin of Nguyen’s
attack. When signing a message, GPGv1.2.3 should generate a random k ∈R Z

∗
p−1. Instead,

a random k of bit-length 3qbit/2 is generated. Then, while k is not coprime with p − 1, k is
incremented. Obviously, k will be much smaller than p after this process, instead of being of
comparable size.

5.3 An Attack against GPGv1.2.3 Implementation of ElGamal Signatures

We consider the case where an attacker has access to a valid signature σ = (a, b) of a message
m ∈ Zp−1. As the signature is valid, the following congruence should hold:

ax+ bk ≡ m (mod p− 1). (5)

The values of x and k are unknown. But, as we know that they approximatively are of
bit-length 3qbit/2, we know (from Wiener table) that they are much smaller that

√
p. This

lead to consider (5) as a closest vector problem instance in a two dimensional lattice. The
following lemma gives all the details we need about the lattice we will use to solve (5).

Lemma 3. Let (α, β) ∈ Z
2 and n ∈ N. Let d = gcd(α, n) and let e = gcd(α, β, n). Let

L = {(u, v) ∈ Z
2 | αu+ βv ≡ 0 (mod n)}.

Then:
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5 BREAKING GPGV1.2.3 IMPLEMENTATION OF ELGAMAL SIGNATURE

1. L is a two dimensional lattice of Z
2.

2. det(L) = n
e .

3. There exists u ∈ Z such that αu+ (β/e)d ≡ 0 (mod n).

4. The vectors (n/d, 0) and (u, d/e) form a basis of L.

Proof. For a proof of this result, see [17].

The preceding lemma is enough to break GPGv1.2.3 implementation of ElGamal signa-
tures. Let

L = {(u, v) ∈ Z
2 | au+ bv ≡ 0 (mod p− 1)}.

According to Lemma 3, L is a two dimensional lattice. If we denote d = gcd(a, p − 1) and
e = gcd(a, b, p − 1), Lemma 3 also states that there exists u ∈ Z such that au + (b/e)d ≡ 0
(mod p− 1). A basis of L is then given by the rows of

B =

(p−1
d 0

u d
e

)

Once a basis is computed, we compute a pair (x′, k′) ∈ Z
2 such that ax′ + bk′ ≡ m

(mod p − 1). For this we can apply the extended Euclidean algorithm to find three integers
λ1, λ2, λ3 such that aλ1 + bλ2 + (p− 1)λ3 = e. Because of (5), we know that e divides m, so
that multiplying λ1 and λ2 by m

e will result in good candidates for x′ and k′ respectively.
We now consider l = (x′ − x, k′ − k) and t = (x′ − 23qbit/2−1, k′ − 23qbit/2−1). As

a(x′ − x) + b(k′ − k) ≡ (ax′ + bk′) + (ax+ bk) ≡ 0 (mod p− 1),

we have l ∈ L. However, t /∈ L. Yet, as in GPGv1.2.3 the bit-lengths of both x and k can be
approximated by 3qbit/2, we can approximate the distance between the two vectors l and t

by

‖ t− l ‖=
√

(x− 23qbit/2−1)2 + (k − 23qbit/2−1)2 ≈ 2
3qbit−1

2 .

On the other hand, we know by Lemma 3 that det(L) = p−1
e = p−1

gcd(a,b,p−1) , which should be

(by construction) approximatively equal to p. Indeed, as p−1
2 is not smooth, we can suppose

that a,b, and p−1
2 have no common factor. As we noticed in the Wiener table that the

bit-length of p is always greater that 4qbit, we deduce the following approximation:

det(L)1/2 ≈ √p > 22qbit .

We now make an heuristic assumption, namely that l is the closest lattice vector of t. Indeed,
due to the huge difference size between ‖ t− l ‖ and det(L)1/2, this assumption is natural (see
Figure 4). Therefore, l can be recovered by solving a simple CVP instance, i.e., by computing
the lattice point close to t (which is known). This can be done using, for example, Babai’s
Round-off algorithm [2], or the embedding method [7, 15] (see Section 3.5). Once the vector
l is found, recovering x and k, i.e., the private key and the private random value originally
used to sign the message m, is a fairly easy task.
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6 CONCLUSION

det(L)

f1

‖ f1 ‖≈‖ f2 ‖≈ det(L)1/2

‖ t− l ‖¿ det(L)1/2

f2

t

l

Figure 4: Classical heuristic assumption for CVP

5.4 Yet Another Attack against GPGv1.2.3 Implementation of ElGamal
Signatures

Nguyen also proposed and alternative attack [17]. Let K denote a large integer and let L′ be
the 4−dimensional lattice spanned by the rows of

B′ =









(p− 1)K 0 0 0

−mK 23qbit/2 0 0
bK 0 1 0
aK 0 0 1









.

The vector l′ = (0, 23qbit/2, k, x) is a vector of L′. Indeed, because of (5), we know there exists
some λ ∈ Z such that (p− 1)λ−m+ bk + ax = 0. Thus

(λ, 1, k, x)B′ = ((p− 1)λK −mK + bkK + axK, 23qbit/2, k, x) = (0, 23qbit/2, k, x) .

Using the same argument as in the preceding section, we can notice that

det(L′)1/4
‖ l′ ‖ ≈ 2−qbit/8K1/4

√
3

which is much larger than 1 provided that K À 9 · 2qbit/2. In such a case, using similar
heuristic arguments as those of the preceding section (see Figure 4), we make the assumption
that l′ is a shortest vector of L′. This vector can usually be recovered by approximating the
shortest vector of L′ with LLL.

We implemented this attack (for p’s of approximatively 512 bits) using the integer LLL
algorithm included in Maple [13] and concluded that, as expected, less than a second is
necessary to recover the signer private key.

6 Conclusion

In this work we provided some illustrations of the usage of LLL in cryptography. Finally, I
would like to thank Prof. Amin Shokrollahi for having proposed this work to me, and for
introducing me to several great topics in algorithmic number theory.
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Normale Supérieure, 45 rue d’Ulm, Paris 5e, Nov. 1999. Available at
http://www.di.ens.fr/~pnguyen.

18



A HOEFFDING’S BOUND

[17] P. Nguyen. Can We Trust Cryptographic Software? Cryptographic Flaws in GNU
Privacy Guard v1.2.3. In C. Cachin, editor, Advances in Cryptology - EUROCRYPT’04,
volume 3027, pages 555–570. Springer-Verlag, 2004.

[18] P. Nguyen and J. Stern. The two faces of lattices in cryptology. In J.H. Silverman, editor,
Cryptography and Lattices : International Conference, CaLC 2001, volume 2146, pages
146–180. Springer-Verlag, 2001.

[19] OpenPGP. http://www.openpgp.org.

[20] PGP. Pretty Good Privacy. http://www.pgp.com.

[21] M.O. Rabin. Digitalized signatures and public-key functions as intractable as factoriza-
tion. MIT/LCS/TR-212,MIT Laboratory for Computer Science, 1979.

[22] R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21:120–126, 1978.

[23] C.P. Schnorr and H.H. Hörner. Attacking the Chor-Rivest Cryptosystem by Improved
Lattice Reduction. In L.C. Guillou and J.-J. Quisquater, editors, Advances in Cryptology

- EUROCRYPT’95, volume 921, pages 1–12. Springer-Verlag, 1995.

[24] S. Vaudenay. Communication Security: An Introduction to Cryptography, 2004. Lecture
notes of the Cryptography and Security course, EPFL.

[25] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 2nd edition, 2003. First published 1999.

A Hoeffding’s Bound

We consider a sequence X1, X2, . . . , Xn of n independent bounded random variables, so that
there exists two real numbers a and b such that, for each i = 1, . . . , n,

a ≤ Xi ≤ b .

Let Sn =
∑n

i=1 Xi. Then the Hoeffding’s bound states that

Pr[|Sn − E[Sn]| ≥ nε] ≤ 2 exp

(−2nε2
b− a

)

.
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