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Abstract

We propose new trust-region based optimization algorithms for
solving unconstrained nonlinear problems whose second derivatives
matrix is singular at a local solution. We give a theoretical charac-
terization of the singularity in this context and we propose an itera-
tive procedure which allows to identify a singularity in the objective
function during the course of the optimization algorithm, and artifi-
cially adds curvature to the objective function. Numerical tests are
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performed on a set of unconstrained nonlinear problems, both singu-
lar and non-singular. Results illustrate the significant performance
improvement compared to classical trust-region and filter algorithms
proposed in the literature.



1 Introduction

We consider a nonlinear unconstrained optimization problem

min f(x) (1)

xeR™

where f is a twice differentiable function, possibly nonconvex. The most
efficient methods to identify a local minimum of (1) are variants of New-
ton’s method, based on globalization techniques such as linesearch and
trust-region methods, as described in many textbooks including Dennis and
Schnabel, 1983, Nocedal and Wright, 1999, Bertsekas, 1999 and Bierlaire,
2006.

The convergence analysis of these algorithms assumes that the curvature
of the objective function at the solution x* is bounded away from 0, that
is the second derivatives matrix is positive definite at x*.

However, this major assumption cannot always be guaranteed in prac-
tice. This is typically the case for the maximum likelihood estimation of
the parameters of econometrics model. In this context, the source of sin-
gularity is twofold. On the one hand, a lack of variability in the data may
preclude the identification of some parameters. On the other hand, some
advanced models require complicated normalization which cannot be per-
formed, imposing the estimation of an unidentified model (see Walker, 2001
and Thémans and Bierlaire, 2006).

In the presence of singularity, not only the convergence theory cannot
be applied as such anymore, but significant deterioration of the algorithm
performance is observed. In this paper, we propose a variant to existing
trust-region and filter trust-region methods in order to deal with this issue.

2 Literature review

The convergence theory of Newton-like methods guarantees local quadratic
convergence if the eigenvalues of the second derivatives matrix of the iter-
ates are bounded away from 0. Griewank and Osborne (1983) have shown
that if a problem is singular for an algorithm, the iterates produced are at
best linearly convergent (even if the second derivatives matrix is singular
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only at the solution, and not at all iterates). Furthermore, when solving
singular problems, standard methods can encounter numerical problems as
the curvature of the function converges towards zero.

In the literature, singular problems have been mainly considered in
the context of solving systems of nonlinear equations (see, for instance,
Decker and Kelley, 1980, Decker et al., 1983, Griewank and Osborne, 1983,
Schnabel and Frank, 1984, Griewank, 1985 and Izmailov and Solodov,
2002). Decker and Kelley (1980) have worked on the theoretical impli-
cations of singularity in the Jacobian of the system at a local solution.
They have shown that the convergence deteriorates and can be proved to
be asymptotically linear of ratio % for some classes of singular systems.
Griewank and Osborne (1983) have analyzed the behavior of Newton’s
method near singularities in the Jacobian. In the singular case, Newton’s
method can either converge with a limiting linear ratio, or diverge from
arbitrarily closed starting points or even behave chaotically. Decker et al.
(1983) have analyzed in details the linear convergence rates of Newton’s
method on several classes of singular problems. They also propose a modi-
fication of the method, constraining iterates in regions where the Jacobian
is invertible, which allows to restore the quadratic rate of convergence for
some of these classes of singular problems. Schnabel and Frank (1984) have
introduced a new class of methods, called tensor methods, for solving sys-
tems of nonlinear equations. Tensor methods are particularly well adapted
when the Jacobian matrix at the solution is singular or badly conditioned.
The main idea is to consider a quadratic model instead of using the classical
linear model as in Newton-like methods. The second-order term of this new
model is determined such that the model interpolates the function values at
several previous iterates, as well as the function value and its gradient value
at the current iterate. Griewank (1985) also proposed a quadratical model
in order to deal with singular solutions. Moreover, two modifications of the
Newton’s recurrence scheme are proposed to solve singular problems more
efficiently. Izmailov and Solodov (2002) have proposed a new algorithm to
solve singular problems such as smooth reformulations of nonlinear com-
plementarity problems. The idea is to regularize a singular solution X by
adding another term to the left-hand size, which vanishes at X (so that x



remains a solution), and such that its Jacobian at X ”compensates” for the
singularity. They suggest to base this extra term on the information about
the derivative of the system.

In the context of unconstrained optimization, Schnabel and Chow (1991)
have proposed to use tensor methods as an adaptation of tensor methods for
systems of nonlinear equations. Tensor methods dedicated to optimization
construct a fourth-order model using third and fourth derivatives tensors
of the objective function f. These higher-order derivatives allow to deal
with singularity in the second derivatives matrix at local solutions.

In the next section, we give a characterization of the singularity and
a procedure which allows to identify this singularity during the course of
the optimization algorithm. We present in Section 4 a class of algorithms
designed to deal with singular problems in an efficient way. Based on the
trust-region framework, it is able to accomodate advanced variants based
on preconditioning and filter.

3 Characterization and identification of the
singularity

Due to the possible non-convexity of f in (1), the objective function may
exhibit several local optima. Some of them may correspond to a singular
second derivatives matrix, but not necessarily all of them. We are interested
here in the case where a given algorithm a converges to a singular local
optimum. Consequently, we say that problem (1) is singular for algorithm
a if the algorithm generates a sequence xj, converging to x* such that
Vf(x*) =0, V*f(x*) is semi positive definite, and V?f(x*) is singular.

We denote by A the n x m matrix characterizing the singularity. Its
range is the eigen-subspace associated with the null eigenvalues of the sec-
ond derivatives matrix V2f(x*). Formally, let’s assume that V?f(x*) has
m < n null eigenvalues, so that its Schur decomposition is

V2(x*) = (A B) ( g /(\)2 ) ( g: ) _ BABT



where A € R™™ and B € R™(™ ™ are orthonormal, and the columns of
A are the eigenvectors corresponding to O eigenvalues. In this case, any
direction in the range of A does not modify (at least asymptotically) the
value of f. Indeed, for an arbitrary s € R™,

f(x*+As) = f(x*)+ VFf(x*)TAs + 3sTATBA,BTAs + o(||s]|?)
f(x*) + o([[s[|*),

as Vf(x*) = 0 and A L B. Invoking the fundamental theorem of linear
algebra, we know that the subspace orthogonal to Im(A) is the null-space
of AT, that is Im(A)* = ker(AT).

The main idea of our algorithm is to search primarily in ker(A"). From
a geometrical viewpoint, this is where the function exhibits non zero cur-
vature. Actually, we would like the algorithm to generate directions s such
that ATs = 0.

The difficulty is that A is unknown before the optimization process
starts, and needs to be approximated. We use V?f(xy) as an approximation
of V%f(x*) as the algorithm proceeds. Consequently, performing an eigen-
structure analysis of V?f(x,) enables to generate the desired approximation
of A. The eigen-subspace associated with eigenvalues of V?f(x;) which are
close to zero is used as an approximation for the range of A. The quality
of such an approximation improves as x; converges to x*.

The computational burden of a full eigen-structure analysis per iteration
is often unacceptable. For example, applying the full QR-algorithm for the
symmetric eigenvalue problem to V2f(x;) would require to compute a full
QR-factorization of V2f(xy) at each iteration of the identification procedure,
that is O(n?) flops.

Consequently, we propose a generalization of the inverse iteration method
to identify the relevant subspace. The inverse iteration is an iterative pro-
cess identifying the eigenvalue of a symmetric matrix H € R™™ closest
(in modulus) to a given target, as well as the associated eigenvector (see,
for instance, Golub and Van Loan, 1996). The method proposed in this
paper generalizes this procedure and allows to compute higher-dimensional
invariant subspaces. Given a symmetric matrix H € R™™, r such that
1 < r < n, and a target A, the generalized inverse iteration considers



H = (H — Alxn) ' and generates a matrix A € R™", such that Im(A)
approximates the dominant invariant subspace of dimension r of H, which
is the subspace associated with the r eigenvalues of H which are closest (in
modulus) to the given target A.

The main steps of the generalized inverse iteration at iteration k of the
optimization algorithm can be summarized as follows.

e Consider an initial approximation Qy = Qinix € R™" of A. It can be
either the r first columns of the identity matrix of dimension n, I,,xn,
or the approximation Qy_; obtained by the procedure at the previous
iteration of the optimization algorithm.

e Repeat:
1. Compute Z € R™" by solving
(H - )\Inxn)z = Qk

2. Compute the new approximation Qi by performing a partial
QR-factorization of Z, that is:

QR =72

until a given stopping criterion is satisfied.

Note that the partial QR-factorization is applied to a matrix belonging
to R™T" so that Qy is only composed of r columns. In comparison, a full
QR-algorithm would compute at each iteration a full QR-factorization with
Q € R™™. The cost of this generalized inverse iteration is O(rn?), which
is interesting when r is small compared to n.

The stopping criterion is based on the difference in {,-norm between
two consecutive Q approximations. As soon as this difference is below
a given threshold (typically 107°), we stop the procedure. The last Qy
approximation represents the desired approximation of A. We obtained
the eigenvalues associated with this eigen subspace by computing
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fori=1,...,r where q; is the i-th column of Q.

In our case, we apply this method with H = V?f(xy) and would like to
identify the T eigenvectors corresponding to null eigenvalues. The dimen-
sion T is not known in advance. At each iteration k of the optimization

algorithm, we use the following procedure to identify the dimension of the
singularity . In order to reduce the computational cost (that is, the num-

ber of times we apply the generalized inverse iteration), we make use of the
value found for T at the previous iteration, which we denote Tprevious-

Initialization Tprevious = O and singular = O for the first iteration of the optimization

algorithm (for the subsequent iterations, these values are determined
by this procedure).

Phase 1 If singular =0

Phase 2

— Apply the generalized inverse iteration with r = 1.

— If the obtained eigenvector corresponds to a non-zero eigenvalue

(that is, if the problem is not declared to be singular), ¥ = 0.
Set singular = 0, Tprevious = 0 and STOP.

If the corresponding eigenvalue is declared to be zero (according
to the threshold), set singular = 1, Tprevious = 1 and go to Phase
2.

Apply the generalized inverse iteration with r = max(rprevious, 1)-

If all corresponding eigenvalues are close to zero, go to Phase 3a.
(We apply the generalized inverse iteration with increasing val-
ues of ).

If at least one corresponding eigenvalue is declared to be non-
Zero:

Ifr=1,7=0. Set Tprevious = T and STOP.

Otherwise go to Phase 3b.

(We apply the generalized inverse iteration with decreasing val-
ues of ).



Phase 3a for r = max(Tprevious, 1) +1: 1

— Apply the generalized inverse iteration with r

— If the additional eigenvalue is close to zero, continue.

— If the additional eigenvalue is non-zero, T = r—1. Set Tprevious = T
and STOP.

Phase 3b for T = Tprevious — 1 : —1: 1

— Apply the generalized inverse iteration with r

— If it remains at least one non-zero eigenvalue, continue. If r =1,
T =0. Set Tprevious = 0 and STOP.

— If all obtained eigenvalues are close to zero, T = 1. Set Tprevious =T
and STOP.

As r is usually small compared to n and does not change too much
from iteration to iteration of the optimization algorithm, the cost of this
procedure using the generalized inverse iteration is significantly lower than
the one of a full QR-analysis. Moreover, this allows us to compute only
relevant information for our purposes.

Note that the generalized inverse iteration fails with A = 0 and we have
to use a small positive value as target, such as A = 107'°. Also, we declare
an eigenvalue to be null if its absolute value is less than 107°.

Now that the singularity is identified, we need to use this information
to help the optimization algorithm. The central idea described in the next
section is to constrain directions to lie in the subspace in which we have
relevant information about curvature by using a penalty approach.

4 Trust-region based algorithms

In this paper, we focus on trust-region based methods. Indeed, these meth-
ods present significant theoretical and practical advantages, and can eas-
ily be adapted with many variants (see Conn et al., 2000). We start by



presenting the classical trust-region framework for an optimization algo-
rithm dedicated to solve unconstrained nonlinear optimization problems.
An iteration k of a trust-region based algorithm can be summarized by the
following steps:

Step 1: Model definition. Define a quadratic model my (typically using
a truncated Taylor’s series) of the objective function in a region By
(called the trust-region) where this model can be trusted.

Step 2: Step computation. Compute a step sy that sufficiently reduces
the model m; and such that x; + s, € By. This step is also called the
trust-region subproblem because we approximately solve the following
problem

min my(xy + s)
s.t. xi +s € By,

that is, minimizing the model within the trust-region.

Step 3: Acceptation of the trial point. Assess the quality of the trial
step sy, and decide whether x, + sy is accepted as the next iterate x4
or not.

Step 4: Trust-region radius update. Update the size of the trust-region.

Minimizing the quadratic model under the trust-region constraint is the
core of the algorithm. Many methods have been proposed in the literature,
such as “dogleg” or truncated conjugate-gradient (see Conn et al., 2000
for a review). In the latter case, preconditioning techniques have shown
to improve the numerical behavior of the algorithm for difficult problems,
such as the modified Cholesky factorization by Schnabel and Eskow (1999),
available in the LANCELOT package (Conn et al., 1992).

The assessment of the model’s quality is performed in general by com-
paring the improvement predicted by the model with the actual improve-
ment of the objective function. Advanced techniques inspired from multi-
criteria optimization have recently emerged, exhibiting faster convergence.
Originally proposed by Fletcher and Leyffer (2002), these techniques are
called “filter” methods.



Now we present different variants of this general scheme. Variants A
and C are from the literature. Variants B and D are new ideas proposed in
this paper.

4.1 Variant A: A trust-region algorithm

We first propose to use the basic trust-region algorithm, as described in
Conn et al. (2000). In this variant, we consider the following specific steps:

Step 1a: Model definition. Define my in By (where By is a sphere cen-
tered at x, of radius Ay) as a quadratic model of f around xy, that
is:

mlxi 4 5) = (00 + V) s o8 VA ads (2)

Step 2a: Step computation. The original trust-region subproblem is de-
fined as

{ min my(xy + ) (3)

s.b. ||s]] < Ay,

where Ay is the radius of the trust-region.

Step 3a: Acceptation of the trial point. Compute f(x, + si) and de-

fine
f(xi) — f(xx + si)

My (Xi) — Myc(Xie + Sk)

Px =

If px > 1y, then define x 1 = X + sy; otherwise define x1 ;1 = Xx.

4.2 Variant B: A new trust-region algorithm

We propose a new trust-region algorithm to deal with singularity. It is
an extension of Variant A where the trust-region subproblem is modified,
involving the matrix Qy defined in Section 3.

To achieve our objective of generating directions s such that ATs = 0,
we propose to penalize directions s such that ||Q]s|| > 0, by modifying the
model of the objective function as well as the trust-region subproblem. We
consider the following specific steps:



Step 1b: Model definition. Define my as follows:

. 1 1
k(i +s) = fla) + VEx) s + 5sTVAH(xids + Sell Qs (4)
Step 2b: Step computation. The corresponding trust-region subprob-
lem is defined as

(5)

min My (X, + 8) = my(x +s) + %CHQISHZ
s.t. |[s|| < Ay,

where ¢ > 0 is the penalty parameter.
Step 3b: Acceptation of the trial point. Identical to Variant A.

We set ¢ = 0 if V?f(x,) is detected to be nonsingular. The second
derivatives matrix of the new model is given by

Vi (xk) = V(xi) + ¢ QQy. (6)

It means that we add a multiple of the Q, Q] matrix to the second
derivatives matrix of f when it is close to singularity. Geometrically, it
amounts to “bending” the function in the subspace where there is originally
no curvature. More precisely, eigenvalues of V2f(xy) close to 0 take the
value ¢ > 0 in V2 (xy).

The penalty parameter ¢ is chosen as small as possible so that the
perturbation of the model is not too severe. In practice, we start with
¢ = 1, and test if the direction s*, solution of (5), is such that ||Q.s*| is
sufficiently close to zero (typically, ||Q{s*|| < 1073). If not, ¢ is multiplied
by 10 for the next iteration, until it reaches the upper bound k. (typically
109).

In addition to the obvious numerical reasons, this upper bound allows
the new model to satisfy the general assumptions of the trust-region frame-
work, in particular the fact that all eigenvalues of the second derivative
matrix of the model must stay bounded. Consequently, convergence to a
first-order critical point of the optimization problem can be guaranteed.

According to Conn et al. (2000), the trust-region based algorithm de-
scribed above converges to first-order critical points if the following as-
sumptions on the model are valid:
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A.M.1 For all k, the model m, is twice differentiable.

A.M.2 The values of the objective function and of the model coincide at the
current iterate; that is, for all k

my(xi) = fxx).

A.M.3 The values of the gradient of the objective function and of the gradient
of the model coincide at the current iterate; that is, for all k

VT/T\Lk(Xk) = Vf(Xk) .

A.M.4 The Hessian of the model remains bounded within the trust-region;
that is,
V2 (x1) || € Kumn — 1 for all x € By,

for all k, where kymn > 1 is a constant independent of k.
We briefly prove that the model m, satisfies these assumptions. To do

this we first compute the first and second-order derivatives of my which
gives:

Ving(xx + 8) = V(xi) + VA (xi) s + ¢ QrQys, (7)
and
Vi (xk + s) = VA (xi) + ¢ QxQy. (8)

Using (7) and (8) and the assumption that the objective function f
is twice differentiable, we directly obtain A.M.1. A.M.2 results from (5).
Taking s = 0 in (7) gives immediately A.M.3. A.M.4 remains to be proved.
From (8), we have that:

IVl || < [V (x| 4 ¢f| QuQpll < Kum + ¢ (9)

by using assumptions on f (namely the boundedness of the Hessian matrix)
and the fact that columns of the matrix Q; generated by the identification
procedure have norm 1. We can conclude as we put an upper bound k. on
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the value of the penalty parameter c. Thus there exists a constant Ky > 1
such that
HVZT?LK(X]()H < Kumh — 1 (10)

for all k. It is sufficient to take kymn > Kumm + ¢ + 1. The constant being
independent from k, we have the uniform boundedness.

4.3 Variant C: A standard filter algorithm

The concept of the filter has been introduced in nonlinear optimization
by Fletcher and Leyffer (2002) and Fletcher et al. (2002). Inspired from
multi-criteria optimization, it provides a great deal of flexibility to measure
progress toward the solution of a problem, both in terms of optimality and
feasibility. Fletcher and Leyffer (2002) define a 2-dimensional filter asso-
ciated with the two objectives of constrained optimization, namely mini-
mizing the objective function while satisfying the constraints. Gould et al.
(2005) generalize the concept by using a multidimensional filter to solve
systems of nonlinear equations as well as nonlinear least-squares. A mul-
tidimensional filter is also used in Gould et al. (2006) in the context of
unconstrained optimization. The advantage of the filter is the increased
flexibility in the optimization algorithm to accept new iterates, and conse-
quently, a potentially faster convergence.

Our third algorithm is an adaptation of the algorithm proposed by
Gould et al. (2006), with the following two modifications:

1. the flag RESTRICT is never set;
2. the test to accept the trial step (step 3) has been modified.

The first two steps of this variant are the same as Variant A, that is
we used the classic model (2) and the original trust-region subproblem (3).
The specific feature of this variant is the test for acceptance of the trial
point x;" = xy + sk.

Step 1c: Model definition. Identical to Variant A.

Step 2c: Step computation. Identical to Variant A.
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Step 3c: Acceptation of the trial point.

e If x; is acceptable for the filter F and nonconvex' is unset
Set xi1 =%, and add g;' to the filter F if py < 13.

e If x; is not acceptable for the filter 7 or nonconvex is set
If p > 1y then
Set xix11 = x; and, if nonconvex is set, set fgp = f(x 1)
and reinitialize the filter F to the empty set;
else Set Xy, 1 = Xx.

This filter variant accepts more often the trial point than the original
trust-region algorithm. Indeed, if the trial point is acceptable for the filter,
we move toward this point and if it is not, we look at the quality of the
reduction factor p, as in the first algorithm. Note that an iteration of
this filter method is equivalent to a basic trust-region iteration when the
function is nonconvex. The idea is to let the filter play the major role
while convexity is encountered and falling back to the classical trust-region
framework if non-convexity is detected.

4.4 Variant D: A new filter algorithm

We now consider a new filter algorithm to deal with singularity based on
variant C exactly in the same way that we derived Variant B from Variant
A. We consider the following specific steps:

Step 1d: Model definition. Define m, as follows:
. 1 1
My (xk + 8) = f(xi) + VF(xi) s + ESTVZf(Xk)S + ECHQESHZ (11)

Step 2d: Step computation. The corresponding trust-region subprob-
lem is defined as

(12)

min My (X, + s)
s.t. |s|| < Ay,

where ¢ > 0 is the penalty parameter.

lsee Gould et al., 2006 for details
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Step 3d: Acceptation of the trial point. Identical to Variant C.

Following the convergence theory in Gould et al. (2006), the new model
we propose in this filter variant must satisfy a major assumption in order
to guarantee that the sequence of iterates produced by the filter algorithm
converges to first-order critical points. More precisely, for all k, the model

~ 1
My (X +8) = my(x +s) + ZCHQESHZ

has to be twice differentiable on R™ and must have a uniformly bounded
Hessian.

Firstly, it is obvious to prove the twice differentiability (see (7) and
(8)). Secondly, the uniform boundedness is obtained directly from (9) and
(10) as this new filter algorithm makes use of the same model as Variant B
corresponding to the new trust-region algorithm.

We also consider preconditioned versions of variants A and C, denoted
A, and C,,. As preconditioning matrix, we use a modified Cholesky factor-
ization of the second derivatives matrix V2f(xy). More precisely, the pre-
conditioner is obtained following the lines of Schnabel and Eskow (1999).

To summarize, we consider a total of 6 algorithms, namely:

e The trust-region algorithm presented in Section 4.2 (Variant B) and
the filter-trust-region algorithm presented in Section 4.4 (Variant D)
both designed to handle singularity by the means of the perturbed
trust-region subproblem (5) and the procedure described in Section 3.

e The basic trust-region algorithm (Variant A) and an adaptation of
the standard filter-trust-region method (Variant C) using the classical
model of the objective function (2).

e The preconditioned versions of Variant A and Variant C, A,, and C,,.

4.5 Implementation issues

e In practical tests, the trust-region subproblem consists in minimizing
model (2) subject to the trust-region constraint, except that we ap-
proximate the second order derivatives matrix at the current iterate
Xk, that is V2f(x,), by a matrix H, obtained using finite differences.
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e The trust-region subproblem for the four first algorithmic variants
is solved using a Truncated Conjugate Gradient method (see Toint,
1981, Steihaug, 1983 or Conn et al., 2000).

e For Variants A, and C,, we use a preconditioned conjugate gradi-
ent framework (see, for instance, Conn et al., 2000) instead of the
standard conjugate gradient algorithm for solving the trust-region
subproblem (3).

5 Numerical experiments

In this section, we present an analysis of the performances of new algorith-
mic variants compared to classical trust-region and filter algorithms from
the literature. Section 5.1 contains a description of the set of test problems
which have been used for the numerical experiments. The methodology
for performance analysis is described Section 5.2. Sections 5.3-5.6 present
results on singular problems while Section 5.7 shows the performance of
proposed algorithms on non-singular problems.

5.1 Description of test problems

The set of test functions has been proposed by Moré et al. (1981). It is
composed, among other things, of 34 unconstrained optimization problems.
Most of these problems have a non-singular second derivatives matrix at
the local minimum. As we want to perform tests on singular problems, we
use the technique proposed by Schnabel and Frank (1984) to modify the
problems of Moré et al. (1981) and create singular optimization problems
such that the second derivatives matrix has a rank n—k at the local solution
where n is the dimension of the problem and 1 < k < n is the dimension of
the singularity. In this paper we focus on problems having a second-order
derivatives matrix of rank n—1 or n—2 at the local solution as in Schnabel
and Chow (1991). Tests have been actually performed on 38 problems
containing a singularity of dimension 1 (that is one null eigenvalue) at the
local solution:
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e 29 problems with dimension between 2 and 11,

e 3 problems with a dimension n which can be parametrized. In this
case, we have used n = 10, 20, 40.

We also carried out tests on a set of 38 test functions whose second deriva-
tives matrix has rank n — 2 at x*, namely:

e 29 problems with dimension between 3 and 11,

e 3 problems with a dimension n which can be parametrized. In this
case, we have used n = 10, 20, 40.

For each problem, we have used the starting point given in the original
paper of Moré et al. (1981).

Note that all tested algorithms have converged to the same solution for
all 76 problems (when they did not fail to converge). Moreover, this solution
corresponds to the local solution at which a given problem is singular.

To summarize, we thus have a set of 76 test problems in which the
singularity has been explicitly incorporated.

5.2 Performance analysis

We present in the next sections a performance analysis of the variants
presented in Section 4. All algorithms and test functions have been imple-
mented with the package Octave (see www.octave.org or Eaton, 1997) and
computations have been done on a desktop equipped with 3GHz CPU, in
double precision.

The stopping criterion for all algorithms is a composition of two con-
ditions: gradient close to zero, that is ||[Vf(xy)|| < 107°, and maximum
number of iterations fixed to 1000. The measure of performance is the
number of iterations or the CPU time necessary to reach convergence (as
defined above). We are presenting the results following the performance
profiles analysis method proposed by Dolan and Moré (2002). If f,, 4 is the
performance index (the number of function evaluations, or the CPU time)
of algorithm a on problem p, then the performance ratio is defined by

fra
L= _pa 13
>, miny{f, v} (13)
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if algorithm a has converged for problem p, and 1, o = T otherwise, where
Tt must be strictly larger than any performance ratio (13) corresponding to
a success. For any given threshold 7t, the overall performance of algorithm
a is given by
palm) = () (19)
Tp
where n,, is the number of problems considered, and ®,(7r) is the number
of problems for which r,, < 7. In particular, the value pq(1) gives the
proportion of times that algorithm a wins over all other algorithms. The
value pq(7r) with 71 > re; gives the proportion of times that algorithm a
solves a problem and, consequently, provides a measure of the robustness
of each method.
Note that the sum of p,(1) values for all algorithms a considered in
a given profile may exceed 1 in the case where some algorithms performs

exactly the same on some of the tested problems.

5.3 TR and filter methods

We first compare variants A to D. Figure 1 represents the full profile while
Figure 2 provides a zoom on 7t between 1 and 3. In terms of number of
iterations, we can see that the two best algorithms are the new variants
B and D. These new algorithms significantly outperform the classical ones
both in efficiency and robustness. Note also that the new filter algorithm
(Variant D) outperforms the new trust-region (Variant B) algorithm. Simi-
larly, the standard filter method (Variant C) shows a better efficiency than
the basic trust-region method (Variant A), consistently with the findings
of Gould et al. (2006). Note also that filter variants are more robust than
trust-region variants as they are able to solve all 76 problems on which
algorithms have been tested.

Figures 3 and 4 show the performance of the four same variants in
terms of CPU time. From Figure 4, we can already see that there is a
computational overhead associated with the new variants proposed in this
paper. It is mainly due to the computational cost of the identification
procedure described in Section 3. It is easy to measure this overhead on
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Figure 1: Comparison of the number of iterations for Variants A,B,C,D

specific profiles for trust-region and filter variants presented in the next
subsections. We can also easily see that filter methods compensate the
numerical algebra associated with the management of the filter by a better
efficiency compared to trust-region algorithms on which they are based.

5.4 TR methods

We now compare variants A and B in Figure 5(a). Figure 5(b) provides
a zoom on 7t between 1 and 3. The performance criterion is the number
of iterations to reach convergence. Variant B performs significantly better
than the classical algorithm in terms of both efficiency and robustness.
From Figure 5(b), we see that it is the best on 90% of the 76 singular
problems tested. When it is not the best algorithm, it converges within a
factor around 1.25 of the classical trust-region algorithm on all 76 tested
problems.
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In Figures 6(a) and 6(b), we compare variants A and B with regard
to the CPU time. Our variant B is still the best method with regard to
this measure of performance, even if we can see from these profiles that
there is a computational overhead. As we already mentioned, it is mainly
due to the numerical algebra of the identification procedure, that is the
procedure described in Section 3 based on the generalized inverse iteration.
Indeed the difference between the profiles associated with the competitors
is smaller than previously. However, it is important to note that, even if
the test problems do not have an objective function heavy to compute, the
higher efficiency of the new variant compensates its computional overhead.
Despite the additional effort in computation due to the singularity identi-
fication process, we see that the new algorithm takes, on more than 60% of
the problems, less time to reach convergence thanks to the smaller number
of iterations necessary to converge to a local solution. On some problems,
the new algorithm is up to 5 times faster than the standard one in term of
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Figure 3: Comparison of the CPU time for Variants A,B,C,D

computational time. It is an indication that the new method is particularly
appropriate when the function is computationally expensive to compute.

5.5 Filter methods

Here we compare the standard filter method (Variant C) with the variant
proposed in Section 4.4 (Variant D). Figure 7(a) represents the full profile
while Figure 7(b) provides a zoom on 7t between 1 and 3. The proposed
variant significantly outperforms the adaptation of the filter algorithm pro-
posed by Gould et al. (2006) in terms of number of iterations necessary to
reach the convergence criterion. The new filter algorithm is the most effi-
cient on almost all 76 tested problems. When it is not the best algorithm,
it converges within a factor close to 1 of the standard filter algorithm. Note
that methods are similar in terms of robustness.

Figures 8(a) and 8(b) show the performance of variants C and D in term
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of CPU time. As it was the case when analyzing the performances of the
new trust-region algorithm, we can easily observe that the computational
overhead associated with the proposed filter method is compensated by
its better efficiency. Our variant is the fastest algorithm in CPU time on
nearly 65% of the tested problems. On some of the problems, it is up to 4
times faster to reach a solution. Again, we expect the advantage in CPU
time to be larger for expensive functions.

5.6 Preconditioned versions vs. our variants

Here we compare preconditioned versions of trust-region (Variant A,) and
filter (Variant C,) algorithms with variants B and D. We want to check if
well-known preconditioning techniques would be a simple way of efficiently
dealing with singularity issues in unconstrained optimization problems. In-
deed, these techniques have shown their advantages when solving problems
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presenting numerical difficulties. However, we clearly see from Figures 9
and 10 that our variants perform significantly better than preconditioned
versions of A and C.

These preconditioning techniques are not designed to deal with the type
of problem we consider in the scope of this paper. Indeed, the difficulty
is due to the very small eigenvalues in the Hessian matrix of the objective
function f. This specificity is taken into account by defining a new model
of the objective function in (5) when a singularity is identified. As the
second derivatives matrix of this model is given by (8), this procedure
can be viewed as shifting very small eigenvalues of the Hessian matrix
at the current iterate to moderate values whose magnitude is controlled
by the penalty parameter c. It means that the technique we use in the
proposed variants of trust-region and filter methods is acting exactly on
the eigenvalues causing numerical difficulty.

5.7 Test on non-singular problems

We now present some tests on non-singular optimization problems. The
idea is to analyze the computational overhead associated with the proce-
dure described in Section 2 but also to see how our algorithmic variants
behave on classical unconstrained optimization problems which do not ex-
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Figure 6: Comparison of the CPU time for Variants A and B

hibit singularity issues. The tests presented below have been achieved on
32 problems among the set of test functions proposed by Moré et al. (1981)
which have been themselves selected from the CUTETr collection (see Gould
et al., 2002).

We first compare the basic trust-region algorithm (Variant A) with the
corresponding variant proposed in this paper (Variant B). Figure 13 repre-
sents the profile in terms of number of iterations while Figure 14 provides
the profile in terms of CPU time. From Figure 13, we can see that per-
formances of algorithms are similar on standard problems with a slight
deterioration for the new algorithm. This is not surprising in the sense
that our variant basically falls back to the classical trust-region framework
if no singularity has been identified during the course of the algorithm.
When looking at Figure 14, it clearly shows the computational cost of ad-
ditional numerical algebra of our variant. Indeed, profiles are closer to each
other compared to the profiles of Figure 6(a) obtained on singular prob-
lems. Moreover, the classical trust-region algorithm is faster in terms of
CPU time on more than 60% of the tested problems as expected.

Figures 15 and 16 present the performance profiles associated with both
filter variants (Variants C and D) on the same 32 non-singular problems.
Similarly to trust-regions algorithms tested above, filter methods exhibit
the same performance in terms of efficiency and robustness, as showed by
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Figure 15. Again, we can see the impact of the overhead associated with
the new filter when solving non-singular problems if we compare Figures 16
and 8(a).

6 Conclusion

The paper deals with an important and difficult problem: dealing with sin-
gular problems in nonlinear optimization. It is important because it arises
often in practice, especially in early stages of a modeling process, when the
models to be optimized are not completely well defined. It is difficult be-
cause the efficiency of existing algorithms is characterized by the curvature
of the objective function, which is 0 (or numerically close to it) for singular
problems. We have proposed a simple technique to deal with singularities.
It consists in artificially adding curvature, to allow existing methods to per-
form decently. This requires the identification of the subspace where the
function is singular, which is achieved by the generalization of a classical
technique in numerical linear algebra, that is the inverse iteration method.
We have shown the superiority of our approach on a large set of problems.
Namely, it appears that the computational overhead of the generalized in-
verse iteration method is compensated by the significant decrease in the
number of iterations. This makes the method particularly appealing for
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problems where the CPU time spent in function evaluations is important,
such as those involving simulation.

No specific theoretical analysis of the convergence of the method has
been performed. We have shown that the method is consistent with the
general framework of trust-region methods, and inherit its convergence
properties. A specific analysis of the speed of convergence is left for fu-
ture work. Also, it would be natural to generalize the proposed approach
to constrained problems.
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