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AbstractWe propose new trust-region based optimization algorithms forsolving un
onstrained nonlinear problems whose se
ond derivativesmatrix is singular at a lo
al solution. We give a theoreti
al 
hara
-terization of the singularity in this 
ontext and we propose an itera-tive pro
edure whi
h allows to identify a singularity in the obje
tivefun
tion during the 
ourse of the optimization algorithm, and arti�-
ially adds 
urvature to the obje
tive fun
tion. Numeri
al tests are
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performed on a set of un
onstrained nonlinear problems, both singu-lar and non-singular. Results illustrate the signi�
ant performan
eimprovement 
ompared to 
lassi
al trust-region and �lter algorithmsproposed in the literature.
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1 IntroductionWe 
onsider a nonlinear un
onstrained optimization problemmin
x∈Rn

f(x) (1)where f is a twi
e di�erentiable fun
tion, possibly non
onvex. The mosteÆ
ient methods to identify a lo
al minimum of (1) are variants of New-ton's method, based on globalization te
hniques su
h as linesear
h andtrust-region methods, as des
ribed in many textbooks in
luding Dennis andS
hnabel, 1983, No
edal and Wright, 1999, Bertsekas, 1999 and Bierlaire,2006.The 
onvergen
e analysis of these algorithms assumes that the 
urvatureof the obje
tive fun
tion at the solution x∗ is bounded away from 0, thatis the se
ond derivatives matrix is positive de�nite at x∗.However, this major assumption 
annot always be guaranteed in pra
-ti
e. This is typi
ally the 
ase for the maximum likelihood estimation ofthe parameters of e
onometri
s model. In this 
ontext, the sour
e of sin-gularity is twofold. On the one hand, a la
k of variability in the data maypre
lude the identi�
ation of some parameters. On the other hand, someadvan
ed models require 
ompli
ated normalization whi
h 
annot be per-formed, imposing the estimation of an unidenti�ed model (see Walker, 2001and Th�emans and Bierlaire, 2006).In the presen
e of singularity, not only the 
onvergen
e theory 
annotbe applied as su
h anymore, but signi�
ant deterioration of the algorithmperforman
e is observed. In this paper, we propose a variant to existingtrust-region and �lter trust-region methods in order to deal with this issue.
2 Literature reviewThe 
onvergen
e theory of Newton-like methods guarantees lo
al quadrati

onvergen
e if the eigenvalues of the se
ond derivatives matrix of the iter-ates are bounded away from 0. Griewank and Osborne (1983) have shownthat if a problem is singular for an algorithm, the iterates produ
ed are atbest linearly 
onvergent (even if the se
ond derivatives matrix is singular1



only at the solution, and not at all iterates). Furthermore, when solvingsingular problems, standard methods 
an en
ounter numeri
al problems asthe 
urvature of the fun
tion 
onverges towards zero.In the literature, singular problems have been mainly 
onsidered inthe 
ontext of solving systems of nonlinear equations (see, for instan
e,De
ker and Kelley, 1980, De
ker et al., 1983, Griewank and Osborne, 1983,S
hnabel and Frank, 1984, Griewank, 1985 and Izmailov and Solodov,2002). De
ker and Kelley (1980) have worked on the theoreti
al impli-
ations of singularity in the Ja
obian of the system at a lo
al solution.They have shown that the 
onvergen
e deteriorates and 
an be proved tobe asymptoti
ally linear of ratio 2
3
for some 
lasses of singular systems.Griewank and Osborne (1983) have analyzed the behavior of Newton'smethod near singularities in the Ja
obian. In the singular 
ase, Newton'smethod 
an either 
onverge with a limiting linear ratio, or diverge fromarbitrarily 
losed starting points or even behave 
haoti
ally. De
ker et al.(1983) have analyzed in details the linear 
onvergen
e rates of Newton'smethod on several 
lasses of singular problems. They also propose a modi-�
ation of the method, 
onstraining iterates in regions where the Ja
obianis invertible, whi
h allows to restore the quadrati
 rate of 
onvergen
e forsome of these 
lasses of singular problems. S
hnabel and Frank (1984) haveintrodu
ed a new 
lass of methods, 
alled tensor methods, for solving sys-tems of nonlinear equations. Tensor methods are parti
ularly well adaptedwhen the Ja
obian matrix at the solution is singular or badly 
onditioned.The main idea is to 
onsider a quadrati
 model instead of using the 
lassi
allinear model as in Newton-like methods. The se
ond-order term of this newmodel is determined su
h that the model interpolates the fun
tion values atseveral previous iterates, as well as the fun
tion value and its gradient valueat the 
urrent iterate. Griewank (1985) also proposed a quadrati
al modelin order to deal with singular solutions. Moreover, two modi�
ations of theNewton's re
urren
e s
heme are proposed to solve singular problems moreeÆ
iently. Izmailov and Solodov (2002) have proposed a new algorithm tosolve singular problems su
h as smooth reformulations of nonlinear 
om-plementarity problems. The idea is to regularize a singular solution �x byadding another term to the left-hand size, whi
h vanishes at �x (so that �x2



remains a solution), and su
h that its Ja
obian at �x "
ompensates" for thesingularity. They suggest to base this extra term on the information aboutthe derivative of the system.In the 
ontext of un
onstrained optimization, S
hnabel and Chow (1991)have proposed to use tensor methods as an adaptation of tensor methods forsystems of nonlinear equations. Tensor methods dedi
ated to optimization
onstru
t a fourth-order model using third and fourth derivatives tensorsof the obje
tive fun
tion f. These higher-order derivatives allow to dealwith singularity in the se
ond derivatives matrix at lo
al solutions.In the next se
tion, we give a 
hara
terization of the singularity anda pro
edure whi
h allows to identify this singularity during the 
ourse ofthe optimization algorithm. We present in Se
tion 4 a 
lass of algorithmsdesigned to deal with singular problems in an eÆ
ient way. Based on thetrust-region framework, it is able to a

omodate advan
ed variants basedon pre
onditioning and �lter.
3 Characterization and identification of the

singularityDue to the possible non-
onvexity of f in (1), the obje
tive fun
tion mayexhibit several lo
al optima. Some of them may 
orrespond to a singularse
ond derivatives matrix, but not ne
essarily all of them. We are interestedhere in the 
ase where a given algorithm a 
onverges to a singular lo
aloptimum. Consequently, we say that problem (1) is singular for algorithm
a if the algorithm generates a sequen
e xk, 
onverging to x∗ su
h that
∇f(x∗) = 0, ∇2f(x∗) is semi positive de�nite, and ∇2f(x∗) is singular.We denote by A the n × m matrix 
hara
terizing the singularity. Itsrange is the eigen-subspa
e asso
iated with the null eigenvalues of the se
-ond derivatives matrix ∇2f(x∗). Formally, let's assume that ∇2f(x∗) has
m < n null eigenvalues, so that its S
hur de
omposition is

∇2f(x∗) = (A B)

(
0 0

0 Λ2

)(
AT

BT

)

= BΛ2B
T3



where A ∈ R
n×m and B ∈ R

n×(n−m) are orthonormal, and the 
olumns of
A are the eigenve
tors 
orresponding to 0 eigenvalues. In this 
ase, anydire
tion in the range of A does not modify (at least asymptoti
ally) thevalue of f. Indeed, for an arbitrary s ∈ R

m,
f(x∗ + As) = f(x∗) + ∇f(x∗)TAs + 1

2
sTATBΛ2B

TAs + o(‖s‖2)

= f(x∗) + o(‖s‖2),as ∇f(x∗) = 0 and A ⊥ B. Invoking the fundamental theorem of linearalgebra, we know that the subspa
e orthogonal to Im(A) is the null-spa
eof AT, that is Im(A)⊥ = ker(AT).The main idea of our algorithm is to sear
h primarily in ker(AT). Froma geometri
al viewpoint, this is where the fun
tion exhibits non zero 
ur-vature. A
tually, we would like the algorithm to generate dire
tions s su
hthat ATs = 0.The diÆ
ulty is that A is unknown before the optimization pro
essstarts, and needs to be approximated. We use ∇2f(xk) as an approximationof ∇2f(x∗) as the algorithm pro
eeds. Consequently, performing an eigen-stru
ture analysis of ∇2f(xk) enables to generate the desired approximationof A. The eigen-subspa
e asso
iated with eigenvalues of ∇2f(xk) whi
h are
lose to zero is used as an approximation for the range of A. The qualityof su
h an approximation improves as xk 
onverges to x∗.The 
omputational burden of a full eigen-stru
ture analysis per iterationis often una

eptable. For example, applying the full QR-algorithm for thesymmetri
 eigenvalue problem to ∇2f(xk) would require to 
ompute a full
QR-fa
torization of∇2f(xk) at ea
h iteration of the identi�
ation pro
edure,that is O(n3) 
ops.Consequently, we propose a generalization of the inverse iterationmethodto identify the relevant subspa
e. The inverse iteration is an iterative pro-
ess identifying the eigenvalue of a symmetri
 matrix H ∈ R

n×n 
losest(in modulus) to a given target, as well as the asso
iated eigenve
tor (see,for instan
e, Golub and Van Loan, 1996). The method proposed in thispaper generalizes this pro
edure and allows to 
ompute higher-dimensionalinvariant subspa
es. Given a symmetri
 matrix H ∈ R
n×n, r su
h that

1 ≤ r ≤ n, and a target λ, the generalized inverse iteration 
onsiders4



�H = (H − λIn×n)−1 and generates a matrix ~A ∈ R
n×r, su
h that Im(~A)approximates the dominant invariant subspa
e of dimension r of �H, whi
his the subspa
e asso
iated with the r eigenvalues of H whi
h are 
losest (inmodulus) to the given target λ.The main steps of the generalized inverse iteration at iteration k of theoptimization algorithm 
an be summarized as follows.� Consider an initial approximation Qk = Qinit ∈ R

n×r of A. It 
an beeither the r �rst 
olumns of the identity matrix of dimension n, In×n,or the approximation Qk−1 obtained by the pro
edure at the previousiteration of the optimization algorithm.� Repeat:1. Compute Z ∈ R
n×r by solving

(H − λIn×n)Z = Qk2. Compute the new approximation Qk by performing a partial
QR-fa
torization of Z, that is:

QkR = Zuntil a given stopping 
riterion is satis�ed.Note that the partial QR-fa
torization is applied to a matrix belongingto R
n×r so that Qk is only 
omposed of r 
olumns. In 
omparison, a full

QR-algorithm would 
ompute at ea
h iteration a full QR-fa
torization with
Q ∈ R

n×n. The 
ost of this generalized inverse iteration is O(rn2), whi
his interesting when r is small 
ompared to n.The stopping 
riterion is based on the di�eren
e in ℓ2-norm betweentwo 
onse
utive Qk approximations. As soon as this di�eren
e is belowa given threshold (typi
ally 10−6), we stop the pro
edure. The last Qkapproximation represents the desired approximation of A. We obtainedthe eigenvalues asso
iated with this eigen subspa
e by 
omputing
λi =

qT
i Hqi

qT
i qi5



for i = 1, . . . , r where qi is the i-th 
olumn of Qk.In our 
ase, we apply this method with H = ∇2f(xk) and would like toidentify the �r eigenve
tors 
orresponding to null eigenvalues. The dimen-sion �r is not known in advan
e. At ea
h iteration k of the optimizationalgorithm, we use the following pro
edure to identify the dimension of thesingularity �r. In order to redu
e the 
omputational 
ost (that is, the num-ber of times we apply the generalized inverse iteration), we make use of thevalue found for �r at the previous iteration, whi
h we denote rprevious.Initialization rprevious = 0 and singular = 0 for the �rst iteration of the optimizationalgorithm (for the subsequent iterations, these values are determinedby this pro
edure).Phase 1 If singular = 0

– Apply the generalized inverse iteration with r = 1.
– If the obtained eigenve
tor 
orresponds to a non-zero eigenvalue(that is, if the problem is not de
lared to be singular), �r = 0.Set singular = 0, rprevious = 0 and STOP.
– If the 
orresponding eigenvalue is de
lared to be zero (a

ordingto the threshold), set singular = 1, rprevious = 1 and go to Phase2.Phase 2 – Apply the generalized inverse iteration with r = max(rprevious, 1).
– If all 
orresponding eigenvalues are 
lose to zero, go to Phase 3a.(We apply the generalized inverse iteration with in
reasing val-ues of r).
– If at least one 
orresponding eigenvalue is de
lared to be non-zero:If r = 1, �r = 0. Set rprevious = �r and STOP.Otherwise go to Phase 3b.(We apply the generalized inverse iteration with de
reasing val-ues of r). 6



Phase 3a for r = max(rprevious, 1) + 1 : n

– Apply the generalized inverse iteration with r

– If the additional eigenvalue is 
lose to zero, 
ontinue.
– If the additional eigenvalue is non-zero, �r = r−1. Set rprevious = �rand STOP.Phase 3b for r = rprevious − 1 : −1 : 1

– Apply the generalized inverse iteration with r

– If it remains at least one non-zero eigenvalue, 
ontinue. If r = 1,�r = 0. Set rprevious = 0 and STOP.
– If all obtained eigenvalues are 
lose to zero, �r = r. Set rprevious = �rand STOP.As r is usually small 
ompared to n and does not 
hange too mu
hfrom iteration to iteration of the optimization algorithm, the 
ost of thispro
edure using the generalized inverse iteration is signi�
antly lower thanthe one of a full QR-analysis. Moreover, this allows us to 
ompute onlyrelevant information for our purposes.Note that the generalized inverse iteration fails with λ = 0 and we haveto use a small positive value as target, su
h as λ = 10−10. Also, we de
larean eigenvalue to be null if its absolute value is less than 10−6.Now that the singularity is identi�ed, we need to use this informationto help the optimization algorithm. The 
entral idea des
ribed in the nextse
tion is to 
onstrain dire
tions to lie in the subspa
e in whi
h we haverelevant information about 
urvature by using a penalty approa
h.

4 Trust-region based algorithmsIn this paper, we fo
us on trust-region based methods. Indeed, these meth-ods present signi�
ant theoreti
al and pra
ti
al advantages, and 
an eas-ily be adapted with many variants (see Conn et al., 2000). We start by7



presenting the 
lassi
al trust-region framework for an optimization algo-rithm dedi
ated to solve un
onstrained nonlinear optimization problems.An iteration k of a trust-region based algorithm 
an be summarized by thefollowing steps:
Step 1: Model definition. De�ne a quadrati
 model mk (typi
ally usinga trun
ated Taylor's series) of the obje
tive fun
tion in a region Bk(
alled the trust-region) where this model 
an be trusted.
Step 2: Step computation. Compute a step sk that suÆ
iently redu
esthe model mk and su
h that xk + sk ∈ Bk. This step is also 
alled thetrust-region subproblem be
ause we approximately solve the followingproblem

{ minmk(xk + s)s.t. xk + s ∈ Bk,that is, minimizing the model within the trust-region.
Step 3: Acceptation of the trial point. Assess the quality of the trialstep sk and de
ide whether xk+sk is a

epted as the next iterate xk+1or not.
Step 4: Trust-region radius update. Update the size of the trust-region.Minimizing the quadrati
 model under the trust-region 
onstraint is the
ore of the algorithm. Many methods have been proposed in the literature,su
h as \dogleg" or trun
ated 
onjugate-gradient (see Conn et al., 2000for a review). In the latter 
ase, pre
onditioning te
hniques have shownto improve the numeri
al behavior of the algorithm for diÆ
ult problems,su
h as the modi�ed Cholesky fa
torization by S
hnabel and Eskow (1999),available in the LANCELOT pa
kage (Conn et al., 1992).The assessment of the model's quality is performed in general by 
om-paring the improvement predi
ted by the model with the a
tual improve-ment of the obje
tive fun
tion. Advan
ed te
hniques inspired from multi-
riteria optimization have re
ently emerged, exhibiting faster 
onvergen
e.Originally proposed by Flet
her and Ley�er (2002), these te
hniques are
alled \�lter" methods. 8



Now we present di�erent variants of this general s
heme. Variants Aand C are from the literature. Variants B and D are new ideas proposed inthis paper.
4.1 Variant A: A trust-region algorithmWe �rst propose to use the basi
 trust-region algorithm, as des
ribed inConn et al. (2000). In this variant, we 
onsider the following spe
i�
 steps:
Step 1a: Model definition. De�ne mk in Bk (where Bk is a sphere 
en-tered at xk of radius ∆k) as a quadrati
 model of f around xk, thatis:

mk(xk + s) = f(xk) + ∇f(xk)
Ts +

1

2
sT∇2f(xk)s (2)

Step 2a: Step computation. The original trust-region subproblem is de-�ned as
{ minmk(xk + s)s.t. ‖s‖ ≤ ∆k,

(3)where ∆k is the radius of the trust-region.
Step 3a: Acceptation of the trial point. Compute f(xk + sk) and de-�ne

ρk =
f(xk) − f(xk + sk)

mk(xk) − mk(xk + sk)
.If ρk ≥ η1, then de�ne xk+1 = xk + sk; otherwise de�ne xk+1 = xk.

4.2 Variant B: A new trust-region algorithmWe propose a new trust-region algorithm to deal with singularity. It isan extension of Variant A where the trust-region subproblem is modi�ed,involving the matrix Qk de�ned in Se
tion 3.To a
hieve our obje
tive of generating dire
tions s su
h that ATs = 0,we propose to penalize dire
tions s su
h that ‖QT
ks‖ > 0, by modifying themodel of the obje
tive fun
tion as well as the trust-region subproblem. We
onsider the following spe
i�
 steps: 9



Step 1b: Model definition. De�ne m̂k as follows:
m̂k(xk + s) = f(xk) + ∇f(xk)

Ts +
1

2
sT∇2f(xk)s +

1

2
c‖QT

ks‖
2 (4)

Step 2b: Step computation. The 
orresponding trust-region subprob-lem is de�ned as
{ min m̂k(xk + s) = mk(xk + s) + 1

2
c‖QT

ks‖
2s.t. ‖s‖ ≤ ∆k,

(5)where c ≥ 0 is the penalty parameter.
Step 3b: Acceptation of the trial point. Identi
al to Variant A.We set c = 0 if ∇2f(xk) is dete
ted to be nonsingular. The se
ondderivatives matrix of the new model is given by

∇2m̂k(xk) = ∇2f(xk) + c QkQ
T
k. (6)It means that we add a multiple of the QkQ

T
k matrix to the se
ondderivatives matrix of f when it is 
lose to singularity. Geometri
ally, itamounts to \bending" the fun
tion in the subspa
e where there is originallyno 
urvature. More pre
isely, eigenvalues of ∇2f(xk) 
lose to 0 take thevalue c > 0 in ∇2m̂k(xk).The penalty parameter c is 
hosen as small as possible so that theperturbation of the model is not too severe. In pra
ti
e, we start with

c = 1, and test if the dire
tion s∗, solution of (5), is su
h that ‖QT
ks

∗‖ issuÆ
iently 
lose to zero (typi
ally, ‖QT
ks

∗‖ ≤ 10−3). If not, c is multipliedby 10 for the next iteration, until it rea
hes the upper bound κc (typi
ally
105).In addition to the obvious numeri
al reasons, this upper bound allowsthe new model to satisfy the general assumptions of the trust-region frame-work, in parti
ular the fa
t that all eigenvalues of the se
ond derivativematrix of the model must stay bounded. Consequently, 
onvergen
e to a�rst-order 
riti
al point of the optimization problem 
an be guaranteed.A

ording to Conn et al. (2000), the trust-region based algorithm de-s
ribed above 
onverges to �rst-order 
riti
al points if the following as-sumptions on the model are valid: 10



A.M.1 For all k, the model m̂k is twi
e di�erentiable.A.M.2 The values of the obje
tive fun
tion and of the model 
oin
ide at the
urrent iterate; that is, for all k

m̂k(xk) = f(xk).A.M.3 The values of the gradient of the obje
tive fun
tion and of the gradientof the model 
oin
ide at the 
urrent iterate; that is, for all k

∇m̂k(xk) = ∇f(xk).A.M.4 The Hessian of the model remains bounded within the trust-region;that is,
‖∇2m̂k(xk)‖ ≤ κumh − 1 for all x ∈ Bk,for all k, where κumh ≥ 1 is a 
onstant independent of k.We brie
y prove that the model m̂k satis�es these assumptions. To dothis we �rst 
ompute the �rst and se
ond-order derivatives of m̂k whi
hgives:

∇m̂k(xk + s) = ∇f(xk) + ∇2f(xk)
Ts + c QkQ

T
ks, (7)and

∇2m̂k(xk + s) = ∇2f(xk) + c QkQ
T
k. (8)Using (7) and (8) and the assumption that the obje
tive fun
tion fis twi
e di�erentiable, we dire
tly obtain A.M.1. A.M.2 results from (5).Taking s = 0 in (7) gives immediately A.M.3. A.M.4 remains to be proved.From (8), we have that:

‖∇2m̂k(xk)‖ ≤ ‖∇2f(xk)‖ + c‖QkQ
T
k‖ ≤ κufh + c (9)by using assumptions on f (namely the boundedness of the Hessian matrix)and the fa
t that 
olumns of the matrix Qk generated by the identi�
ationpro
edure have norm 1. We 
an 
on
lude as we put an upper bound κc on11



the value of the penalty parameter c. Thus there exists a 
onstant κumh ≥ 1su
h that
‖∇2m̂k(xk)‖ ≤ κumh − 1 (10)for all k. It is suÆ
ient to take κumh ≥ κufh + c + 1. The 
onstant beingindependent from k, we have the uniform boundedness.

4.3 Variant C: A standard filter algorithmThe 
on
ept of the �lter has been introdu
ed in nonlinear optimizationby Flet
her and Ley�er (2002) and Flet
her et al. (2002). Inspired frommulti-
riteria optimization, it provides a great deal of 
exibility to measureprogress toward the solution of a problem, both in terms of optimality andfeasibility. Flet
her and Ley�er (2002) de�ne a 2-dimensional �lter asso-
iated with the two obje
tives of 
onstrained optimization, namely mini-mizing the obje
tive fun
tion while satisfying the 
onstraints. Gould et al.(2005) generalize the 
on
ept by using a multidimensional �lter to solvesystems of nonlinear equations as well as nonlinear least-squares. A mul-tidimensional �lter is also used in Gould et al. (2006) in the 
ontext ofun
onstrained optimization. The advantage of the �lter is the in
reased
exibility in the optimization algorithm to a

ept new iterates, and 
onse-quently, a potentially faster 
onvergen
e.Our third algorithm is an adaptation of the algorithm proposed byGould et al. (2006), with the following two modi�
ations:1. the 
ag RESTRICT is never set;2. the test to a

ept the trial step (step 3) has been modi�ed.The �rst two steps of this variant are the same as Variant A, that iswe used the 
lassi
 model (2) and the original trust-region subproblem (3).The spe
i�
 feature of this variant is the test for a

eptan
e of the trialpoint x+
k = xk + sk.

Step 1c: Model definition. Identi
al to Variant A.
Step 2c: Step computation. Identi
al to Variant A.12



Step 3c: Acceptation of the trial point.� If x+
k is a

eptable for the �lter F and nonconvex1 is unsetSet xk+1 = x+

k and add g+
k to the �lter F if ρk < η1.� If x+

k is not a

eptable for the �lter F or nonconvex is setIf ρk ≥ η1 thenSet xk+1 = x+
k and, if nonconvex is set, set fsup = f(xk+1)and reinitialize the �lter F to the empty set;else Set xk+1 = xk.This �lter variant a

epts more often the trial point than the originaltrust-region algorithm. Indeed, if the trial point is a

eptable for the �lter,we move toward this point and if it is not, we look at the quality of theredu
tion fa
tor ρk as in the �rst algorithm. Note that an iteration ofthis �lter method is equivalent to a basi
 trust-region iteration when thefun
tion is non
onvex. The idea is to let the �lter play the major rolewhile 
onvexity is en
ountered and falling ba
k to the 
lassi
al trust-regionframework if non-
onvexity is dete
ted.

4.4 Variant D: A new filter algorithmWe now 
onsider a new �lter algorithm to deal with singularity based onvariant C exa
tly in the same way that we derived Variant B from VariantA. We 
onsider the following spe
i�
 steps:
Step 1d: Model definition. De�ne m̂k as follows:

m̂k(xk + s) = f(xk) + ∇f(xk)
Ts +

1

2
sT∇2f(xk)s +

1

2
c‖QT

ks‖
2 (11)

Step 2d: Step computation. The 
orresponding trust-region subprob-lem is de�ned as
{ min m̂k(xk + s)s.t. ‖s‖ ≤ ∆k,

(12)where c ≥ 0 is the penalty parameter.1see Gould et al., 2006 for details 13



Step 3d: Acceptation of the trial point. Identi
al to Variant C.Following the 
onvergen
e theory in Gould et al. (2006), the new modelwe propose in this �lter variant must satisfy a major assumption in orderto guarantee that the sequen
e of iterates produ
ed by the �lter algorithm
onverges to �rst-order 
riti
al points. More pre
isely, for all k, the model
m̂k(xk + s) = mk(xk + s) +

1

2
c‖QT

ks‖2has to be twi
e di�erentiable on R
n and must have a uniformly boundedHessian.Firstly, it is obvious to prove the twi
e di�erentiability (see (7) and(8)). Se
ondly, the uniform boundedness is obtained dire
tly from (9) and(10) as this new �lter algorithm makes use of the same model as Variant B
orresponding to the new trust-region algorithm.We also 
onsider pre
onditioned versions of variants A and C, denoted

Ap and Cp. As pre
onditioning matrix, we use a modi�ed Cholesky fa
tor-ization of the se
ond derivatives matrix ∇2f(xk). More pre
isely, the pre-
onditioner is obtained following the lines of S
hnabel and Eskow (1999).To summarize, we 
onsider a total of 6 algorithms, namely:� The trust-region algorithm presented in Se
tion 4.2 (Variant B) andthe �lter-trust-region algorithm presented in Se
tion 4.4 (Variant D)both designed to handle singularity by the means of the perturbedtrust-region subproblem (5) and the pro
edure des
ribed in Se
tion 3.� The basi
 trust-region algorithm (Variant A) and an adaptation ofthe standard �lter-trust-region method (Variant C) using the 
lassi
almodel of the obje
tive fun
tion (2).� The pre
onditioned versions of Variant A and Variant C, Ap and Cp.
4.5 Implementation issues� In pra
ti
al tests, the trust-region subproblem 
onsists in minimizingmodel (2) subje
t to the trust-region 
onstraint, ex
ept that we ap-proximate the se
ond order derivatives matrix at the 
urrent iterate

xk, that is ∇2f(xk), by a matrix Hk obtained using �nite di�eren
es.14



� The trust-region subproblem for the four �rst algorithmi
 variantsis solved using a Trun
ated Conjugate Gradient method (see Toint,1981, Steihaug, 1983 or Conn et al., 2000).� For Variants Ap and Cp, we use a pre
onditioned 
onjugate gradi-ent framework (see, for instan
e, Conn et al., 2000) instead of thestandard 
onjugate gradient algorithm for solving the trust-regionsubproblem (3).
5 Numerical experimentsIn this se
tion, we present an analysis of the performan
es of new algorith-mi
 variants 
ompared to 
lassi
al trust-region and �lter algorithms fromthe literature. Se
tion 5.1 
ontains a des
ription of the set of test problemswhi
h have been used for the numeri
al experiments. The methodologyfor performan
e analysis is des
ribed Se
tion 5.2. Se
tions 5.3-5.6 presentresults on singular problems while Se
tion 5.7 shows the performan
e ofproposed algorithms on non-singular problems.
5.1 Description of test problemsThe set of test fun
tions has been proposed by Mor�e et al. (1981). It is
omposed, among other things, of 34 un
onstrained optimization problems.Most of these problems have a non-singular se
ond derivatives matrix atthe lo
al minimum. As we want to perform tests on singular problems, weuse the te
hnique proposed by S
hnabel and Frank (1984) to modify theproblems of Mor�e et al. (1981) and 
reate singular optimization problemssu
h that the se
ond derivatives matrix has a rank n−k at the lo
al solutionwhere n is the dimension of the problem and 1 ≤ k ≤ n is the dimension ofthe singularity. In this paper we fo
us on problems having a se
ond-orderderivatives matrix of rank n−1 or n−2 at the lo
al solution as in S
hnabeland Chow (1991). Tests have been a
tually performed on 38 problems
ontaining a singularity of dimension 1 (that is one null eigenvalue) at thelo
al solution: 15



� 29 problems with dimension between 2 and 11,� 3 problems with a dimension n whi
h 
an be parametrized. In this
ase, we have used n = 10, 20, 40.We also 
arried out tests on a set of 38 test fun
tions whose se
ond deriva-tives matrix has rank n − 2 at x∗, namely:� 29 problems with dimension between 3 and 11,� 3 problems with a dimension n whi
h 
an be parametrized. In this
ase, we have used n = 10, 20, 40.For ea
h problem, we have used the starting point given in the originalpaper of Mor�e et al. (1981).Note that all tested algorithms have 
onverged to the same solution forall 76 problems (when they did not fail to 
onverge). Moreover, this solution
orresponds to the lo
al solution at whi
h a given problem is singular.To summarize, we thus have a set of 76 test problems in whi
h thesingularity has been expli
itly in
orporated.
5.2 Performance analysisWe present in the next se
tions a performan
e analysis of the variantspresented in Se
tion 4. All algorithms and test fun
tions have been imple-mented with the pa
kage O
tave (see www.octave.org or Eaton, 1997) and
omputations have been done on a desktop equipped with 3GHz CPU, indouble pre
ision.The stopping 
riterion for all algorithms is a 
omposition of two 
on-ditions: gradient 
lose to zero, that is ‖∇f(xk)‖ ≤ 10−6, and maximumnumber of iterations �xed to 1000. The measure of performan
e is thenumber of iterations or the CPU time ne
essary to rea
h 
onvergen
e (asde�ned above). We are presenting the results following the performan
epro�les analysis method proposed by Dolan and Mor�e (2002). If fp,a is theperforman
e index (the number of fun
tion evaluations, or the CPU time)of algorithm a on problem p, then the performan
e ratio is de�ned by

rp,a =
fp,aminb{fp,b}

, (13)16



if algorithm a has 
onverged for problem p, and rp,a = rfail otherwise, where
rfail must be stri
tly larger than any performan
e ratio (13) 
orresponding toa su

ess. For any given threshold π, the overall performan
e of algorithm
a is given by

ρa(π) =
1

np

Φa(π) (14)where np is the number of problems 
onsidered, and Φa(π) is the numberof problems for whi
h rp,a ≤ π. In parti
ular, the value ρa(1) gives theproportion of times that algorithm a wins over all other algorithms. Thevalue ρa(π) with π ≥ rfail gives the proportion of times that algorithm asolves a problem and, 
onsequently, provides a measure of the robustnessof ea
h method.Note that the sum of ρa(1) values for all algorithms a 
onsidered ina given pro�le may ex
eed 1 in the 
ase where some algorithms performsexa
tly the same on some of the tested problems.
5.3 TR and filter methodsWe �rst 
ompare variants A to D. Figure 1 represents the full pro�le whileFigure 2 provides a zoom on π between 1 and 3. In terms of number ofiterations, we 
an see that the two best algorithms are the new variantsB and D. These new algorithms signi�
antly outperform the 
lassi
al onesboth in eÆ
ien
y and robustness. Note also that the new �lter algorithm(Variant D) outperforms the new trust-region (Variant B) algorithm. Simi-larly, the standard �lter method (Variant C) shows a better eÆ
ien
y thanthe basi
 trust-region method (Variant A), 
onsistently with the �ndingsof Gould et al. (2006). Note also that �lter variants are more robust thantrust-region variants as they are able to solve all 76 problems on whi
halgorithms have been tested.Figures 3 and 4 show the performan
e of the four same variants interms of CPU time. From Figure 4, we 
an already see that there is a
omputational overhead asso
iated with the new variants proposed in thispaper. It is mainly due to the 
omputational 
ost of the identi�
ationpro
edure des
ribed in Se
tion 3. It is easy to measure this overhead on17
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i�
 pro�les for trust-region and �lter variants presented in the nextsubse
tions. We 
an also easily see that �lter methods 
ompensate thenumeri
al algebra asso
iated with the management of the �lter by a bettereÆ
ien
y 
ompared to trust-region algorithms on whi
h they are based.

5.4 TR methodsWe now 
ompare variants A and B in Figure 5(a). Figure 5(b) providesa zoom on π between 1 and 3. The performan
e 
riterion is the numberof iterations to rea
h 
onvergen
e. Variant B performs signi�
antly betterthan the 
lassi
al algorithm in terms of both eÆ
ien
y and robustness.From Figure 5(b), we see that it is the best on 90% of the 76 singularproblems tested. When it is not the best algorithm, it 
onverges within afa
tor around 1.25 of the 
lassi
al trust-region algorithm on all 76 testedproblems. 18
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Variant DFigure 2: Zoom on the number of iterations for Variants A,B,C,DIn Figures 6(a) and 6(b), we 
ompare variants A and B with regardto the CPU time. Our variant B is still the best method with regard tothis measure of performan
e, even if we 
an see from these pro�les thatthere is a 
omputational overhead. As we already mentioned, it is mainlydue to the numeri
al algebra of the identi�
ation pro
edure, that is thepro
edure des
ribed in Se
tion 3 based on the generalized inverse iteration.Indeed the di�eren
e between the pro�les asso
iated with the 
ompetitorsis smaller than previously. However, it is important to note that, even ifthe test problems do not have an obje
tive fun
tion heavy to 
ompute, thehigher eÆ
ien
y of the new variant 
ompensates its 
omputional overhead.Despite the additional e�ort in 
omputation due to the singularity identi-�
ation pro
ess, we see that the new algorithm takes, on more than 60% ofthe problems, less time to rea
h 
onvergen
e thanks to the smaller numberof iterations ne
essary to 
onverge to a lo
al solution. On some problems,the new algorithm is up to 5 times faster than the standard one in term of19
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omputational time. It is an indi
ation that the new method is parti
ularlyappropriate when the fun
tion is 
omputationally expensive to 
ompute.

5.5 Filter methodsHere we 
ompare the standard �lter method (Variant C) with the variantproposed in Se
tion 4.4 (Variant D). Figure 7(a) represents the full pro�lewhile Figure 7(b) provides a zoom on π between 1 and 3. The proposedvariant signi�
antly outperforms the adaptation of the �lter algorithm pro-posed by Gould et al. (2006) in terms of number of iterations ne
essary torea
h the 
onvergen
e 
riterion. The new �lter algorithm is the most eÆ-
ient on almost all 76 tested problems. When it is not the best algorithm,it 
onverges within a fa
tor 
lose to 1 of the standard �lter algorithm. Notethat methods are similar in terms of robustness.Figures 8(a) and 8(b) show the performan
e of variants C and D in term20
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Variant DFigure 4: Zoom on the CPU time for Variants A,B,C,Dof CPU time. As it was the 
ase when analyzing the performan
es of thenew trust-region algorithm, we 
an easily observe that the 
omputationaloverhead asso
iated with the proposed �lter method is 
ompensated byits better eÆ
ien
y. Our variant is the fastest algorithm in CPU time onnearly 65% of the tested problems. On some of the problems, it is up to 4times faster to rea
h a solution. Again, we expe
t the advantage in CPUtime to be larger for expensive fun
tions.

5.6 Preconditioned versions vs. our variantsHere we 
ompare pre
onditioned versions of trust-region (Variant Ap) and�lter (Variant Cp) algorithms with variants B and D. We want to 
he
k ifwell-known pre
onditioning te
hniques would be a simple way of eÆ
ientlydealing with singularity issues in un
onstrained optimization problems. In-deed, these te
hniques have shown their advantages when solving problems21
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Variant B(b) ZoomFigure 5: Comparison of the number of iterations for Variants A and Bpresenting numeri
al diÆ
ulties. However, we 
learly see from Figures 9and 10 that our variants perform signi�
antly better than pre
onditionedversions of A and C.These pre
onditioning te
hniques are not designed to deal with the typeof problem we 
onsider in the s
ope of this paper. Indeed, the diÆ
ultyis due to the very small eigenvalues in the Hessian matrix of the obje
tivefun
tion f. This spe
i�
ity is taken into a

ount by de�ning a new modelof the obje
tive fun
tion in (5) when a singularity is identi�ed. As these
ond derivatives matrix of this model is given by (8), this pro
edure
an be viewed as shifting very small eigenvalues of the Hessian matrixat the 
urrent iterate to moderate values whose magnitude is 
ontrolledby the penalty parameter c. It means that the te
hnique we use in theproposed variants of trust-region and �lter methods is a
ting exa
tly onthe eigenvalues 
ausing numeri
al diÆ
ulty.

5.7 Test on non-singular problemsWe now present some tests on non-singular optimization problems. Theidea is to analyze the 
omputational overhead asso
iated with the pro
e-dure des
ribed in Se
tion 2 but also to see how our algorithmi
 variantsbehave on 
lassi
al un
onstrained optimization problems whi
h do not ex-22
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Variant B(b) ZoomFigure 6: Comparison of the CPU time for Variants A and Bhibit singularity issues. The tests presented below have been a
hieved on32 problems among the set of test fun
tions proposed by Mor�e et al. (1981)whi
h have been themselves sele
ted from the CUTEr 
olle
tion (see Gouldet al., 2002).We �rst 
ompare the basi
 trust-region algorithm (Variant A) with the
orresponding variant proposed in this paper (Variant B). Figure 13 repre-sents the pro�le in terms of number of iterations while Figure 14 providesthe pro�le in terms of CPU time. From Figure 13, we 
an see that per-forman
es of algorithms are similar on standard problems with a slightdeterioration for the new algorithm. This is not surprising in the sensethat our variant basi
ally falls ba
k to the 
lassi
al trust-region frameworkif no singularity has been identi�ed during the 
ourse of the algorithm.When looking at Figure 14, it 
learly shows the 
omputational 
ost of ad-ditional numeri
al algebra of our variant. Indeed, pro�les are 
loser to ea
hother 
ompared to the pro�les of Figure 6(a) obtained on singular prob-lems. Moreover, the 
lassi
al trust-region algorithm is faster in terms ofCPU time on more than 60% of the tested problems as expe
ted.Figures 15 and 16 present the performan
e pro�les asso
iated with both�lter variants (Variants C and D) on the same 32 non-singular problems.Similarly to trust-regions algorithms tested above, �lter methods exhibitthe same performan
e in terms of eÆ
ien
y and robustness, as showed by23
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Variant D(b) ZoomFigure 7: Comparison of the number of iterations for Variants C and DFigure 15. Again, we 
an see the impa
t of the overhead asso
iated withthe new �lter when solving non-singular problems if we 
ompare Figures 16and 8(a).

6 ConclusionThe paper deals with an important and diÆ
ult problem: dealing with sin-gular problems in nonlinear optimization. It is important be
ause it arisesoften in pra
ti
e, espe
ially in early stages of a modeling pro
ess, when themodels to be optimized are not 
ompletely well de�ned. It is diÆ
ult be-
ause the eÆ
ien
y of existing algorithms is 
hara
terized by the 
urvatureof the obje
tive fun
tion, whi
h is 0 (or numeri
ally 
lose to it) for singularproblems. We have proposed a simple te
hnique to deal with singularities.It 
onsists in arti�
ially adding 
urvature, to allow existing methods to per-form de
ently. This requires the identi�
ation of the subspa
e where thefun
tion is singular, whi
h is a
hieved by the generalization of a 
lassi
alte
hnique in numeri
al linear algebra, that is the inverse iteration method.We have shown the superiority of our approa
h on a large set of problems.Namely, it appears that the 
omputational overhead of the generalized in-verse iteration method is 
ompensated by the signi�
ant de
rease in thenumber of iterations. This makes the method parti
ularly appealing for24
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Variant D(b) ZoomFigure 8: Comparison of the CPU time for Variants C and Dproblems where the CPU time spent in fun
tion evaluations is important,su
h as those involving simulation.No spe
i�
 theoreti
al analysis of the 
onvergen
e of the method hasbeen performed. We have shown that the method is 
onsistent with thegeneral framework of trust-region methods, and inherit its 
onvergen
eproperties. A spe
i�
 analysis of the speed of 
onvergen
e is left for fu-ture work. Also, it would be natural to generalize the proposed approa
hto 
onstrained problems.
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