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AbstractWe propose new trust-region based optimization algorithms forsolving unonstrained nonlinear problems whose seond derivativesmatrix is singular at a loal solution. We give a theoretial hara-terization of the singularity in this ontext and we propose an itera-tive proedure whih allows to identify a singularity in the objetivefuntion during the ourse of the optimization algorithm, and arti�-ially adds urvature to the objetive funtion. Numerial tests are
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performed on a set of unonstrained nonlinear problems, both singu-lar and non-singular. Results illustrate the signi�ant performaneimprovement ompared to lassial trust-region and �lter algorithmsproposed in the literature.
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1 IntroductionWe onsider a nonlinear unonstrained optimization problemmin
x∈Rn

f(x) (1)where f is a twie di�erentiable funtion, possibly nononvex. The mosteÆient methods to identify a loal minimum of (1) are variants of New-ton's method, based on globalization tehniques suh as linesearh andtrust-region methods, as desribed in many textbooks inluding Dennis andShnabel, 1983, Noedal and Wright, 1999, Bertsekas, 1999 and Bierlaire,2006.The onvergene analysis of these algorithms assumes that the urvatureof the objetive funtion at the solution x∗ is bounded away from 0, thatis the seond derivatives matrix is positive de�nite at x∗.However, this major assumption annot always be guaranteed in pra-tie. This is typially the ase for the maximum likelihood estimation ofthe parameters of eonometris model. In this ontext, the soure of sin-gularity is twofold. On the one hand, a lak of variability in the data mayprelude the identi�ation of some parameters. On the other hand, someadvaned models require ompliated normalization whih annot be per-formed, imposing the estimation of an unidenti�ed model (see Walker, 2001and Th�emans and Bierlaire, 2006).In the presene of singularity, not only the onvergene theory annotbe applied as suh anymore, but signi�ant deterioration of the algorithmperformane is observed. In this paper, we propose a variant to existingtrust-region and �lter trust-region methods in order to deal with this issue.
2 Literature reviewThe onvergene theory of Newton-like methods guarantees loal quadrationvergene if the eigenvalues of the seond derivatives matrix of the iter-ates are bounded away from 0. Griewank and Osborne (1983) have shownthat if a problem is singular for an algorithm, the iterates produed are atbest linearly onvergent (even if the seond derivatives matrix is singular1



only at the solution, and not at all iterates). Furthermore, when solvingsingular problems, standard methods an enounter numerial problems asthe urvature of the funtion onverges towards zero.In the literature, singular problems have been mainly onsidered inthe ontext of solving systems of nonlinear equations (see, for instane,Deker and Kelley, 1980, Deker et al., 1983, Griewank and Osborne, 1983,Shnabel and Frank, 1984, Griewank, 1985 and Izmailov and Solodov,2002). Deker and Kelley (1980) have worked on the theoretial impli-ations of singularity in the Jaobian of the system at a loal solution.They have shown that the onvergene deteriorates and an be proved tobe asymptotially linear of ratio 2
3
for some lasses of singular systems.Griewank and Osborne (1983) have analyzed the behavior of Newton'smethod near singularities in the Jaobian. In the singular ase, Newton'smethod an either onverge with a limiting linear ratio, or diverge fromarbitrarily losed starting points or even behave haotially. Deker et al.(1983) have analyzed in details the linear onvergene rates of Newton'smethod on several lasses of singular problems. They also propose a modi-�ation of the method, onstraining iterates in regions where the Jaobianis invertible, whih allows to restore the quadrati rate of onvergene forsome of these lasses of singular problems. Shnabel and Frank (1984) haveintrodued a new lass of methods, alled tensor methods, for solving sys-tems of nonlinear equations. Tensor methods are partiularly well adaptedwhen the Jaobian matrix at the solution is singular or badly onditioned.The main idea is to onsider a quadrati model instead of using the lassiallinear model as in Newton-like methods. The seond-order term of this newmodel is determined suh that the model interpolates the funtion values atseveral previous iterates, as well as the funtion value and its gradient valueat the urrent iterate. Griewank (1985) also proposed a quadratial modelin order to deal with singular solutions. Moreover, two modi�ations of theNewton's reurrene sheme are proposed to solve singular problems moreeÆiently. Izmailov and Solodov (2002) have proposed a new algorithm tosolve singular problems suh as smooth reformulations of nonlinear om-plementarity problems. The idea is to regularize a singular solution �x byadding another term to the left-hand size, whih vanishes at �x (so that �x2



remains a solution), and suh that its Jaobian at �x "ompensates" for thesingularity. They suggest to base this extra term on the information aboutthe derivative of the system.In the ontext of unonstrained optimization, Shnabel and Chow (1991)have proposed to use tensor methods as an adaptation of tensor methods forsystems of nonlinear equations. Tensor methods dediated to optimizationonstrut a fourth-order model using third and fourth derivatives tensorsof the objetive funtion f. These higher-order derivatives allow to dealwith singularity in the seond derivatives matrix at loal solutions.In the next setion, we give a haraterization of the singularity anda proedure whih allows to identify this singularity during the ourse ofthe optimization algorithm. We present in Setion 4 a lass of algorithmsdesigned to deal with singular problems in an eÆient way. Based on thetrust-region framework, it is able to aomodate advaned variants basedon preonditioning and �lter.
3 Characterization and identification of the

singularityDue to the possible non-onvexity of f in (1), the objetive funtion mayexhibit several loal optima. Some of them may orrespond to a singularseond derivatives matrix, but not neessarily all of them. We are interestedhere in the ase where a given algorithm a onverges to a singular loaloptimum. Consequently, we say that problem (1) is singular for algorithm
a if the algorithm generates a sequene xk, onverging to x∗ suh that
∇f(x∗) = 0, ∇2f(x∗) is semi positive de�nite, and ∇2f(x∗) is singular.We denote by A the n × m matrix haraterizing the singularity. Itsrange is the eigen-subspae assoiated with the null eigenvalues of the se-ond derivatives matrix ∇2f(x∗). Formally, let's assume that ∇2f(x∗) has
m < n null eigenvalues, so that its Shur deomposition is

∇2f(x∗) = (A B)

(
0 0

0 Λ2

)(
AT

BT

)

= BΛ2B
T3



where A ∈ R
n×m and B ∈ R

n×(n−m) are orthonormal, and the olumns of
A are the eigenvetors orresponding to 0 eigenvalues. In this ase, anydiretion in the range of A does not modify (at least asymptotially) thevalue of f. Indeed, for an arbitrary s ∈ R

m,
f(x∗ + As) = f(x∗) + ∇f(x∗)TAs + 1

2
sTATBΛ2B

TAs + o(‖s‖2)

= f(x∗) + o(‖s‖2),as ∇f(x∗) = 0 and A ⊥ B. Invoking the fundamental theorem of linearalgebra, we know that the subspae orthogonal to Im(A) is the null-spaeof AT, that is Im(A)⊥ = ker(AT).The main idea of our algorithm is to searh primarily in ker(AT). Froma geometrial viewpoint, this is where the funtion exhibits non zero ur-vature. Atually, we would like the algorithm to generate diretions s suhthat ATs = 0.The diÆulty is that A is unknown before the optimization proessstarts, and needs to be approximated. We use ∇2f(xk) as an approximationof ∇2f(x∗) as the algorithm proeeds. Consequently, performing an eigen-struture analysis of ∇2f(xk) enables to generate the desired approximationof A. The eigen-subspae assoiated with eigenvalues of ∇2f(xk) whih arelose to zero is used as an approximation for the range of A. The qualityof suh an approximation improves as xk onverges to x∗.The omputational burden of a full eigen-struture analysis per iterationis often unaeptable. For example, applying the full QR-algorithm for thesymmetri eigenvalue problem to ∇2f(xk) would require to ompute a full
QR-fatorization of∇2f(xk) at eah iteration of the identi�ation proedure,that is O(n3) ops.Consequently, we propose a generalization of the inverse iterationmethodto identify the relevant subspae. The inverse iteration is an iterative pro-ess identifying the eigenvalue of a symmetri matrix H ∈ R

n×n losest(in modulus) to a given target, as well as the assoiated eigenvetor (see,for instane, Golub and Van Loan, 1996). The method proposed in thispaper generalizes this proedure and allows to ompute higher-dimensionalinvariant subspaes. Given a symmetri matrix H ∈ R
n×n, r suh that

1 ≤ r ≤ n, and a target λ, the generalized inverse iteration onsiders4



�H = (H − λIn×n)−1 and generates a matrix ~A ∈ R
n×r, suh that Im(~A)approximates the dominant invariant subspae of dimension r of �H, whihis the subspae assoiated with the r eigenvalues of H whih are losest (inmodulus) to the given target λ.The main steps of the generalized inverse iteration at iteration k of theoptimization algorithm an be summarized as follows.� Consider an initial approximation Qk = Qinit ∈ R

n×r of A. It an beeither the r �rst olumns of the identity matrix of dimension n, In×n,or the approximation Qk−1 obtained by the proedure at the previousiteration of the optimization algorithm.� Repeat:1. Compute Z ∈ R
n×r by solving

(H − λIn×n)Z = Qk2. Compute the new approximation Qk by performing a partial
QR-fatorization of Z, that is:

QkR = Zuntil a given stopping riterion is satis�ed.Note that the partial QR-fatorization is applied to a matrix belongingto R
n×r so that Qk is only omposed of r olumns. In omparison, a full

QR-algorithm would ompute at eah iteration a full QR-fatorization with
Q ∈ R

n×n. The ost of this generalized inverse iteration is O(rn2), whihis interesting when r is small ompared to n.The stopping riterion is based on the di�erene in ℓ2-norm betweentwo onseutive Qk approximations. As soon as this di�erene is belowa given threshold (typially 10−6), we stop the proedure. The last Qkapproximation represents the desired approximation of A. We obtainedthe eigenvalues assoiated with this eigen subspae by omputing
λi =

qT
i Hqi

qT
i qi5



for i = 1, . . . , r where qi is the i-th olumn of Qk.In our ase, we apply this method with H = ∇2f(xk) and would like toidentify the �r eigenvetors orresponding to null eigenvalues. The dimen-sion �r is not known in advane. At eah iteration k of the optimizationalgorithm, we use the following proedure to identify the dimension of thesingularity �r. In order to redue the omputational ost (that is, the num-ber of times we apply the generalized inverse iteration), we make use of thevalue found for �r at the previous iteration, whih we denote rprevious.Initialization rprevious = 0 and singular = 0 for the �rst iteration of the optimizationalgorithm (for the subsequent iterations, these values are determinedby this proedure).Phase 1 If singular = 0

– Apply the generalized inverse iteration with r = 1.
– If the obtained eigenvetor orresponds to a non-zero eigenvalue(that is, if the problem is not delared to be singular), �r = 0.Set singular = 0, rprevious = 0 and STOP.
– If the orresponding eigenvalue is delared to be zero (aordingto the threshold), set singular = 1, rprevious = 1 and go to Phase2.Phase 2 – Apply the generalized inverse iteration with r = max(rprevious, 1).
– If all orresponding eigenvalues are lose to zero, go to Phase 3a.(We apply the generalized inverse iteration with inreasing val-ues of r).
– If at least one orresponding eigenvalue is delared to be non-zero:If r = 1, �r = 0. Set rprevious = �r and STOP.Otherwise go to Phase 3b.(We apply the generalized inverse iteration with dereasing val-ues of r). 6



Phase 3a for r = max(rprevious, 1) + 1 : n

– Apply the generalized inverse iteration with r

– If the additional eigenvalue is lose to zero, ontinue.
– If the additional eigenvalue is non-zero, �r = r−1. Set rprevious = �rand STOP.Phase 3b for r = rprevious − 1 : −1 : 1

– Apply the generalized inverse iteration with r

– If it remains at least one non-zero eigenvalue, ontinue. If r = 1,�r = 0. Set rprevious = 0 and STOP.
– If all obtained eigenvalues are lose to zero, �r = r. Set rprevious = �rand STOP.As r is usually small ompared to n and does not hange too muhfrom iteration to iteration of the optimization algorithm, the ost of thisproedure using the generalized inverse iteration is signi�antly lower thanthe one of a full QR-analysis. Moreover, this allows us to ompute onlyrelevant information for our purposes.Note that the generalized inverse iteration fails with λ = 0 and we haveto use a small positive value as target, suh as λ = 10−10. Also, we delarean eigenvalue to be null if its absolute value is less than 10−6.Now that the singularity is identi�ed, we need to use this informationto help the optimization algorithm. The entral idea desribed in the nextsetion is to onstrain diretions to lie in the subspae in whih we haverelevant information about urvature by using a penalty approah.

4 Trust-region based algorithmsIn this paper, we fous on trust-region based methods. Indeed, these meth-ods present signi�ant theoretial and pratial advantages, and an eas-ily be adapted with many variants (see Conn et al., 2000). We start by7



presenting the lassial trust-region framework for an optimization algo-rithm dediated to solve unonstrained nonlinear optimization problems.An iteration k of a trust-region based algorithm an be summarized by thefollowing steps:
Step 1: Model definition. De�ne a quadrati model mk (typially usinga trunated Taylor's series) of the objetive funtion in a region Bk(alled the trust-region) where this model an be trusted.
Step 2: Step computation. Compute a step sk that suÆiently reduesthe model mk and suh that xk + sk ∈ Bk. This step is also alled thetrust-region subproblem beause we approximately solve the followingproblem

{ minmk(xk + s)s.t. xk + s ∈ Bk,that is, minimizing the model within the trust-region.
Step 3: Acceptation of the trial point. Assess the quality of the trialstep sk and deide whether xk+sk is aepted as the next iterate xk+1or not.
Step 4: Trust-region radius update. Update the size of the trust-region.Minimizing the quadrati model under the trust-region onstraint is theore of the algorithm. Many methods have been proposed in the literature,suh as \dogleg" or trunated onjugate-gradient (see Conn et al., 2000for a review). In the latter ase, preonditioning tehniques have shownto improve the numerial behavior of the algorithm for diÆult problems,suh as the modi�ed Cholesky fatorization by Shnabel and Eskow (1999),available in the LANCELOT pakage (Conn et al., 1992).The assessment of the model's quality is performed in general by om-paring the improvement predited by the model with the atual improve-ment of the objetive funtion. Advaned tehniques inspired from multi-riteria optimization have reently emerged, exhibiting faster onvergene.Originally proposed by Flether and Ley�er (2002), these tehniques arealled \�lter" methods. 8



Now we present di�erent variants of this general sheme. Variants Aand C are from the literature. Variants B and D are new ideas proposed inthis paper.
4.1 Variant A: A trust-region algorithmWe �rst propose to use the basi trust-region algorithm, as desribed inConn et al. (2000). In this variant, we onsider the following spei� steps:
Step 1a: Model definition. De�ne mk in Bk (where Bk is a sphere en-tered at xk of radius ∆k) as a quadrati model of f around xk, thatis:

mk(xk + s) = f(xk) + ∇f(xk)
Ts +

1

2
sT∇2f(xk)s (2)

Step 2a: Step computation. The original trust-region subproblem is de-�ned as
{ minmk(xk + s)s.t. ‖s‖ ≤ ∆k,

(3)where ∆k is the radius of the trust-region.
Step 3a: Acceptation of the trial point. Compute f(xk + sk) and de-�ne

ρk =
f(xk) − f(xk + sk)

mk(xk) − mk(xk + sk)
.If ρk ≥ η1, then de�ne xk+1 = xk + sk; otherwise de�ne xk+1 = xk.

4.2 Variant B: A new trust-region algorithmWe propose a new trust-region algorithm to deal with singularity. It isan extension of Variant A where the trust-region subproblem is modi�ed,involving the matrix Qk de�ned in Setion 3.To ahieve our objetive of generating diretions s suh that ATs = 0,we propose to penalize diretions s suh that ‖QT
ks‖ > 0, by modifying themodel of the objetive funtion as well as the trust-region subproblem. Weonsider the following spei� steps: 9



Step 1b: Model definition. De�ne m̂k as follows:
m̂k(xk + s) = f(xk) + ∇f(xk)

Ts +
1

2
sT∇2f(xk)s +

1

2
c‖QT

ks‖
2 (4)

Step 2b: Step computation. The orresponding trust-region subprob-lem is de�ned as
{ min m̂k(xk + s) = mk(xk + s) + 1

2
c‖QT

ks‖
2s.t. ‖s‖ ≤ ∆k,

(5)where c ≥ 0 is the penalty parameter.
Step 3b: Acceptation of the trial point. Idential to Variant A.We set c = 0 if ∇2f(xk) is deteted to be nonsingular. The seondderivatives matrix of the new model is given by

∇2m̂k(xk) = ∇2f(xk) + c QkQ
T
k. (6)It means that we add a multiple of the QkQ

T
k matrix to the seondderivatives matrix of f when it is lose to singularity. Geometrially, itamounts to \bending" the funtion in the subspae where there is originallyno urvature. More preisely, eigenvalues of ∇2f(xk) lose to 0 take thevalue c > 0 in ∇2m̂k(xk).The penalty parameter c is hosen as small as possible so that theperturbation of the model is not too severe. In pratie, we start with

c = 1, and test if the diretion s∗, solution of (5), is suh that ‖QT
ks

∗‖ issuÆiently lose to zero (typially, ‖QT
ks

∗‖ ≤ 10−3). If not, c is multipliedby 10 for the next iteration, until it reahes the upper bound κc (typially
105).In addition to the obvious numerial reasons, this upper bound allowsthe new model to satisfy the general assumptions of the trust-region frame-work, in partiular the fat that all eigenvalues of the seond derivativematrix of the model must stay bounded. Consequently, onvergene to a�rst-order ritial point of the optimization problem an be guaranteed.Aording to Conn et al. (2000), the trust-region based algorithm de-sribed above onverges to �rst-order ritial points if the following as-sumptions on the model are valid: 10



A.M.1 For all k, the model m̂k is twie di�erentiable.A.M.2 The values of the objetive funtion and of the model oinide at theurrent iterate; that is, for all k

m̂k(xk) = f(xk).A.M.3 The values of the gradient of the objetive funtion and of the gradientof the model oinide at the urrent iterate; that is, for all k

∇m̂k(xk) = ∇f(xk).A.M.4 The Hessian of the model remains bounded within the trust-region;that is,
‖∇2m̂k(xk)‖ ≤ κumh − 1 for all x ∈ Bk,for all k, where κumh ≥ 1 is a onstant independent of k.We briey prove that the model m̂k satis�es these assumptions. To dothis we �rst ompute the �rst and seond-order derivatives of m̂k whihgives:

∇m̂k(xk + s) = ∇f(xk) + ∇2f(xk)
Ts + c QkQ

T
ks, (7)and

∇2m̂k(xk + s) = ∇2f(xk) + c QkQ
T
k. (8)Using (7) and (8) and the assumption that the objetive funtion fis twie di�erentiable, we diretly obtain A.M.1. A.M.2 results from (5).Taking s = 0 in (7) gives immediately A.M.3. A.M.4 remains to be proved.From (8), we have that:

‖∇2m̂k(xk)‖ ≤ ‖∇2f(xk)‖ + c‖QkQ
T
k‖ ≤ κufh + c (9)by using assumptions on f (namely the boundedness of the Hessian matrix)and the fat that olumns of the matrix Qk generated by the identi�ationproedure have norm 1. We an onlude as we put an upper bound κc on11



the value of the penalty parameter c. Thus there exists a onstant κumh ≥ 1suh that
‖∇2m̂k(xk)‖ ≤ κumh − 1 (10)for all k. It is suÆient to take κumh ≥ κufh + c + 1. The onstant beingindependent from k, we have the uniform boundedness.

4.3 Variant C: A standard filter algorithmThe onept of the �lter has been introdued in nonlinear optimizationby Flether and Ley�er (2002) and Flether et al. (2002). Inspired frommulti-riteria optimization, it provides a great deal of exibility to measureprogress toward the solution of a problem, both in terms of optimality andfeasibility. Flether and Ley�er (2002) de�ne a 2-dimensional �lter asso-iated with the two objetives of onstrained optimization, namely mini-mizing the objetive funtion while satisfying the onstraints. Gould et al.(2005) generalize the onept by using a multidimensional �lter to solvesystems of nonlinear equations as well as nonlinear least-squares. A mul-tidimensional �lter is also used in Gould et al. (2006) in the ontext ofunonstrained optimization. The advantage of the �lter is the inreasedexibility in the optimization algorithm to aept new iterates, and onse-quently, a potentially faster onvergene.Our third algorithm is an adaptation of the algorithm proposed byGould et al. (2006), with the following two modi�ations:1. the ag RESTRICT is never set;2. the test to aept the trial step (step 3) has been modi�ed.The �rst two steps of this variant are the same as Variant A, that iswe used the lassi model (2) and the original trust-region subproblem (3).The spei� feature of this variant is the test for aeptane of the trialpoint x+
k = xk + sk.

Step 1c: Model definition. Idential to Variant A.
Step 2c: Step computation. Idential to Variant A.12



Step 3c: Acceptation of the trial point.� If x+
k is aeptable for the �lter F and nonconvex1 is unsetSet xk+1 = x+

k and add g+
k to the �lter F if ρk < η1.� If x+

k is not aeptable for the �lter F or nonconvex is setIf ρk ≥ η1 thenSet xk+1 = x+
k and, if nonconvex is set, set fsup = f(xk+1)and reinitialize the �lter F to the empty set;else Set xk+1 = xk.This �lter variant aepts more often the trial point than the originaltrust-region algorithm. Indeed, if the trial point is aeptable for the �lter,we move toward this point and if it is not, we look at the quality of theredution fator ρk as in the �rst algorithm. Note that an iteration ofthis �lter method is equivalent to a basi trust-region iteration when thefuntion is nononvex. The idea is to let the �lter play the major rolewhile onvexity is enountered and falling bak to the lassial trust-regionframework if non-onvexity is deteted.

4.4 Variant D: A new filter algorithmWe now onsider a new �lter algorithm to deal with singularity based onvariant C exatly in the same way that we derived Variant B from VariantA. We onsider the following spei� steps:
Step 1d: Model definition. De�ne m̂k as follows:

m̂k(xk + s) = f(xk) + ∇f(xk)
Ts +

1

2
sT∇2f(xk)s +

1

2
c‖QT

ks‖
2 (11)

Step 2d: Step computation. The orresponding trust-region subprob-lem is de�ned as
{ min m̂k(xk + s)s.t. ‖s‖ ≤ ∆k,

(12)where c ≥ 0 is the penalty parameter.1see Gould et al., 2006 for details 13



Step 3d: Acceptation of the trial point. Idential to Variant C.Following the onvergene theory in Gould et al. (2006), the new modelwe propose in this �lter variant must satisfy a major assumption in orderto guarantee that the sequene of iterates produed by the �lter algorithmonverges to �rst-order ritial points. More preisely, for all k, the model
m̂k(xk + s) = mk(xk + s) +

1

2
c‖QT

ks‖2has to be twie di�erentiable on R
n and must have a uniformly boundedHessian.Firstly, it is obvious to prove the twie di�erentiability (see (7) and(8)). Seondly, the uniform boundedness is obtained diretly from (9) and(10) as this new �lter algorithm makes use of the same model as Variant Borresponding to the new trust-region algorithm.We also onsider preonditioned versions of variants A and C, denoted

Ap and Cp. As preonditioning matrix, we use a modi�ed Cholesky fator-ization of the seond derivatives matrix ∇2f(xk). More preisely, the pre-onditioner is obtained following the lines of Shnabel and Eskow (1999).To summarize, we onsider a total of 6 algorithms, namely:� The trust-region algorithm presented in Setion 4.2 (Variant B) andthe �lter-trust-region algorithm presented in Setion 4.4 (Variant D)both designed to handle singularity by the means of the perturbedtrust-region subproblem (5) and the proedure desribed in Setion 3.� The basi trust-region algorithm (Variant A) and an adaptation ofthe standard �lter-trust-region method (Variant C) using the lassialmodel of the objetive funtion (2).� The preonditioned versions of Variant A and Variant C, Ap and Cp.
4.5 Implementation issues� In pratial tests, the trust-region subproblem onsists in minimizingmodel (2) subjet to the trust-region onstraint, exept that we ap-proximate the seond order derivatives matrix at the urrent iterate

xk, that is ∇2f(xk), by a matrix Hk obtained using �nite di�erenes.14



� The trust-region subproblem for the four �rst algorithmi variantsis solved using a Trunated Conjugate Gradient method (see Toint,1981, Steihaug, 1983 or Conn et al., 2000).� For Variants Ap and Cp, we use a preonditioned onjugate gradi-ent framework (see, for instane, Conn et al., 2000) instead of thestandard onjugate gradient algorithm for solving the trust-regionsubproblem (3).
5 Numerical experimentsIn this setion, we present an analysis of the performanes of new algorith-mi variants ompared to lassial trust-region and �lter algorithms fromthe literature. Setion 5.1 ontains a desription of the set of test problemswhih have been used for the numerial experiments. The methodologyfor performane analysis is desribed Setion 5.2. Setions 5.3-5.6 presentresults on singular problems while Setion 5.7 shows the performane ofproposed algorithms on non-singular problems.
5.1 Description of test problemsThe set of test funtions has been proposed by Mor�e et al. (1981). It isomposed, among other things, of 34 unonstrained optimization problems.Most of these problems have a non-singular seond derivatives matrix atthe loal minimum. As we want to perform tests on singular problems, weuse the tehnique proposed by Shnabel and Frank (1984) to modify theproblems of Mor�e et al. (1981) and reate singular optimization problemssuh that the seond derivatives matrix has a rank n−k at the loal solutionwhere n is the dimension of the problem and 1 ≤ k ≤ n is the dimension ofthe singularity. In this paper we fous on problems having a seond-orderderivatives matrix of rank n−1 or n−2 at the loal solution as in Shnabeland Chow (1991). Tests have been atually performed on 38 problemsontaining a singularity of dimension 1 (that is one null eigenvalue) at theloal solution: 15



� 29 problems with dimension between 2 and 11,� 3 problems with a dimension n whih an be parametrized. In thisase, we have used n = 10, 20, 40.We also arried out tests on a set of 38 test funtions whose seond deriva-tives matrix has rank n − 2 at x∗, namely:� 29 problems with dimension between 3 and 11,� 3 problems with a dimension n whih an be parametrized. In thisase, we have used n = 10, 20, 40.For eah problem, we have used the starting point given in the originalpaper of Mor�e et al. (1981).Note that all tested algorithms have onverged to the same solution forall 76 problems (when they did not fail to onverge). Moreover, this solutionorresponds to the loal solution at whih a given problem is singular.To summarize, we thus have a set of 76 test problems in whih thesingularity has been expliitly inorporated.
5.2 Performance analysisWe present in the next setions a performane analysis of the variantspresented in Setion 4. All algorithms and test funtions have been imple-mented with the pakage Otave (see www.octave.org or Eaton, 1997) andomputations have been done on a desktop equipped with 3GHz CPU, indouble preision.The stopping riterion for all algorithms is a omposition of two on-ditions: gradient lose to zero, that is ‖∇f(xk)‖ ≤ 10−6, and maximumnumber of iterations �xed to 1000. The measure of performane is thenumber of iterations or the CPU time neessary to reah onvergene (asde�ned above). We are presenting the results following the performanepro�les analysis method proposed by Dolan and Mor�e (2002). If fp,a is theperformane index (the number of funtion evaluations, or the CPU time)of algorithm a on problem p, then the performane ratio is de�ned by

rp,a =
fp,aminb{fp,b}

, (13)16



if algorithm a has onverged for problem p, and rp,a = rfail otherwise, where
rfail must be stritly larger than any performane ratio (13) orresponding toa suess. For any given threshold π, the overall performane of algorithm
a is given by

ρa(π) =
1

np

Φa(π) (14)where np is the number of problems onsidered, and Φa(π) is the numberof problems for whih rp,a ≤ π. In partiular, the value ρa(1) gives theproportion of times that algorithm a wins over all other algorithms. Thevalue ρa(π) with π ≥ rfail gives the proportion of times that algorithm asolves a problem and, onsequently, provides a measure of the robustnessof eah method.Note that the sum of ρa(1) values for all algorithms a onsidered ina given pro�le may exeed 1 in the ase where some algorithms performsexatly the same on some of the tested problems.
5.3 TR and filter methodsWe �rst ompare variants A to D. Figure 1 represents the full pro�le whileFigure 2 provides a zoom on π between 1 and 3. In terms of number ofiterations, we an see that the two best algorithms are the new variantsB and D. These new algorithms signi�antly outperform the lassial onesboth in eÆieny and robustness. Note also that the new �lter algorithm(Variant D) outperforms the new trust-region (Variant B) algorithm. Simi-larly, the standard �lter method (Variant C) shows a better eÆieny thanthe basi trust-region method (Variant A), onsistently with the �ndingsof Gould et al. (2006). Note also that �lter variants are more robust thantrust-region variants as they are able to solve all 76 problems on whihalgorithms have been tested.Figures 3 and 4 show the performane of the four same variants interms of CPU time. From Figure 4, we an already see that there is aomputational overhead assoiated with the new variants proposed in thispaper. It is mainly due to the omputational ost of the identi�ationproedure desribed in Setion 3. It is easy to measure this overhead on17
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5.4 TR methodsWe now ompare variants A and B in Figure 5(a). Figure 5(b) providesa zoom on π between 1 and 3. The performane riterion is the numberof iterations to reah onvergene. Variant B performs signi�antly betterthan the lassial algorithm in terms of both eÆieny and robustness.From Figure 5(b), we see that it is the best on 90% of the 76 singularproblems tested. When it is not the best algorithm, it onverges within afator around 1.25 of the lassial trust-region algorithm on all 76 testedproblems. 18
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5.5 Filter methodsHere we ompare the standard �lter method (Variant C) with the variantproposed in Setion 4.4 (Variant D). Figure 7(a) represents the full pro�lewhile Figure 7(b) provides a zoom on π between 1 and 3. The proposedvariant signi�antly outperforms the adaptation of the �lter algorithm pro-posed by Gould et al. (2006) in terms of number of iterations neessary toreah the onvergene riterion. The new �lter algorithm is the most eÆ-ient on almost all 76 tested problems. When it is not the best algorithm,it onverges within a fator lose to 1 of the standard �lter algorithm. Notethat methods are similar in terms of robustness.Figures 8(a) and 8(b) show the performane of variants C and D in term20
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5.6 Preconditioned versions vs. our variantsHere we ompare preonditioned versions of trust-region (Variant Ap) and�lter (Variant Cp) algorithms with variants B and D. We want to hek ifwell-known preonditioning tehniques would be a simple way of eÆientlydealing with singularity issues in unonstrained optimization problems. In-deed, these tehniques have shown their advantages when solving problems21
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Variant B(b) ZoomFigure 5: Comparison of the number of iterations for Variants A and Bpresenting numerial diÆulties. However, we learly see from Figures 9and 10 that our variants perform signi�antly better than preonditionedversions of A and C.These preonditioning tehniques are not designed to deal with the typeof problem we onsider in the sope of this paper. Indeed, the diÆultyis due to the very small eigenvalues in the Hessian matrix of the objetivefuntion f. This spei�ity is taken into aount by de�ning a new modelof the objetive funtion in (5) when a singularity is identi�ed. As theseond derivatives matrix of this model is given by (8), this proedurean be viewed as shifting very small eigenvalues of the Hessian matrixat the urrent iterate to moderate values whose magnitude is ontrolledby the penalty parameter c. It means that the tehnique we use in theproposed variants of trust-region and �lter methods is ating exatly onthe eigenvalues ausing numerial diÆulty.

5.7 Test on non-singular problemsWe now present some tests on non-singular optimization problems. Theidea is to analyze the omputational overhead assoiated with the proe-dure desribed in Setion 2 but also to see how our algorithmi variantsbehave on lassial unonstrained optimization problems whih do not ex-22
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6 ConclusionThe paper deals with an important and diÆult problem: dealing with sin-gular problems in nonlinear optimization. It is important beause it arisesoften in pratie, espeially in early stages of a modeling proess, when themodels to be optimized are not ompletely well de�ned. It is diÆult be-ause the eÆieny of existing algorithms is haraterized by the urvatureof the objetive funtion, whih is 0 (or numerially lose to it) for singularproblems. We have proposed a simple tehnique to deal with singularities.It onsists in arti�ially adding urvature, to allow existing methods to per-form deently. This requires the identi�ation of the subspae where thefuntion is singular, whih is ahieved by the generalization of a lassialtehnique in numerial linear algebra, that is the inverse iteration method.We have shown the superiority of our approah on a large set of problems.Namely, it appears that the omputational overhead of the generalized in-verse iteration method is ompensated by the signi�ant derease in thenumber of iterations. This makes the method partiularly appealing for24
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