
Spei�ation, estimation and validation of a pedestrianwalking behavior modelTh. Robin ∗ G. Antonini† M. Bierlaire ∗ J. Cruz ∗November 16, 2007
Report TRANSP-OR 071116Transport and Mobility LaboratoryShool of Arhiteture, Civil and Environmental EngineeringEole Polytehnique Fédérale de Lausannetransp-or.epfl.hThis report is a revised version of the report TRANSP-OR 070727 by Antonini,Bierlaire, Shneider and Robin.

∗TRANSP-OR, Eole Polytehnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland,{thomas.robin, mihel.bierlaire,javier.ruz }�ep�.h
†Business Optimization Group, Computer Siene Dept., IBM Researh GmbH, Zurih ResearhLaboratory, CH-8803 Rushlikon, Switzerland, GAN�zurih.ibm.om1



AbstratWe propose and validate a model for pedestrian walking behavior, based on dis-rete hoie modeling. Two main types of behavior are identi�ed: unonstrainedand onstrained. By unonstrained, we refer to behavior patterns whih are in-dependent from other individuals. The onstrained patterns are aptured by aleader-follower model and by a ollision avoidane model. The spatial orrela-tion between the alternatives is aptured by a ross nested logit model. The model isestimated by maximum likelihood estimation on a real data set of pedestrian traje-tories, manually traked from video sequenes. The model is suessfully validatedusing a bi-diretional �ow data set, olleted in ontrolled experimental onditionsat Delft university.1 IntrodutionPedestrian behavior modeling is an important topi in di�erent ontexts. Arhitets areinterested in understanding how individuals move into buildings to reate optimal spaedesigns. Transport engineers fae the problem of integration of transportation failities,with partiular emphasis on safety issues for pedestrians. Reent tragi events haveinreased the interest for automati video surveillane systems, able to monitor pedes-trian �ows in publi spaes, throwing alarms when abnormal behaviors our. Speialemphasis has been given to more spei� evauation senarios, for obvious reasons. Inthis spirit, it is important to de�ne mathematial models based on behavioral assump-tions, tested by means of proper statistial methods. Data olletion for pedestriandynamis is partiularly di�ult and only few models presented in the literature havebeen alibrated and validated on real data sets.Previous methods for pedestrian behavior modeling an be lassi�ed into two mainategories: mirosopi and marosopi models. In the last years muh more at-tention has foused on mirosopi modeling, where eah pedestrian is modeled as anagent. Examples of mirosopi models are the soial fores model in Helbing and Mol-nar (1995) and Helbing et al. (2002) where the authors use Newtonian mehanis witha ontinuous spae representation to model long-range interations, and the multi-layerutility maximization model by Hoogendoorn et al. (2002) and Daamen (2004). Blue andAdler (2001) and Shadshneider (2002) use ellular automata models, haraterized bya stati disretization of the spae where eah ell in the grid is represented by a statevariable. Another mirosopi approah is based on spae syntax theory where peoplemove through spaes following riteria of spae visibility and aessibility (see Penn andTurner, 2002) and minimizing angular paths (see Turner, 2001). Finally, Borgers andTimmermans (1986), Whynes et al. (1996) and Dellaert et al. (1998) fous on destina-tion and route hoie problems on network topologies. For a general literature reviewon pedestrian behavior modeling we refer the interested reader to Bierlaire et al. (2003).For appliations of pedestrian models in image analysis, we refer the reader to our pre-vious work ( Antonini et al., 2004, Venegas et al., 2005, Antonini, 2005 and Antonini,Venegas, Bierlaire and Thiran, 2006)Leader-follower and ollision avoidane behaviors play a major role in explainingpedestrian movements. Existing literature has shown the ourrene of self-organizing2



proesses in rowded environments. At ertain levels of density, interations betweenpeople give rise to lane formation. In order to model these e�ets formally, we took in-spiration from previous ar following models in transport engineering (inluding Newell,1961, Herman and Rothery, 1965, Lee, 1966, Ahmed, 1999). The main idea in these mod-els is that two vehiles are involved in a ar following situation when a subjet vehilefollows a leader, normally represented by the vehile in front, reating to its ations.In general, a sensitivity-stimulus framework is adopted. Aording to this framework adriver reats to stimuli from the environment, where the stimulus is usually the leaderrelative speed. Di�erent models di�er in the spei�ation of the sensitivity term. Thismodeling idea is extended here and adapted to the more omplex ase of pedestrianbehavior. We want to stress the fat that in driver behavior modeling a distintionbetween aeleration and diretion (or lane) is almost natural (see Toledo, 2003 andToledo et al., 2003), being suggested by the transport faility itself, organized intolanes. The pedestrian ase is more omplex, the movements being two-dimensional onthe walking plane, where aeleration and diretion hanges are not easily separable.The onstrained behaviors in general, and the ollision avoidane in partiular are alsoinspired by studies in human sienes and psyhology, leading to the onept of personalspae (see Horowitz et al., 1964, Dosey and Meisels, 1969 and Sommer, 1969). Personalspae is a protetive mehanism founded on the ability of the individual to pereivesignals from the physial and soial environment. Its funtion is to reate the spaingpatterns that regulate distanes between individuals and on whih individual behaviorsare based (Webb and Weber, 2003). Helbing and Molnar (1995) in their soial foresmodel use the term �territorial e�et�. Several studies in psyhology and soiology showhow individual harateristis in�uene the pereption of the spae and interpersonaldistane. Brady and Walker (1978) found for example that anxiety states are positivelyorrelated with interpersonal distane. Similarly, Dosey and Meisels (1969) found thatindividuals establish greater distanes in high-stress onditions. Hartnett et al. (1974)found that male and female individuals approahed short individuals more losely thantall individuals. Other studies (Phillips, 1979 and Sanders, 1976) indiate that the otherperson's body size in�uenes spae.2 Modeling frameworkIn this work we refer to the general framework for pedestrian behavior desribed byDaamen (2004). Individuals make di�erent deisions, following a hierarhial sheme:strategial, tatial and operational. Destinations and ativities are hosen at a strate-gial level; the order of the ativity exeution, the ativity area hoie and route hoieare performed at the tatial level, while instantaneous deisions suh as walking andstops are taken at the operational level. In this paper, we fous on pedestrian walkingbehavior, naturally identi�ed by the operational level of the hierarhy just desribed.We onsider that the strategi and tatial deisions have been exogenously made, andare interested in modeling the short range behavior in normal onditions, as a reationto the surrounding environment and to the presene of other individuals. With the term�normal� we refer to non-evauation and non-pani situations.3



The motivations and the soundness of disrete hoie methods have been addressedin our introdutory work (Bierlaire et al., 2003, Antonini, Bierlaire and Weber, 2006,Antonini and Bierlaire, 2007). The objetive of this paper is twofold. First, we aim toprovide an extended disaggregate, fully estimable behavioral model, alibrated on realpedestrian trajetories manually traked from video sequenes. Seond, we want to testthe oherene, interpretability and generalization power of the proposed spei�ationthrough a detailed validation on external data. Compared with Antonini, Bierlaire andWeber (2006), we present three important ontributions: (i) we estimate the modelusing signi�antly more data representing revealed walking behavior, (ii) the modelspei�ation expliitly aptures leader-follower and ollision-avoidane patterns and (iii)the model is suessfully validated both using ross-validation on the estimation dataset, and foreasting validation on another experimental data set, not involved in theestimation proess. Pedestrian walking behavior
Unonstrained Constrained

Keep Toward Free �owdiretion destination a/de Collision Leaderavoidane followerFigure 1: Coneptual framework for pedestrian walking behaviorWe illustrate in Figure 1 the behavioral framework. The unonstrained deisionsare independent from the presene of other pedestrians and are generated by subjetiveand/or unobserved fators. The �rst of these fators is represented by the individ-ual's destination. It is assumed to be exogenous to the model. The seond fatoris represented by the tendeny of people to keep their urrent diretion, minimizingtheir angular displaement. Finally, unonstrained aelerations and deelerations areditated by the individual desired speed. The implementation of these ideas is madethrough the three unonstrained patterns indiated in Figure 1.We assume that behavioral onstraints are indued by the interations with theother individuals in the sene. The ollision avoidane pattern is designed to apturethe e�ets of possible ollisions on the urrent trajetory of the deision maker. Theleader-follower pattern is designed to apture the tendeny of people to follow anotherindividual in a rowd, in order to bene�t from the spae she is reating.The disrete hoie model introdued by Antonini, Bierlaire and Weber (2006) isextended here. The basi elements are the same and summarized below. Pedestrian4



movements and interations take plae on the horizontal walking plane. The spatialresolution depends on the urrent speed vetor of the individuals. The geometrialelements of the spae model are illustrated in Figure 2.
θn

pn ≡ (xn, yn)

vndn

Figure 2: The basi geometrial elements of the spae strutureIn a given oordinate system, the urrent position of the deision maker n is pn ≡

(xn, yn), her urrent speed vn ∈ IR, her urrent diretion is dn ∈ IR2 (normalized suhthat ‖dn‖ = 1) and her visual angle is θn (typially, θn = 170◦). The region of interestis situated in front of the pedestrian, ideally overlapping with her visual �eld. Anindividual-spei� and adaptive disretization of the spae is obtained to generate a setof possible plaes for the next step. Three speed regimes are onsidered. The individualan aelerate to 1.5 times her speed, an deelerate to half time her speed, or anmaintain her urrent speed. Therefore, the next position will lie into one of the zones,as depited in Figure 3(b). For a given time step t (typially, 1 seond), the deelerationzones range from 0.25vnt to 0.75vnt, with the enter being at 0.5vnt, the onstant speedzones range from 0.75vnt to 1.25vnt, with the enter being at vnt, and the aelerationzones range from 1.25vnt to 1.75vnt, with the enter being at 1.5vnt. With respet tothe diretion, a disretization into 11 radial diretions is used, as illustrated in Figure3(a), where the angular amplitudes of the radial ones are reported in degrees.A hoie set of 33 alternatives is generated where eah alternative orresponds to aombination of a speed regime v and a radial diretion d, as illustrated in Figure 4. Eahalternative is identi�ed by the physial enter of the orresponding ell in the spatialdisretization cvd, that is
cvd = pn + vtd, (1)where t is the time step. The hoie set varies with diretion and speed and so doesthe distane between an alternative's enter and other pedestrians. As a onsequene,di�erenes in individual speeds are naturally mapped into di�erenes in their relativeinterations. Note that the presene of physial obstales an be modeled by delaringthe orresponding ells as not available.3 The modelIndividuals walk on a 2D plane and we model two kinds of behavior: hanges in diretionand hanges in speed, i.e. aelerations. Five behavioral patterns are de�ned. In a5
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1 2 3 4 5 6 7 8 9 10 1112 13 14 1516171819 20 21 22232425 28 313233Figure 4: Choie set representation, with numbering of alternativesdiretion d.
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where all the β parameters as well as λa, λde, αLa, ρLa, γLa, δLa, αLde, ρLde, γLde,
δLde, αC, ρC, γC, δC are unknown and have to be estimated. Note that this spei�ationis the result of an intensive modeling proess, where many di�erent spei�ations havebeen tested. We explain in the following the di�erent terms of the utilities.3.1 Keep diretionThis part of the model aptures the tendeny of people to avoid frequent variations of thediretion. People hoose their next position in order to minimize the angular displae-ment from their urrent movement diretion. In addition to the behavioral motivationof this fator, it also plays a smoothing role in the model, avoiding drasti hanges ofdiretion from one time period to the next. In order to apture the nonlinearity of thispattern, we inlude a di�erent term for eah group of diretions. The �entral� group,identi�ed by the indiator Id,entral, ontains the ones 5, 6 and 7 (see Figure 3), the�side� group, identi�ed by the indiator Id,side, ontains the ones 3, 4, 8 and 9, and the7



�extreme� group, identi�ed by the indiator Id,extreme, ontains the ones 1, 2, 10 and11. The assoiated terms in the utility funtion are
βdir_entraldirdnId,entral + βdir_sidedirdnId,side + βdir_extremedirdnId,extreme (3)where the variable dirdn is de�ned as the angle in degrees between the diretion d andthe diretion dn, orresponding to the urrent diretion, as shown in Figure 5. Notethat the indiators guarantee that only one of these three terms is nonzero for any givenalternative. We expet the β parameters to be negative.

cvdn

d

dnDestinationddistvdnddirdn

dirdn

Figure 5: The elements apturing the keep diretion and toward destination behaviors3.2 Toward destinationThe destination is de�ned as the �nal loation that the pedestrian wants to reah. Tobe oherent with the general framework introdued in Setion 1, we assume that thedestination hoie is performed at the strategial (or possibly tatial) level in the hier-arhial deision proess, and is therefore exogenous in this model. Suh a higher levelhoie is naturally re�eted on the short term behavior as the tendeny of individuals tohoose, for the next step, a spatial loation that minimize both the angular displaementand the distane to the destination.This behavior is aptured by the term
βddistddistvdn + βddirddirdn (4)where the variable ddistvdn is de�ned as the distane (in meters) between the destinationand the enter of the alternative Cvdn, while ddirdn is de�ned as the angle in degreesbetween the destination and the alternative's diretion d, as shown in Figure 5. Weexpet a negative sign for both the βddir and βddist parameters.3.3 Free �ow aelerationIn free �ow onditions the behavior of the individual is driven by her desired speed.The aeleration is then a funtion of the di�erene between urrent speed and desired8



speed. However, this variable is unobserved and it annot be introdued expliitly inthe model. As a onsequene, we assume that the utility for aeleration is dependenton the urrent speed. Inreasing speed orresponds to dereasing utility for furtheraelerations. In order to re�et that a parameter varies with speed vn, we use thespei�ation
β = 	β(

vn

vref)λ

. (5)Note that
λ =

∂β

∂vn

vn

βan be interpreted as the elastiity of the parameter β with respet to the speed vn.The value of vref is arbitrary, and determines the referene speed orresponding to 	β.In our ontext, we de�ne suh a term for the parameters assoiated with deeleration
βdeIv,de(vn/vmax)λde (6)where Iv,de is one if v orresponds to a deeleration, and zero otherwise, and the ref-erene speed is seleted to be the maximum speed observed vmax = 4.84 (m/s). Theimpat of this term on the utility is illustrated on Figure 6(a) (the estimated valuesof the parameters have been used to generate Figure 6). It shows that the utilities ofthe alternatives assoiated with deeleration are very low when the pedestrian alreadywalks slowly. For higher speeds, this term has basially no impat on the utility.For the aeleration, we have introdued two suh terms, one for lower speeds (lessor equal to 5km/h = 1.39 m/s), and one for higher speeds.

βaLSIn,LSIv,a(vn/vmaxLS)λaLS + βaHSIn,HSIv,a(vn/vmax)λaHS (7)where In,LS is one if the individual's urrent speed is less or equal to 1.39 and zerootherwise, In,HS = 1 − In,LS, and the referene speed for low speeds vmaxLS = 1.39. Theindiator Iv,a is 1 if the alternative orresponds to an aeleration and 0 otherwise. Weexpet negative signs for βaHS, βaLS, βde and λde parameters, while a positive signis expeted for λaLS and λaHS. The impat of this term on the utility is illustrated onFigure 6(b), where the two parts of the urve (low and high speed) are represented. Itappears learly that the role of the seond part is to avoid a too dramati penalizationof aeleration for high speeds.3.4 Leader-followerWe assume that the deision maker is in�uened by leaders. In our spatial representation11 radial ones partition the spae (see Figure 3). In eah of these diretions a possibleleader an be identi�ed among a set of potential leaders. A potential leader is anindividual whih is inside a ertain region of interest, not so far from the deisionmaker and with a moving diretion lose enough to the diretion of the radial onewhere she is. Among the set of potential leaders for eah radial diretion, one of them isseleted as leader for that diretion (the losest to the deision maker). One identi�ed,the leader indues an attrative interation on the deision maker. Similarly to ar9



-100-80
-60-40-200

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5Contribution
totheutility

Speed of the pedestrian(a) Deeleration

-8-7-6
-5-4-3
-2-10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5Contribution
totheutility

Speed of the pedestrian(b) AelerationFigure 6: Impat of the free �ow aeleration terms on the utility
10



following models, a leader aeleration orresponds to a deision maker aeleration.The leader-follower model is given by the following terms
Iv,aILd,aαLaDρLa

L ∆v
γLa
L ∆θ

δLa
L + Iv,deILd,deαLdeDρLde

L ∆v
γLde
L ∆θ

δLde
L . (8)It is desribed by a sensitivity/stimulus framework. The leader for eah diretion ishosen onsidering several potential leaders (represented by light gray irles in Figure7). An individual k is de�ned as a potential leader based on the following indiatorfuntion:
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1, if dl ≤ dk ≤ dr (is in the one),and 0 < Dk ≤ Dth (not too far),and 0 < |∆θk| ≤ ∆θth (walking in almost the same diretion),
0, otherwise,where dl and dr represent the bounding left and right diretions of the one in thehoie set (de�ning the region of interest) while dk is the diretion identifying theposition of pedestrian k . Dk is the distane between pedestrian k and the deisionmaker, ∆θk = θk − θd is the di�erene between the movement diretion of pedestrian

k (θk) and the angle haraterizing diretion d, i.e. the diretion identifying the radialone where individual k lies (θd). The two thresholds Dth and ∆θth are �xed at thevalues Dth = 5Dmax, where Dmax is the radius of the hoie set, and ∆θth = 10 degrees.We assume an impliit leader hoie proess, exeuted by the deision maker herselfand modeled hoosing as leader for eah diretion the potential leader at the minimumdistane DL = mink∈K(Dk), illustrated in Figure 7 by the darker irle. One the leaderis identi�ed, we ompare her speed. The indiator ILd,a is one if the leader in theode d has been identi�ed with a speed larger than vn, and zero otherwise. Similarly,
ILd,de = 1−ILd,a is one if the leader in one d has been identi�ed with a speed lower than
vn, and zero otherwise. Finally, the indiator funtions Iv,acc and Iv,dec disriminatebetween aelerated and deelerated alternatives, as for the free �ow aeleration model.The underlying assumption is that faster leaders will have an impat on the aelaration,while slower leaders will have an impat on the deeleration.For a given leader, the sensitivity is desribed bysensitivity = αL

gD
ρL
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L (9)where DL represents the distane between the deision maker and the leader. Theparameters αL
g and ρL

g have to be estimated and g = {acc, dec} indiates when the leaderis aelerating with respet to the deision maker. Both αLa and αLde are expeted tobe positive while a negative sign is expeted for ρLa and ρLde.The deision maker reats to stimuli oming from the hosen leader. We modelthe stimulus as a funtion of the leader's relative speed ∆vL and the leader's relativediretion ∆θL as follows: stimulus = ∆v
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L (10)with ∆vL = |vL − vn|, where vL and vn are the leader's speed module and the deisionmaker's speed module, respetively. The variable ∆θL = θL − θd, where θL represents11
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DmaxFigure 7: Leader and potential leaders in a given onethe leader's movement diretion and θd is the angle haraterizing diretion d, as shownin Figure 7. Positive signs are expeted for both the γLa and γLde parameters, while weexpet a negative sign for both the δLa and δLde. A leader aeleration indues a deisionmaker's aeleration. A substantially di�erent movement diretion in the leader reduesthe in�uene of the latter on the deision maker. Note that in the �nal spei�ation,the parameter δLde appeared not to be signi�antly di�erent from 0. Therefore, we havedeided to remove it from the model for the �nal estimation. The spei�ation (8)beomes
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L . (11)3.5 Collision avoidaneThis pattern aptures the e�ets of possible ollisions on the deision maker trajetory.For eah diretion in the hoie set, a ollider is identi�ed among a set of potentialolliders. Another individual is seleted as a potential ollider if she is inside a ertainregion of interest, not so far from the deision maker and walking in the opposite dire-tion. The ollider for a radial diretion is hosen from the set of potential olliders forthat diretion as the individual whose walking diretion forms the larger angle with thedeision maker walking diretion. This pattern is assoiated with repulsive interationsin the obvious sense that pedestrians hange their urrent diretion to avoid ollisionswith other individuals. The ollision avoidane model is given by the following term
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The ollider for eah diretion is hosen onsidering several potential olliders, asshown in Figure 8. An individual k is de�ned as a potential ollider based on thefollowing indiator funtion:
Ik
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1, if dl ≤ dk ≤ dr (is in the one),and 0 < Dk ≤ D ′
th (not too far),and π

2
≤ |∆θk| ≤ π (walking in the other diretion),

0, otherwise,where dl, dr and dk are the same as those de�ned for the leader-follower model. D ′
k isthe distane between individual k and the enter of the alternative, ∆θk = θk − θdn isthe di�erene between the movement diretion of pedestrian k, θk, and the movementdiretion of the deision maker, θdn . The value of the distane threshold is now �xed to

D ′
th = 10Dmax. We use a larger value ompared to the leader-follower model, assumingthe ollision avoidane behavior being a longer range interation, happening also at alower density level. We assume an impliit ollider hoie proess, whih is determin-isti and deision-maker spei�. Among the set of Kd potential olliders for diretion

d, a ollider is hosen in eah one as that individual having ∆θC = maxk∈Kd
|∆θk|.The indiator Id,C = 1 if a ollider has been identi�ed, and 0 otherwise. Finally, theollision avoidane term is inluded in the utility funtions of all the alternatives. So,the indiator funtion Id,dn is equal to 1 for those alternatives that are not in the urrentdiretion (d 6= dn), 0 otherwise.
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DmaxFigure 8: Collider and potential olliders in a given oneWe apply a similar sensitivity/stimulus framework, where the sensitivity funtion is13



de�ned as sensitivity = αCeρCDC (13)where the parameters αC and ρC, that have to be estimated, are expeted to have botha negative sign and DC is the distane between the ollider position and the enter ofthe alternative. The deision maker reats to stimuli oming from the ollider. Wemodel the stimulus as a funtion of two variables:stimulus = ∆v
γC

C ∆θδC

C (14)with ∆θC = θC − θdn , where θC is the ollider movement diretion and θdn is thedeision maker movement diretion, and ∆vC = vC+vn, where vC is the ollider's speedmodule and vn is the deision maker's speed module. The parameters γC and δC haveto be estimated and a positive sign is expeted for both of them. Individuals walkingagainst the deision maker at higher speeds and in more frontal diretions (higher ∆θC)generate stronger reations, weighted by the sensitivity funtion.Note that in the �nal spei�ation, the parameters γC and δC appeared not to besigni�antly di�erent from 0. Therefore, we have deided to remove them from themodel for the �nal estimation. The spei�ation involves only the sensitivity part (13).3.6 The error termWe use a ross nested logit (CNL) model (see, among others, Wen and Koppelman,2001, Bierlaire, 2006, Abbe et al., 2007) spei�ation. Suh a model allows �exibleorrelation strutures in the hoie set, keeping a losed form solution. The CNL beinga Multivariate Extreme Value model (MEV, see MFadden, 1978), the probability ofhoosing alternative i within the hoie set C is:
P(i|C) =
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(15)where J is the number of alternatives in C, yj = eVj with Vj the systemati part of theutility desribed by (2) and G is the following generating funtion:
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(17)We assume a orrelation struture depending on the speed and diretion and weidentify �ve nests: aelerated, onstant speed, deelerated, entral and not entral.14



(a) Japanese senarioFigure 9: A frame from the Japanese videoWe �x the degrees of membership to the di�erent nests (αjm) to the onstant value 0.5.The parameter µ is normalized to 1, and the nest parameters µm are estimated. Notethat the parameters assoiated with the deeleration nest has been onstrained to 1 inthe �nal spei�ation, as it did not appear to be signi�antly di�erent to that value.We onlude this setion by emphasizing that the above spei�ation ignores het-erogeneity in the population. Charateristis suh as age, sex, weight, height (amongothers) probably in�uene the spatial pereption, interpersonal distane and human-human interations. However, given the nature of the data (trajetories) it is not possi-ble to take them into aount in the model. Therefore, a spei�ation with unobservedheterogeneity aptured by random oe�ient in a panel data setup would have beenappropriate. However, the omplexity of this spei�ation did not allow us to estimatethe model with a su�iently high number of draws.4 DataThe data set used to estimate the model onsists of pedestrian trajetories manuallytraked from video sequenes.It has been olleted in Sendai, Japan, on August 2000 (see Teknomo et al., 2000,Teknomo, 2002). The video sequene has been reorded from the 6th �oor of the JTBparking building (around 19 meters height), situated at a large pedestrian rossing point.Two main pedestrian �ows ross the street, giving rise to a large number of interations.A frame extrated from this video is represented in Figure 9.In this ontext, 190 pedestrian trajetories have been manually traked at a rateof 2 proessed frames per seond, for a total number of 10200 position observations.The mapping between the image plane and the walking plane was performed by Ar-senal Researh (Bauer, 2007) using a 3D-alibration with the standard DLT algorithm(Shapiro, 1978). The referene system on the walking plane has the origin arbitrarily15



plaed on the bottom left orner of the zebra rossing. The x axis represents the widthof the rossing while the y axis is the rossing length.For eah frame, the following information for eah visible pedestrian has been ol-leted: (i) the time t orresponding to the frame f (in this ase t = f/2), (ii) thepedestrian identi�er n, and (iii) the oordinates pf
n = (xf

n, yf
n) identifying the loationof the pedestrian in the walking plane.From these raw data, we have �rst derived the urrent diretion and speed of eahpedestrian using the urrent and the previous frames, that is

dn = pf
n − pf−1

n ,

vn = ‖dn‖/0.5 = 2‖dn‖.In Figure 10 we report the speed histogram and in Table 1 the speed statistis.Then, a spei� hoie set (see Figure 4) has been onstruted for eah pedestrian,based on (1) where t = 1 se (that is, 2 frames), v = vn for onstant speed alternatives,
v = 0.5vn for deelerated alternatives, v = 1.5vn for aelerated alternatives, d = dnfor alternatives in one 6 (alt. 6, 17, 28), and d = rot(dn, ζ) is obtained by rotating dnaround pn with an angle ζ orresponding to the one, that isCone 1: ζ = 72.5◦, Cone 11: ζ = −72.5◦,Cone 2: ζ = 50◦, Cone 10: ζ = −50◦,Cone 3: ζ = 32.5◦, Cone 9: ζ = −32.5◦,Cone 4: ζ = 20◦, Cone 8: ζ = −20◦,Cone 5: ζ = 10◦, Cone 7: ζ = −10◦.For eah ell in the hoie set, eah variable in (2) has then been omputed basedon the desriptions in Setion 3. Note that the destination of eah individual is de�nedby her loation in the last frame where she is visible. Finally, the hosen alternative hasbeen identi�ed as the ell ontaining the pedestrian's loation after 1 seond, that is pf+2

n .In the rare instanes where pf+2
n did not belong to any ell (beause of numerial errorsdue to poor image resolution, or extreme speed variations), the orresponding piee ofdata was removed from the sample (for a total of 919 observations). We represent inFigure 11 seleted generated hoie sets on a given trajetory (representing them allwould have been unreadable on the �gure).We obtain a total of 9281 observations for 190 pedestrians . In Figure 12 we reportthe frequeny of the revealed hoies as observed in the data set. The three peaks in thedistributions arise on the entral alternatives (6, 17, 28), as expeted. Note that ells1, 12, 23 and 33 are never hosen in this sample. The repartition of the observationsaross the nests is detailed in Table 2.5 Estimation resultsWe report in Table 3 the estimation results. The parameters have been estimated usingthe Biogeme pakage (Bierlaire, 2003, biogeme.ep�.h).All estimates have the expeted sign. Note that the parameter assoiated with thedeeleration nest was learly insigni�ant, and �xed to 1. The p-value for the entral16



Mean 1.31Standard Error 0.012Median 1.27Mode 1.28Standard Deviation 0.37Minimum 0.43Maximum 4.84Note: standard error is the estimated standard deviation of the sample meanTable 1: Speed statistis(m/se)
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alternativesFigure 12: Revealed hoies histogramsNest # steps % of totalaeleration 1065 11.48%onstant speed 7565 81.51%deeleration 651 7.01%entral 4297 46.30%not entral 4984 53.70%Table 2: Number of hosen steps in eah nest for the real data setnest parameter is 0.27 (t-test = 1.11) whih annot be used for a lear rejetion of thenull hypothesis that the true value is 1.0. However, to avoid a potential misspei�ation,we prefer not onstraining it to 1 in the �nal model.In addition to the proposed model, we analyze also a simple model, where the utilityof eah alternative is represented only by an alternative spei� onstant. This onstant-only model perfetly reprodues the observed shares in the sample, with 28 parameters.Indeed, there are 33 alternatives, minus 4 whih are never hosen, minus one onstantnormalized to 0. With this model, the loglikelihood drops from -13997.27 down to-17972.03, illustrating the statistial signi�ane of the proposed spei�ation. Notethat a lassial likelihood ratio test is not appropriate here, as the hypotheses are notnested. We believe that a more rigorous test is not really neessary given the huge jumpin loglikelihood value.6 Model validationTwo data sets are used for validation: the Japanese data set used for estimation anddesribed in Setion 4, and a data set olleted in the Netherlands, whih has not beeninvolved at all in the estimation of the parameters.18



Variable Coe�ient t test 0 Variable Coe�ient t test 0 t test 1name estimate name estimate
βddir -0.0790 -24.53 ρLa -0.489 -2.19
βddist -1.55 -11.66 γLa 0.625 2.87
βdir_extreme -0.0326 -9.30 αLde 3.69 6.90
βdir_side -0.0521 -21.87 ρLde -0.663 -7.11
βdir_entral -0.0252 -8.74 γLde 0.652 6.19
βaLS -4.97 -22.61 δLa -0.171 -2.33
βaHS -7.47 -5.21 αC -0.00639 -9.82
βde -0.0630 -2.40 ρC -0.239 -8.28
λaLS 4.16 15.94 µacc 1.66 9.73 3.88
λaHS 0.358 2.09 µconst 1.50 13.46 4.48
λde -2.41 -8.43 µcentral 2.35 1.93 1.11
αLa 0.942 2.28 µnot_central 1.75 9.46 4.04Sample size = 9281 Init log-likelihood = -32451Nbr of estimated parameters = 24 Final log-likelihood = -13997.27	ρ2 = 0.568 Likelihood ratio test = 36907Table 3: CNL estimation results for the Japanese data setIn Setion 6.1, we apply the model on the Japanese data set, and ompare thepredited hoies with the observed ones. In Setion 6.2, we test the robustness of themodel spei�ation by performing ross-validation, where a subset of the Japanese dataset is saved for validation, and the model is estimated on the rest. Finally, in Setion 6.3,we apply both our model, and a simple onstant-only model on the data set olletedin the Netherlands.6.1 Japanese data set: validation of the modelWe �rst apply our model with the parameters desribed in Table 3 on the Japanesedata set, using the Biosim pakage (Bierlaire, 2003). For eah observation n, we obtaina probability distribution Pn(i) over the hoie set.Figure 13 represents the histogram of the probability value Pn(i∗n) assigned by themodel to the hosen alternative i∗n of eah observation n, along with the hazard value

1/33 (where 33 is the number of alternatives). We onsider observations below thisthreshold as outliers. There are only 7.13% of them. As a omparison, there are 19.90%of outliers with the onstant-only model.The top part of Figure 14 reports, for eah i, ∑

nPn(i), and the bottom part reports
∑

nyin, where yin is 1 if alternative i is seleted for observation n, 0 otherwise. Asexpeted, the two histograms are similar, indiating no major spei�ation error.This is on�rmed when alternatives are aggregated together, by diretions (see Table4) and by speed regimes (see Table 5). For a group Γ of alternatives, the quantities
MΓ =

∑

n

∑

i∈Γ Pn(i),

RΓ =
∑

n

∑

i∈Γ yin,19
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probabilitiesFigure 13: Predited probabilities of the Japanese dataand
(MΓ − RΓ)/RΓare reported in olumns 3, 4 and 5, respetively, of these tables.The relative errors showed in Table 4 and Table 5 are low, exept for groups ofalternatives with few observations, that is groups orresponding to extreme left andextreme right diretions.Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 5 − 7, 16 − 18, 27 − 29 8489.27 8481 0.0010Left 3, 4, 14, 15, 25, 26 349.67 367 −0.0472Right 8, 9, 19, 20, 30, 31 415.45. 407 0.0208Extreme left 1, 2, 12, 13, 23, 24 12.29 10 0.2296Extreme right 10, 11, 21, 22, 32, 33 14.30 16 −0.1059Table 4: Predited (MΓ) and observed (RΓ) shares for alternatives grouped by diretionswith the Japanese data set.6.2 Japanese data set: validation of the spei�ationIn order to test the proposed spei�ation, we have performed a ross validation doneon the Japanese data set. It onsists in splitting the data set into 5 subsets, eahontaining 20% of the observations. We perform 5 experiments. For eah of them, oneof the �ve subsets is saved for validation purposes, and the model is re-estimated onthe remaining 4 subsets. The same proedure has been applied with the onstant-onlymodel. The proportion of outliers for eah experiment is reported in table 6. We observethat they are onsistent with 7.13% (for our model) and 19.90% (for the onstant-only20
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Area Γ MΓ RΓ (MΓ − RΓ)/RΓaeleration 1 − 11 1041.50 1065 −0.0221%onstant speed 12 − 22 7606.49 7565 0.0055deeleration 23 − 33 633.02 651 −0.0276%Table 5: Predited and observed shares for alternatives grouped by speed regime withthe Japanese data set.
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model) of outliers obtained with the omplete data set, illustrating the robustness ofthe spei�ation.Model Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5Proposed spe. 8.78% 6.36% 7.60% 7.87% 5.87%Constant only 20.79% 20.70% 17.13% 19.88% 18.64%Table 6: Summary of the ross-validation performed on the Japanese data setThe above analysis indiates a good spei�ation and performane of the model.However, it is not su�ient to fully validate it. Consequently, we perform now the sameanalysis on a validation data set, not involved in the estimation of the model.6.3 Duth data set: validation of the modelThis data set has been olleted at Delft University, in the period 2000-2001 (Daamenand Hoogendoorn, 2003, Daamen, 2004) where volunteer pedestrians were alled toperform spei� walking tasks in a ontrolled experimental setup.For the purpose of our validation proedure we use the subset of the Duth data setorresponding to a bi-diretional �ow. This situation is the experimental version of theJapanese data set, whih orresponds to a walkway. The subset inludes 724 subjetsfor 47481 observed positions, olleted by means of pedestrian traking tehniques onvideo sequenes, at a frequeny of 10Hz, that is 10 frames per seond. In Figure 15 wereport one frame from the experimental senario.For eah frame, we have olleted for eah visible pedestrian the time t orrespondingto the frame f (in this ase t = f/10), the pedestrian identi�er n, and the oordinates
pf

n = (xf
n, yf

n) identifying the loation of the pedestrian in the walking plane. Fromthese raw data, we have derived the urrent diretion and speed of eah pedestrianusing the urrent and the previous frames, that is
dn = pf

n − pf−1
n ,

vn = ‖dn‖/0.1 = 10‖dn‖.Consistently with the model assumptions, the hosen alternative has been identi�ed asthe ell ontaining the pedestrian's loation after 1 seond, that is pf+10
n .The repartition of the observations aross nests is detailed in Table 7. We note thevery low number of deelerations and aelerations, probably due to the experimentalnature of the data.We ompare the observed hoies for the Japanese and the Duth data set in Table 8and Figure 16. Table 8 reports the perentage of observations for ells at the extremeleft of the hoie set (alts. 1, 2, 12, 13, 23, 24), the left part (alts. 3, 4, 14, 15,25, 26), the front (alts. 5-7, 16-18, 27-29), the right (alts. 8, 9, 19, 20, 30, 31) andthe extreme right ( 10, 11, 21, 22, 32, 33). Figure 16 reports normalized observation,that is, for eah alternative i, ∑

nyin/N, where yin is 1 if alternative i is seleted forobservation n, 0 otherwise, and N is the total number of observations. We observea great similarity in the observed proportions, exept for alternatives orresponding to22



Figure 15: A representative frame from the video sequenes used for data olletionNest # steps % of totalaeleration 1273 2.68%onstant speed 45869 96.61%deeleration 339 0.71%entral 20950 44.12%not entral 26531 55.88%Table 7: Number of hosen steps in eah nest for Duth dataaelerations and deelerations. This suggests that a simple model, with only alternativespei� onstants, may atually perform well on this data set. We show below that itis not the ase.Dataset extremeleft left front right extremerightJapanese 0.11% 3.95% 91.38% 4.39% 0.17%Duth 0.06% 4.40% 91.35% 4.15% 0.04%Table 8: Comparison between Japanese and Duth data sets for the observations pro-portions in the diretion's ones.We apply our model with the parameters desribed in Table 3 on the Duth data set,using the Biosim pakage. For eah observation n, we obtain a probability distribution
Pn(i) over the hoie set.Figure 17 represents the histogram of the probabilities Pn(i∗n) of the hosen alter-natives as predited by the model, as well as the hazard value 1/33 (where 33 is thenumber of alternatives) illustrating the predition of a purely random model with equalprobabilities. Again, we onsider observations below this threshold as outliers. We ob-serve that there are 2.48% of them. This is good news, as it is atually less than forthe data set used for parameters estimation. The shape of the urve, as well as the lownumber of outliers are signs of a good performane of the model. When we ompare itwith the preditions obtained with the onstant-only model (Figure 18), the superiorforeasting potential of our model appears learly.23
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Figure 16: Comparison between the Japanese and duth normalized observations dis-tributions along the alternatives.The signi�ant superiority of our model over the onstant-only model is also illus-trated by omparing the proportion of outliers (2.48% vs. 10.31%) or the loglikelihood(-51647.38 vs. -77269.28, as detailed in Table 14).
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nyin. The preditions are very satisfatory, exept maybe for the deelerations(alternatives 22 to 33) and aelerations (alternatives 1 to 11).We also perform the omparison at a more aggregate level, for groups of ells. Tables9 and 10 show a good overall performane of the model. Clearly, the extreme left andextreme right groups ontain too few observations to reah any onlusion. The onlybias seems to onsist in a systemati over-predition of aelerations and deelerations.24



10000

15000

20000

o
b

se
rv

a
ti

o
n

s 
(n

b
)

Predicted probabilities for dutch data

0

5000

10000

0
.0

1

0
.0

4

0
.0

7

0
.1

0

0
.1

3

0
.1

6

0
.1

9

0
.2

2

0
.2

5

0
.2

8

0
.3

1

0
.3

4

0
.3

7

0
.4

0

0
.4

3

0
.4

6

0
.4

9

0
.5

2

0
.5

5

0
.5

8

0
.6

1

0
.6

4

0
.6

7

0
.7

0

0
.7

3

0
.7

6

0
.7

9

0
.8

2

0
.8

5

0
.8

8

0
.9

1

0
.9

4

0
.9

7

1
.0

0

o
b

se
rv

a
ti

o
n

s 
(n

b
)

probabilities

proposed spec.

constant only

Figure 18: Predition with the onstant-only and the proposed model
Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 5 − 7, 16 − 18, 27 − 29 43619.98 43374 0.0057Left 3, 4, 14, 15, 25, 26 1968.79 2089 −0.0575Right 8, 9, 19, 20, 30, 31 1764.39 1972 −0.1053Extreme left 1, 2, 12, 13, 23, 24 45.86 27 0.6985Extreme right 10, 11, 21, 22, 32, 33 81.97 19 3.3144Table 9: Predited (MΓ) and observed (RΓ) shares for alternatives grouped by diretionswith the Duth data set.

Area Γ MΓ RΓ (MΓ − RΓ)/RΓaeleration 1 − 11 3892.35 1273 2.0576onstant speed 12 − 22 40733.53 45869 −0.112deeleration 23 − 33 2855.12 339 7.4222Table 10: Predited (MΓ) and observed (RΓ) shares for alternatives grouped by speedregime with the Duth data set.
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This is onsistent with the above-desribed analysis. The Duth data set was olletedin ontrolled experimental onditions, whih may have introdued a bias in pedestrianbehavior, depending on the exat instrutions they have reeived. This assumption issupported by the quasi absene of deelerations in the data set, and by the di�erentshapes of the speed distributions (see Figure 20). While the Japanese urve appears tobe Gaussian, the Duth urves ontain some non-Gaussian features whih are likely tobe a result of the experimental nature of the data. In partiular, the support is muhnarrower, with few high speeds. Note that, in the Japanese ase, some pedestrians arerunning when the tra� light beomes red and the ars start moving.Data Set Mean speed [m/s℄Duth (experimental) 1.297Japanese (real) 1.341Table 11: Average pedestrian speed in the data sets
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Figure 20: Distribution of speed in the two data setsWe report now the same aggregate predition obtained with the onstant-only modelin Tables 12 and 13. The good performane of this simple model at the aggregatelevel emphasizes the need for the disaggregate validation performed above. Indeed,this apparently good performane of the model is due to the oinidental similarityof proportions of hosen alternatives in the two data sets (see Table 8). The detailedanalysis presented in Figure 18 learly rejets the simple model, while the aggregateanalysis does not.For the sake of ompleteness, a onstant-only model has been alibrated on theDuth data set, in the same way than for the Japanese. Our model estimated on theJapanese data is better than the onstant-only model estimated on the Duth data, whenapplied on the Duth data set, both for log-likelihood (-51647.38 against -71847.69) andpredition (2.48 %, perentage of outliers against 4.33%). We have summarized thevarious loglikelihood values in Table 14, where eah olumn orresponds to a model,and eah row to a data set.In summary, we observe that our model applied on the estimation data (Japanese)have few outliers ompared to the onstant-only model, and reprodues well the ob-27



Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 5 − 7, 16 − 18, 27 − 29 43386.42 43374 0.0003Left 3, 4, 14, 15, 25, 26 1877.47 2089 −0.1013Right 8, 9, 19, 20, 30, 31 2082.10 1972 0.0558Extreme left 1, 2, 12, 13, 23, 24 51.16 27 0.8947Extreme right 10, 11, 21, 22, 32, 33 81.85 19 3.308Table 12: Predited (MΓ) using the onstant-only model and observed (RΓ) shares foralternatives grouped by diretions with the Duth data set.Area Γ MΓ RΓ (MΓ − RΓ)/RΓaeleration 1 − 11 5448.24 1273 3.2798onstant speed 12 − 22 38700.42 45869 −0.1563deeleration 23 − 33 3330.34 339 8.824Table 13: Predited (MΓ) using the onstant-only model and observed (RΓ) shares foralternatives grouped by speed regime with the Duth data set.served hoies. A foreasting ross-validation based on 80% of the sample ilustrate thegood robustness of the spei�ation. When the model is applied on the validation data(Duth), we observe few outliers and an exellent probability histogram. Also, it re-produes very well the observed hoies, in terms of diretions and onstant speed. Weemphasize that this disaggregate analysis was neessary, as the aggregate omparisondoes not rejet the onstant-only model.7 ConlusionsIn this paper we propose a disrete hoie model for pedestrian walking behavior. Theshort range walking behavior of individuals is modeled, identifying two main patterns:onstrained and unonstrained. The onstraints are generated by the interations withother individuals. We desribe interations in terms of a leader-follower and a ollisionavoidane models. These models apture self-organizing e�ets whih are harateristiof rowd behavior, suh as lane formation. Inspiration for the mathematial form ofthese patterns is taken from driver behaviors in transportation siene, and ideas suhas the ar following model and lane hanging models have been reviewed and re-adaptedto the more omplex pedestrian ase. The di�ulties to ollet pedestrian data as wellas the limited information onveyed by pure dynami data sets limit the possibilities inConstant-only model Constant-only modelData set Our model based on Japanese data based on Duth dataJapanese -13997.27 -17972.03 �Duth -51647.38 -77269.28 -71847.69Table 14: Loglikelihood of eah model applied on the two data sets28



the model spei�ation step. Important individual e�ets annot be aptured withoutthe support of soio-eonomi harateristis. Reent development of pedestrian labo-ratories, where the set up of ontrolled experimental onditions is possible, representsan important step in this diretion. We use experimental data in a two step validationproedure. First, the model is validated on the same data set used for estimation inorder to hek for possible spei�ation errors. Seond, the model is run on a newdata set olleted at Delft University under ontrolled experimental onditions. Theproposed validation proedure underline a good stability of the model and a good fore-asting performane. Few observations are badly predited, mostly onentrated at theextreme of the hoie set. The estimated oe�ients are signi�ant and their sign isonsistent with our behavioral assumptions. Di�erently from other previous models,we an quantify the in�uene of the relative kinemati harateristis of leaders andolliders on the deision maker behavior. Moreover, suh quantitative analysis has beenperformed using real world pedestrian data.Future developments will fous in analyzing more and improving the aelerationand deeleration patterns. In partiular, we plan to investigate the use of an adaptiveresolution of the hoie set, as well as inorporating in the model some physial andsoio-eonomi harateristis of the pedestrians.AknowledgmentsWe are very grateful to Kardi Teknomo and Dietmar Bauer (Arsenal Researh) andSerge Hoogendoorn and Winnie Daamen (TU Delft), who provided us with the datasets. We also would like to thank Sabina Shneider, who performed the analysis for aprevious version of this paper.ReferenesAbbe, E., Bierlaire, M. and Toledo, T. (2007). Normalization and orrelation ofross-nested logit models, Transportation Researh Part B: Methodologial41(7): 795�808.Ahmed, K. I. (1999). Modeling drivers' aeleration and lane hanging behaviors.,PhD thesis, Massahusetts Institute of Tehnology, Cambridge, MA.Antonini, G. (2005). A disrete hoie modeling framework for pedestrian walkingbehavior with appliation to human traking in video sequenes, PhD thesis,Eole Polytehnique Fédérale de Lausanne. 3382.Antonini, G. and Bierlaire, M. (2007). A disrete hoie framework for aeleration anddiretion hange behaviors in walking pedestrians, in N. Waldau, P. Gattermann,H. Kno�aher and M. Shrekenberg (eds), Pedestrian and Evauation Dynamis2005, Springer, pp. 145�156. ISBN:978-3-540-47062-5.
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