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Abstra
tWe propose and validate a model for pedestrian walking behavior, based on dis-
rete 
hoi
e modeling. Two main types of behavior are identi�ed: un
onstrainedand 
onstrained. By un
onstrained, we refer to behavior patterns whi
h are in-dependent from other individuals. The 
onstrained patterns are 
aptured by aleader-follower model and by a 
ollision avoidan
e model. The spatial 
orrela-tion between the alternatives is 
aptured by a 
ross nested logit model. The model isestimated by maximum likelihood estimation on a real data set of pedestrian traje
-tories, manually tra
ked from video sequen
es. The model is su

essfully validatedusing a bi-dire
tional �ow data set, 
olle
ted in 
ontrolled experimental 
onditionsat Delft university.1 Introdu
tionPedestrian behavior modeling is an important topi
 in di�erent 
ontexts. Ar
hite
ts areinterested in understanding how individuals move into buildings to 
reate optimal spa
edesigns. Transport engineers fa
e the problem of integration of transportation fa
ilities,with parti
ular emphasis on safety issues for pedestrians. Re
ent tragi
 events havein
reased the interest for automati
 video surveillan
e systems, able to monitor pedes-trian �ows in publi
 spa
es, throwing alarms when abnormal behaviors o

ur. Spe
ialemphasis has been given to more spe
i�
 eva
uation s
enarios, for obvious reasons. Inthis spirit, it is important to de�ne mathemati
al models based on behavioral assump-tions, tested by means of proper statisti
al methods. Data 
olle
tion for pedestriandynami
s is parti
ularly di�
ult and only few models presented in the literature havebeen 
alibrated and validated on real data sets.Previous methods for pedestrian behavior modeling 
an be 
lassi�ed into two main
ategories: mi
ros
opi
 and ma
ros
opi
 models. In the last years mu
h more at-tention has fo
used on mi
ros
opi
 modeling, where ea
h pedestrian is modeled as anagent. Examples of mi
ros
opi
 models are the so
ial for
es model in Helbing and Mol-nar (1995) and Helbing et al. (2002) where the authors use Newtonian me
hani
s witha 
ontinuous spa
e representation to model long-range intera
tions, and the multi-layerutility maximization model by Hoogendoorn et al. (2002) and Daamen (2004). Blue andAdler (2001) and S
hads
hneider (2002) use 
ellular automata models, 
hara
terized bya stati
 dis
retization of the spa
e where ea
h 
ell in the grid is represented by a statevariable. Another mi
ros
opi
 approa
h is based on spa
e syntax theory where peoplemove through spa
es following 
riteria of spa
e visibility and a

essibility (see Penn andTurner, 2002) and minimizing angular paths (see Turner, 2001). Finally, Borgers andTimmermans (1986), Whynes et al. (1996) and Dellaert et al. (1998) fo
us on destina-tion and route 
hoi
e problems on network topologies. For a general literature reviewon pedestrian behavior modeling we refer the interested reader to Bierlaire et al. (2003).For appli
ations of pedestrian models in image analysis, we refer the reader to our pre-vious work ( Antonini et al., 2004, Venegas et al., 2005, Antonini, 2005 and Antonini,Venegas, Bierlaire and Thiran, 2006)Leader-follower and 
ollision avoidan
e behaviors play a major role in explainingpedestrian movements. Existing literature has shown the o

urren
e of self-organizing2



pro
esses in 
rowded environments. At 
ertain levels of density, intera
tions betweenpeople give rise to lane formation. In order to model these e�e
ts formally, we took in-spiration from previous 
ar following models in transport engineering (in
luding Newell,1961, Herman and Rothery, 1965, Lee, 1966, Ahmed, 1999). The main idea in these mod-els is that two vehi
les are involved in a 
ar following situation when a subje
t vehi
lefollows a leader, normally represented by the vehi
le in front, rea
ting to its a
tions.In general, a sensitivity-stimulus framework is adopted. A

ording to this framework adriver rea
ts to stimuli from the environment, where the stimulus is usually the leaderrelative speed. Di�erent models di�er in the spe
i�
ation of the sensitivity term. Thismodeling idea is extended here and adapted to the more 
omplex 
ase of pedestrianbehavior. We want to stress the fa
t that in driver behavior modeling a distin
tionbetween a

eleration and dire
tion (or lane) is almost natural (see Toledo, 2003 andToledo et al., 2003), being suggested by the transport fa
ility itself, organized intolanes. The pedestrian 
ase is more 
omplex, the movements being two-dimensional onthe walking plane, where a

eleration and dire
tion 
hanges are not easily separable.The 
onstrained behaviors in general, and the 
ollision avoidan
e in parti
ular are alsoinspired by studies in human s
ien
es and psy
hology, leading to the 
on
ept of personalspa
e (see Horowitz et al., 1964, Dosey and Meisels, 1969 and Sommer, 1969). Personalspa
e is a prote
tive me
hanism founded on the ability of the individual to per
eivesignals from the physi
al and so
ial environment. Its fun
tion is to 
reate the spa
ingpatterns that regulate distan
es between individuals and on whi
h individual behaviorsare based (Webb and Weber, 2003). Helbing and Molnar (1995) in their so
ial for
esmodel use the term �territorial e�e
t�. Several studies in psy
hology and so
iology showhow individual 
hara
teristi
s in�uen
e the per
eption of the spa
e and interpersonaldistan
e. Brady and Walker (1978) found for example that anxiety states are positively
orrelated with interpersonal distan
e. Similarly, Dosey and Meisels (1969) found thatindividuals establish greater distan
es in high-stress 
onditions. Hartnett et al. (1974)found that male and female individuals approa
hed short individuals more 
losely thantall individuals. Other studies (Phillips, 1979 and Sanders, 1976) indi
ate that the otherperson's body size in�uen
es spa
e.2 Modeling frameworkIn this work we refer to the general framework for pedestrian behavior des
ribed byDaamen (2004). Individuals make di�erent de
isions, following a hierar
hi
al s
heme:strategi
al, ta
ti
al and operational. Destinations and a
tivities are 
hosen at a strate-gi
al level; the order of the a
tivity exe
ution, the a
tivity area 
hoi
e and route 
hoi
eare performed at the ta
ti
al level, while instantaneous de
isions su
h as walking andstops are taken at the operational level. In this paper, we fo
us on pedestrian walkingbehavior, naturally identi�ed by the operational level of the hierar
hy just des
ribed.We 
onsider that the strategi
 and ta
ti
al de
isions have been exogenously made, andare interested in modeling the short range behavior in normal 
onditions, as a rea
tionto the surrounding environment and to the presen
e of other individuals. With the term�normal� we refer to non-eva
uation and non-pani
 situations.3



The motivations and the soundness of dis
rete 
hoi
e methods have been addressedin our introdu
tory work (Bierlaire et al., 2003, Antonini, Bierlaire and Weber, 2006,Antonini and Bierlaire, 2007). The obje
tive of this paper is twofold. First, we aim toprovide an extended disaggregate, fully estimable behavioral model, 
alibrated on realpedestrian traje
tories manually tra
ked from video sequen
es. Se
ond, we want to testthe 
oheren
e, interpretability and generalization power of the proposed spe
i�
ationthrough a detailed validation on external data. Compared with Antonini, Bierlaire andWeber (2006), we present three important 
ontributions: (i) we estimate the modelusing signi�
antly more data representing revealed walking behavior, (ii) the modelspe
i�
ation expli
itly 
aptures leader-follower and 
ollision-avoidan
e patterns and (iii)the model is su

essfully validated both using 
ross-validation on the estimation dataset, and fore
asting validation on another experimental data set, not involved in theestimation pro
ess. Pedestrian walking behavior
Un
onstrained Constrained

Keep Toward Free �owdire
tion destination a

/de
 Collision Leaderavoidan
e followerFigure 1: Con
eptual framework for pedestrian walking behaviorWe illustrate in Figure 1 the behavioral framework. The un
onstrained de
isionsare independent from the presen
e of other pedestrians and are generated by subje
tiveand/or unobserved fa
tors. The �rst of these fa
tors is represented by the individ-ual's destination. It is assumed to be exogenous to the model. The se
ond fa
toris represented by the tenden
y of people to keep their 
urrent dire
tion, minimizingtheir angular displa
ement. Finally, un
onstrained a

elerations and de
elerations aredi
tated by the individual desired speed. The implementation of these ideas is madethrough the three un
onstrained patterns indi
ated in Figure 1.We assume that behavioral 
onstraints are indu
ed by the intera
tions with theother individuals in the s
ene. The 
ollision avoidan
e pattern is designed to 
apturethe e�e
ts of possible 
ollisions on the 
urrent traje
tory of the de
ision maker. Theleader-follower pattern is designed to 
apture the tenden
y of people to follow anotherindividual in a 
rowd, in order to bene�t from the spa
e she is 
reating.The dis
rete 
hoi
e model introdu
ed by Antonini, Bierlaire and Weber (2006) isextended here. The basi
 elements are the same and summarized below. Pedestrian4



movements and intera
tions take pla
e on the horizontal walking plane. The spatialresolution depends on the 
urrent speed ve
tor of the individuals. The geometri
alelements of the spa
e model are illustrated in Figure 2.
θn

pn ≡ (xn, yn)

vndn

Figure 2: The basi
 geometri
al elements of the spa
e stru
tureIn a given 
oordinate system, the 
urrent position of the de
ision maker n is pn ≡

(xn, yn), her 
urrent speed vn ∈ IR, her 
urrent dire
tion is dn ∈ IR2 (normalized su
hthat ‖dn‖ = 1) and her visual angle is θn (typi
ally, θn = 170◦). The region of interestis situated in front of the pedestrian, ideally overlapping with her visual �eld. Anindividual-spe
i�
 and adaptive dis
retization of the spa
e is obtained to generate a setof possible pla
es for the next step. Three speed regimes are 
onsidered. The individual
an a

elerate to 1.5 times her speed, 
an de
elerate to half time her speed, or 
anmaintain her 
urrent speed. Therefore, the next position will lie into one of the zones,as depi
ted in Figure 3(b). For a given time step t (typi
ally, 1 se
ond), the de
elerationzones range from 0.25vnt to 0.75vnt, with the 
enter being at 0.5vnt, the 
onstant speedzones range from 0.75vnt to 1.25vnt, with the 
enter being at vnt, and the a

elerationzones range from 1.25vnt to 1.75vnt, with the 
enter being at 1.5vnt. With respe
t tothe dire
tion, a dis
retization into 11 radial dire
tions is used, as illustrated in Figure3(a), where the angular amplitudes of the radial 
ones are reported in degrees.A 
hoi
e set of 33 alternatives is generated where ea
h alternative 
orresponds to a
ombination of a speed regime v and a radial dire
tion d, as illustrated in Figure 4. Ea
halternative is identi�ed by the physi
al 
enter of the 
orresponding 
ell in the spatialdis
retization cvd, that is
cvd = pn + vtd, (1)where t is the time step. The 
hoi
e set varies with dire
tion and speed and so doesthe distan
e between an alternative's 
enter and other pedestrians. As a 
onsequen
e,di�eren
es in individual speeds are naturally mapped into di�eren
es in their relativeintera
tions. Note that the presen
e of physi
al obsta
les 
an be modeled by de
laringthe 
orresponding 
ells as not available.3 The modelIndividuals walk on a 2D plane and we model two kinds of behavior: 
hanges in dire
tionand 
hanges in speed, i.e. a

elerations. Five behavioral patterns are de�ned. In a5
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retization of speed regimesFigure 3: The spatial dis
retization.dis
rete 
hoi
e 
ontext, they have to be 
onsidered as terms entering the utility fun
tionsof ea
h alternative, as reported in Equation 2. The utilities des
ribe the spa
e aroundthe de
ision maker and under the rational behavior assumption the individual 
hoosesthat lo
ation (alternative) with the maximum utility. In the following, we dis
uss thedi�erent patterns and the asso
iated assumptions in more details.Following the framework proposed in Figure 1 we report here the systemati
 utilityas per
eived by individual n for the alternative identi�ed by the speed regime v and

6



1 2 3 4 5 6 7 8 9 10 1112 13 14 1516171819 20 21 22232425 28 313233Figure 4: Choi
e set representation, with numbering of alternativesdire
tion d.
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where all the β parameters as well as λa

, λde
, αLa

, ρLa

, γLa

, δLa

, αLde
, ρLde
, γLde
,
δLde
, αC, ρC, γC, δC are unknown and have to be estimated. Note that this spe
i�
ationis the result of an intensive modeling pro
ess, where many di�erent spe
i�
ations havebeen tested. We explain in the following the di�erent terms of the utilities.3.1 Keep dire
tionThis part of the model 
aptures the tenden
y of people to avoid frequent variations of thedire
tion. People 
hoose their next position in order to minimize the angular displa
e-ment from their 
urrent movement dire
tion. In addition to the behavioral motivationof this fa
tor, it also plays a smoothing role in the model, avoiding drasti
 
hanges ofdire
tion from one time period to the next. In order to 
apture the nonlinearity of thispattern, we in
lude a di�erent term for ea
h group of dire
tions. The �
entral� group,identi�ed by the indi
ator Id,
entral, 
ontains the 
ones 5, 6 and 7 (see Figure 3), the�side� group, identi�ed by the indi
ator Id,side, 
ontains the 
ones 3, 4, 8 and 9, and the7



�extreme� group, identi�ed by the indi
ator Id,extreme, 
ontains the 
ones 1, 2, 10 and11. The asso
iated terms in the utility fun
tion are
βdir_
entraldirdnId,
entral + βdir_sidedirdnId,side + βdir_extremedirdnId,extreme (3)where the variable dirdn is de�ned as the angle in degrees between the dire
tion d andthe dire
tion dn, 
orresponding to the 
urrent dire
tion, as shown in Figure 5. Notethat the indi
ators guarantee that only one of these three terms is nonzero for any givenalternative. We expe
t the β parameters to be negative.

cvdn

d

dnDestinationddistvdnddirdn

dirdn

Figure 5: The elements 
apturing the keep dire
tion and toward destination behaviors3.2 Toward destinationThe destination is de�ned as the �nal lo
ation that the pedestrian wants to rea
h. Tobe 
oherent with the general framework introdu
ed in Se
tion 1, we assume that thedestination 
hoi
e is performed at the strategi
al (or possibly ta
ti
al) level in the hier-ar
hi
al de
ision pro
ess, and is therefore exogenous in this model. Su
h a higher level
hoi
e is naturally re�e
ted on the short term behavior as the tenden
y of individuals to
hoose, for the next step, a spatial lo
ation that minimize both the angular displa
ementand the distan
e to the destination.This behavior is 
aptured by the term
βddistddistvdn + βddirddirdn (4)where the variable ddistvdn is de�ned as the distan
e (in meters) between the destinationand the 
enter of the alternative Cvdn, while ddirdn is de�ned as the angle in degreesbetween the destination and the alternative's dire
tion d, as shown in Figure 5. Weexpe
t a negative sign for both the βddir and βddist parameters.3.3 Free �ow a

elerationIn free �ow 
onditions the behavior of the individual is driven by her desired speed.The a

eleration is then a fun
tion of the di�eren
e between 
urrent speed and desired8



speed. However, this variable is unobserved and it 
annot be introdu
ed expli
itly inthe model. As a 
onsequen
e, we assume that the utility for a

eleration is dependenton the 
urrent speed. In
reasing speed 
orresponds to de
reasing utility for furthera

elerations. In order to re�e
t that a parameter varies with speed vn, we use thespe
i�
ation
β = 	β(

vn

vref)λ

. (5)Note that
λ =

∂β

∂vn

vn

β
an be interpreted as the elasti
ity of the parameter β with respe
t to the speed vn.The value of vref is arbitrary, and determines the referen
e speed 
orresponding to 	β.In our 
ontext, we de�ne su
h a term for the parameters asso
iated with de
eleration
βde
Iv,de
(vn/vmax)λde
 (6)where Iv,de
 is one if v 
orresponds to a de
eleration, and zero otherwise, and the ref-eren
e speed is sele
ted to be the maximum speed observed vmax = 4.84 (m/s). Theimpa
t of this term on the utility is illustrated on Figure 6(a) (the estimated valuesof the parameters have been used to generate Figure 6). It shows that the utilities ofthe alternatives asso
iated with de
eleration are very low when the pedestrian alreadywalks slowly. For higher speeds, this term has basi
ally no impa
t on the utility.For the a

eleration, we have introdu
ed two su
h terms, one for lower speeds (lessor equal to 5km/h = 1.39 m/s), and one for higher speeds.

βa

LSIn,LSIv,a

(vn/vmaxLS)λa

LS + βa

HSIn,HSIv,a

(vn/vmax)λa

HS (7)where In,LS is one if the individual's 
urrent speed is less or equal to 1.39 and zerootherwise, In,HS = 1 − In,LS, and the referen
e speed for low speeds vmaxLS = 1.39. Theindi
ator Iv,a

 is 1 if the alternative 
orresponds to an a

eleration and 0 otherwise. Weexpe
t negative signs for βa

HS, βa

LS, βde
 and λde
 parameters, while a positive signis expe
ted for λa

LS and λa

HS. The impa
t of this term on the utility is illustrated onFigure 6(b), where the two parts of the 
urve (low and high speed) are represented. Itappears 
learly that the role of the se
ond part is to avoid a too dramati
 penalizationof a

eleration for high speeds.3.4 Leader-followerWe assume that the de
ision maker is in�uen
ed by leaders. In our spatial representation11 radial 
ones partition the spa
e (see Figure 3). In ea
h of these dire
tions a possibleleader 
an be identi�ed among a set of potential leaders. A potential leader is anindividual whi
h is inside a 
ertain region of interest, not so far from the de
isionmaker and with a moving dire
tion 
lose enough to the dire
tion of the radial 
onewhere she is. Among the set of potential leaders for ea
h radial dire
tion, one of them issele
ted as leader for that dire
tion (the 
losest to the de
ision maker). On
e identi�ed,the leader indu
es an attra
tive intera
tion on the de
ision maker. Similarly to 
ar9
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following models, a leader a

eleration 
orresponds to a de
ision maker a

eleration.The leader-follower model is given by the following terms
Iv,a

ILd,a

αLa

DρLa



L ∆v
γLa


L ∆θ

δLa


L + Iv,de
ILd,de
αLde
DρLde


L ∆v
γLde

L ∆θ

δLde

L . (8)It is des
ribed by a sensitivity/stimulus framework. The leader for ea
h dire
tion is
hosen 
onsidering several potential leaders (represented by light gray 
ir
les in Figure7). An individual k is de�ned as a potential leader based on the following indi
atorfun
tion:

Ik
g =



















1, if dl ≤ dk ≤ dr (is in the 
one),and 0 < Dk ≤ Dth (not too far),and 0 < |∆θk| ≤ ∆θth (walking in almost the same dire
tion),
0, otherwise,where dl and dr represent the bounding left and right dire
tions of the 
one in the
hoi
e set (de�ning the region of interest) while dk is the dire
tion identifying theposition of pedestrian k . Dk is the distan
e between pedestrian k and the de
isionmaker, ∆θk = θk − θd is the di�eren
e between the movement dire
tion of pedestrian

k (θk) and the angle 
hara
terizing dire
tion d, i.e. the dire
tion identifying the radial
one where individual k lies (θd). The two thresholds Dth and ∆θth are �xed at thevalues Dth = 5Dmax, where Dmax is the radius of the 
hoi
e set, and ∆θth = 10 degrees.We assume an impli
it leader 
hoi
e pro
ess, exe
uted by the de
ision maker herselfand modeled 
hoosing as leader for ea
h dire
tion the potential leader at the minimumdistan
e DL = mink∈K(Dk), illustrated in Figure 7 by the darker 
ir
le. On
e the leaderis identi�ed, we 
ompare her speed. The indi
ator ILd,a

 is one if the leader in the
ode d has been identi�ed with a speed larger than vn, and zero otherwise. Similarly,
ILd,de
 = 1−ILd,a

 is one if the leader in 
one d has been identi�ed with a speed lower than
vn, and zero otherwise. Finally, the indi
ator fun
tions Iv,acc and Iv,dec dis
riminatebetween a

elerated and de
elerated alternatives, as for the free �ow a

eleration model.The underlying assumption is that faster leaders will have an impa
t on the a

elaration,while slower leaders will have an impa
t on the de
eleration.For a given leader, the sensitivity is des
ribed bysensitivity = αL

gD
ρL

g

L (9)where DL represents the distan
e between the de
ision maker and the leader. Theparameters αL
g and ρL

g have to be estimated and g = {acc, dec} indi
ates when the leaderis a

elerating with respe
t to the de
ision maker. Both αLa

 and αLde
 are expe
ted tobe positive while a negative sign is expe
ted for ρLa

 and ρLde
.The de
ision maker rea
ts to stimuli 
oming from the 
hosen leader. We modelthe stimulus as a fun
tion of the leader's relative speed ∆vL and the leader's relativedire
tion ∆θL as follows: stimulus = ∆v
γL

g

L ∆θ
δL

g

L (10)with ∆vL = |vL − vn|, where vL and vn are the leader's speed module and the de
isionmaker's speed module, respe
tively. The variable ∆θL = θL − θd, where θL represents11



d

θd

leader
potential leaders

dk

dr

dℓ

θk

Dth

=
5
Dmax

D
L

DmaxFigure 7: Leader and potential leaders in a given 
onethe leader's movement dire
tion and θd is the angle 
hara
terizing dire
tion d, as shownin Figure 7. Positive signs are expe
ted for both the γLa

 and γLde
 parameters, while weexpe
t a negative sign for both the δLa

 and δLde
. A leader a

eleration indu
es a de
isionmaker's a

eleration. A substantially di�erent movement dire
tion in the leader redu
esthe in�uen
e of the latter on the de
ision maker. Note that in the �nal spe
i�
ation,the parameter δLde
 appeared not to be signi�
antly di�erent from 0. Therefore, we havede
ided to remove it from the model for the �nal estimation. The spe
i�
ation (8)be
omes
Iv,a

ILd,a

αLa

DρLa



L ∆v
γLa


L ∆θ

δLa


L + Iv,de
ILd,de
αLde
DρLde


L ∆v
γLde

L . (11)3.5 Collision avoidan
eThis pattern 
aptures the e�e
ts of possible 
ollisions on the de
ision maker traje
tory.For ea
h dire
tion in the 
hoi
e set, a 
ollider is identi�ed among a set of potential
olliders. Another individual is sele
ted as a potential 
ollider if she is inside a 
ertainregion of interest, not so far from the de
ision maker and walking in the opposite dire
-tion. The 
ollider for a radial dire
tion is 
hosen from the set of potential 
olliders forthat dire
tion as the individual whose walking dire
tion forms the larger angle with thede
ision maker walking dire
tion. This pattern is asso
iated with repulsive intera
tionsin the obvious sense that pedestrians 
hange their 
urrent dire
tion to avoid 
ollisionswith other individuals. The 
ollision avoidan
e model is given by the following term

Id,dnId,CαCeρCDC∆v
γC

C ∆θ
δC

C . (12)12



The 
ollider for ea
h dire
tion is 
hosen 
onsidering several potential 
olliders, asshown in Figure 8. An individual k is de�ned as a potential 
ollider based on thefollowing indi
ator fun
tion:
Ik
C =



















1, if dl ≤ dk ≤ dr (is in the 
one),and 0 < Dk ≤ D ′
th (not too far),and π

2
≤ |∆θk| ≤ π (walking in the other dire
tion),

0, otherwise,where dl, dr and dk are the same as those de�ned for the leader-follower model. D ′
k isthe distan
e between individual k and the 
enter of the alternative, ∆θk = θk − θdn isthe di�eren
e between the movement dire
tion of pedestrian k, θk, and the movementdire
tion of the de
ision maker, θdn . The value of the distan
e threshold is now �xed to

D ′
th = 10Dmax. We use a larger value 
ompared to the leader-follower model, assumingthe 
ollision avoidan
e behavior being a longer range intera
tion, happening also at alower density level. We assume an impli
it 
ollider 
hoi
e pro
ess, whi
h is determin-isti
 and de
ision-maker spe
i�
. Among the set of Kd potential 
olliders for dire
tion

d, a 
ollider is 
hosen in ea
h 
one as that individual having ∆θC = maxk∈Kd
|∆θk|.The indi
ator Id,C = 1 if a 
ollider has been identi�ed, and 0 otherwise. Finally, the
ollision avoidan
e term is in
luded in the utility fun
tions of all the alternatives. So,the indi
ator fun
tion Id,dn is equal to 1 for those alternatives that are not in the 
urrentdire
tion (d 6= dn), 0 otherwise.

d

θd 
ollider

potential 
olliders
dk

θk

Dth
=

1
0
Dmax

D
′

k

DmaxFigure 8: Collider and potential 
olliders in a given 
oneWe apply a similar sensitivity/stimulus framework, where the sensitivity fun
tion is13



de�ned as sensitivity = αCeρCDC (13)where the parameters αC and ρC, that have to be estimated, are expe
ted to have botha negative sign and DC is the distan
e between the 
ollider position and the 
enter ofthe alternative. The de
ision maker rea
ts to stimuli 
oming from the 
ollider. Wemodel the stimulus as a fun
tion of two variables:stimulus = ∆v
γC

C ∆θδC

C (14)with ∆θC = θC − θdn , where θC is the 
ollider movement dire
tion and θdn is thede
ision maker movement dire
tion, and ∆vC = vC+vn, where vC is the 
ollider's speedmodule and vn is the de
ision maker's speed module. The parameters γC and δC haveto be estimated and a positive sign is expe
ted for both of them. Individuals walkingagainst the de
ision maker at higher speeds and in more frontal dire
tions (higher ∆θC)generate stronger rea
tions, weighted by the sensitivity fun
tion.Note that in the �nal spe
i�
ation, the parameters γC and δC appeared not to besigni�
antly di�erent from 0. Therefore, we have de
ided to remove them from themodel for the �nal estimation. The spe
i�
ation involves only the sensitivity part (13).3.6 The error termWe use a 
ross nested logit (CNL) model (see, among others, Wen and Koppelman,2001, Bierlaire, 2006, Abbe et al., 2007) spe
i�
ation. Su
h a model allows �exible
orrelation stru
tures in the 
hoi
e set, keeping a 
losed form solution. The CNL beinga Multivariate Extreme Value model (MEV, see M
Fadden, 1978), the probability of
hoosing alternative i within the 
hoi
e set C is:
P(i|C) =

yi
∂G
∂yi

(y1, ..., yJ)

µG(y1, ..., yJ)
(15)where J is the number of alternatives in C, yj = eVj with Vj the systemati
 part of theutility des
ribed by (2) and G is the following generating fun
tion:

G(y1, ..., yJ) =

M
∑

m=1





∑

j∈C

(α
1/µ
jm yj)

µm





µ
µm (16)where M is the number of nests, αjm ≥ 0,∀j,m, ∑M

m=1 αjm > 0,∀j, µ > 0, µm > 0,∀mand µ ≤ µm,∀m. This formulation leads to the following expression for the 
hoi
eprobability formula, using yi = eVi :
P(i|C) =

M
∑

m=1

(

∑

j∈Cα
µm/µ

jm y
µm

j

)
µ

µm

∑M
n=1

(

∑

j∈Cα
µn/µ
jn y

µn

j

)
µ

µn

α
µm/µ
im y

µm

i
∑

j∈Cα
µm/µ
jm y

µm

j

(17)We assume a 
orrelation stru
ture depending on the speed and dire
tion and weidentify �ve nests: a

elerated, 
onstant speed, de
elerated, 
entral and not 
entral.14



(a) Japanese s
enarioFigure 9: A frame from the Japanese videoWe �x the degrees of membership to the di�erent nests (αjm) to the 
onstant value 0.5.The parameter µ is normalized to 1, and the nest parameters µm are estimated. Notethat the parameters asso
iated with the de
eleration nest has been 
onstrained to 1 inthe �nal spe
i�
ation, as it did not appear to be signi�
antly di�erent to that value.We 
on
lude this se
tion by emphasizing that the above spe
i�
ation ignores het-erogeneity in the population. Chara
teristi
s su
h as age, sex, weight, height (amongothers) probably in�uen
e the spatial per
eption, interpersonal distan
e and human-human intera
tions. However, given the nature of the data (traje
tories) it is not possi-ble to take them into a

ount in the model. Therefore, a spe
i�
ation with unobservedheterogeneity 
aptured by random 
oe�
ient in a panel data setup would have beenappropriate. However, the 
omplexity of this spe
i�
ation did not allow us to estimatethe model with a su�
iently high number of draws.4 DataThe data set used to estimate the model 
onsists of pedestrian traje
tories manuallytra
ked from video sequen
es.It has been 
olle
ted in Sendai, Japan, on August 2000 (see Teknomo et al., 2000,Teknomo, 2002). The video sequen
e has been re
orded from the 6th �oor of the JTBparking building (around 19 meters height), situated at a large pedestrian 
rossing point.Two main pedestrian �ows 
ross the street, giving rise to a large number of intera
tions.A frame extra
ted from this video is represented in Figure 9.In this 
ontext, 190 pedestrian traje
tories have been manually tra
ked at a rateof 2 pro
essed frames per se
ond, for a total number of 10200 position observations.The mapping between the image plane and the walking plane was performed by Ar-senal Resear
h (Bauer, 2007) using a 3D-
alibration with the standard DLT algorithm(Shapiro, 1978). The referen
e system on the walking plane has the origin arbitrarily15



pla
ed on the bottom left 
orner of the zebra 
rossing. The x axis represents the widthof the 
rossing while the y axis is the 
rossing length.For ea
h frame, the following information for ea
h visible pedestrian has been 
ol-le
ted: (i) the time t 
orresponding to the frame f (in this 
ase t = f/2), (ii) thepedestrian identi�er n, and (iii) the 
oordinates pf
n = (xf

n, yf
n) identifying the lo
ationof the pedestrian in the walking plane.From these raw data, we have �rst derived the 
urrent dire
tion and speed of ea
hpedestrian using the 
urrent and the previous frames, that is

dn = pf
n − pf−1

n ,

vn = ‖dn‖/0.5 = 2‖dn‖.In Figure 10 we report the speed histogram and in Table 1 the speed statisti
s.Then, a spe
i�
 
hoi
e set (see Figure 4) has been 
onstru
ted for ea
h pedestrian,based on (1) where t = 1 se
 (that is, 2 frames), v = vn for 
onstant speed alternatives,
v = 0.5vn for de
elerated alternatives, v = 1.5vn for a

elerated alternatives, d = dnfor alternatives in 
one 6 (alt. 6, 17, 28), and d = rot(dn, ζ) is obtained by rotating dnaround pn with an angle ζ 
orresponding to the 
one, that isCone 1: ζ = 72.5◦, Cone 11: ζ = −72.5◦,Cone 2: ζ = 50◦, Cone 10: ζ = −50◦,Cone 3: ζ = 32.5◦, Cone 9: ζ = −32.5◦,Cone 4: ζ = 20◦, Cone 8: ζ = −20◦,Cone 5: ζ = 10◦, Cone 7: ζ = −10◦.For ea
h 
ell in the 
hoi
e set, ea
h variable in (2) has then been 
omputed basedon the des
riptions in Se
tion 3. Note that the destination of ea
h individual is de�nedby her lo
ation in the last frame where she is visible. Finally, the 
hosen alternative hasbeen identi�ed as the 
ell 
ontaining the pedestrian's lo
ation after 1 se
ond, that is pf+2

n .In the rare instan
es where pf+2
n did not belong to any 
ell (be
ause of numeri
al errorsdue to poor image resolution, or extreme speed variations), the 
orresponding pie
e ofdata was removed from the sample (for a total of 919 observations). We represent inFigure 11 sele
ted generated 
hoi
e sets on a given traje
tory (representing them allwould have been unreadable on the �gure).We obtain a total of 9281 observations for 190 pedestrians . In Figure 12 we reportthe frequen
y of the revealed 
hoi
es as observed in the data set. The three peaks in thedistributions arise on the 
entral alternatives (6, 17, 28), as expe
ted. Note that 
ells1, 12, 23 and 33 are never 
hosen in this sample. The repartition of the observationsa
ross the nests is detailed in Table 2.5 Estimation resultsWe report in Table 3 the estimation results. The parameters have been estimated usingthe Biogeme pa
kage (Bierlaire, 2003, biogeme.ep�.
h).All estimates have the expe
ted sign. Note that the parameter asso
iated with thede
eleration nest was 
learly insigni�
ant, and �xed to 1. The p-value for the 
entral16



Mean 1.31Standard Error 0.012Median 1.27Mode 1.28Standard Deviation 0.37Minimum 0.43Maximum 4.84Note: standard error is the estimated standard deviation of the sample meanTable 1: Speed statisti
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alternativesFigure 12: Revealed 
hoi
es histogramsNest # steps % of totala

eleration 1065 11.48%
onstant speed 7565 81.51%de
eleration 651 7.01%
entral 4297 46.30%not 
entral 4984 53.70%Table 2: Number of 
hosen steps in ea
h nest for the real data setnest parameter is 0.27 (t-test = 1.11) whi
h 
annot be used for a 
lear reje
tion of thenull hypothesis that the true value is 1.0. However, to avoid a potential misspe
i�
ation,we prefer not 
onstraining it to 1 in the �nal model.In addition to the proposed model, we analyze also a simple model, where the utilityof ea
h alternative is represented only by an alternative spe
i�
 
onstant. This 
onstant-only model perfe
tly reprodu
es the observed shares in the sample, with 28 parameters.Indeed, there are 33 alternatives, minus 4 whi
h are never 
hosen, minus one 
onstantnormalized to 0. With this model, the loglikelihood drops from -13997.27 down to-17972.03, illustrating the statisti
al signi�
an
e of the proposed spe
i�
ation. Notethat a 
lassi
al likelihood ratio test is not appropriate here, as the hypotheses are notnested. We believe that a more rigorous test is not really ne
essary given the huge jumpin loglikelihood value.6 Model validationTwo data sets are used for validation: the Japanese data set used for estimation anddes
ribed in Se
tion 4, and a data set 
olle
ted in the Netherlands, whi
h has not beeninvolved at all in the estimation of the parameters.18



Variable Coe�
ient t test 0 Variable Coe�
ient t test 0 t test 1name estimate name estimate
βddir -0.0790 -24.53 ρLa

 -0.489 -2.19
βddist -1.55 -11.66 γLa

 0.625 2.87
βdir_extreme -0.0326 -9.30 αLde
 3.69 6.90
βdir_side -0.0521 -21.87 ρLde
 -0.663 -7.11
βdir_
entral -0.0252 -8.74 γLde
 0.652 6.19
βa

LS -4.97 -22.61 δLa

 -0.171 -2.33
βa

HS -7.47 -5.21 αC -0.00639 -9.82
βde
 -0.0630 -2.40 ρC -0.239 -8.28
λa

LS 4.16 15.94 µacc 1.66 9.73 3.88
λa

HS 0.358 2.09 µconst 1.50 13.46 4.48
λde
 -2.41 -8.43 µcentral 2.35 1.93 1.11
αLa

 0.942 2.28 µnot_central 1.75 9.46 4.04Sample size = 9281 Init log-likelihood = -32451Nbr of estimated parameters = 24 Final log-likelihood = -13997.27	ρ2 = 0.568 Likelihood ratio test = 36907Table 3: CNL estimation results for the Japanese data setIn Se
tion 6.1, we apply the model on the Japanese data set, and 
ompare thepredi
ted 
hoi
es with the observed ones. In Se
tion 6.2, we test the robustness of themodel spe
i�
ation by performing 
ross-validation, where a subset of the Japanese dataset is saved for validation, and the model is estimated on the rest. Finally, in Se
tion 6.3,we apply both our model, and a simple 
onstant-only model on the data set 
olle
tedin the Netherlands.6.1 Japanese data set: validation of the modelWe �rst apply our model with the parameters des
ribed in Table 3 on the Japanesedata set, using the Biosim pa
kage (Bierlaire, 2003). For ea
h observation n, we obtaina probability distribution Pn(i) over the 
hoi
e set.Figure 13 represents the histogram of the probability value Pn(i∗n) assigned by themodel to the 
hosen alternative i∗n of ea
h observation n, along with the hazard value

1/33 (where 33 is the number of alternatives). We 
onsider observations below thisthreshold as outliers. There are only 7.13% of them. As a 
omparison, there are 19.90%of outliers with the 
onstant-only model.The top part of Figure 14 reports, for ea
h i, ∑

nPn(i), and the bottom part reports
∑

nyin, where yin is 1 if alternative i is sele
ted for observation n, 0 otherwise. Asexpe
ted, the two histograms are similar, indi
ating no major spe
i�
ation error.This is 
on�rmed when alternatives are aggregated together, by dire
tions (see Table4) and by speed regimes (see Table 5). For a group Γ of alternatives, the quantities
MΓ =

∑

n

∑

i∈Γ Pn(i),

RΓ =
∑

n

∑

i∈Γ yin,19
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probabilitiesFigure 13: Predi
ted probabilities of the Japanese dataand
(MΓ − RΓ)/RΓare reported in 
olumns 3, 4 and 5, respe
tively, of these tables.The relative errors showed in Table 4 and Table 5 are low, ex
ept for groups ofalternatives with few observations, that is groups 
orresponding to extreme left andextreme right dire
tions.Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 5 − 7, 16 − 18, 27 − 29 8489.27 8481 0.0010Left 3, 4, 14, 15, 25, 26 349.67 367 −0.0472Right 8, 9, 19, 20, 30, 31 415.45. 407 0.0208Extreme left 1, 2, 12, 13, 23, 24 12.29 10 0.2296Extreme right 10, 11, 21, 22, 32, 33 14.30 16 −0.1059Table 4: Predi
ted (MΓ) and observed (RΓ) shares for alternatives grouped by dire
tionswith the Japanese data set.6.2 Japanese data set: validation of the spe
i�
ationIn order to test the proposed spe
i�
ation, we have performed a 
ross validation doneon the Japanese data set. It 
onsists in splitting the data set into 5 subsets, ea
h
ontaining 20% of the observations. We perform 5 experiments. For ea
h of them, oneof the �ve subsets is saved for validation purposes, and the model is re-estimated onthe remaining 4 subsets. The same pro
edure has been applied with the 
onstant-onlymodel. The proportion of outliers for ea
h experiment is reported in table 6. We observethat they are 
onsistent with 7.13% (for our model) and 19.90% (for the 
onstant-only20
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ted and observed shares for the Japanese data set
Area Γ MΓ RΓ (MΓ − RΓ)/RΓa

eleration 1 − 11 1041.50 1065 −0.0221%
onstant speed 12 − 22 7606.49 7565 0.0055de
eleration 23 − 33 633.02 651 −0.0276%Table 5: Predi
ted and observed shares for alternatives grouped by speed regime withthe Japanese data set.
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model) of outliers obtained with the 
omplete data set, illustrating the robustness ofthe spe
i�
ation.Model Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5Proposed spe
. 8.78% 6.36% 7.60% 7.87% 5.87%Constant only 20.79% 20.70% 17.13% 19.88% 18.64%Table 6: Summary of the 
ross-validation performed on the Japanese data setThe above analysis indi
ates a good spe
i�
ation and performan
e of the model.However, it is not su�
ient to fully validate it. Consequently, we perform now the sameanalysis on a validation data set, not involved in the estimation of the model.6.3 Dut
h data set: validation of the modelThis data set has been 
olle
ted at Delft University, in the period 2000-2001 (Daamenand Hoogendoorn, 2003, Daamen, 2004) where volunteer pedestrians were 
alled toperform spe
i�
 walking tasks in a 
ontrolled experimental setup.For the purpose of our validation pro
edure we use the subset of the Dut
h data set
orresponding to a bi-dire
tional �ow. This situation is the experimental version of theJapanese data set, whi
h 
orresponds to a walkway. The subset in
ludes 724 subje
tsfor 47481 observed positions, 
olle
ted by means of pedestrian tra
king te
hniques onvideo sequen
es, at a frequen
y of 10Hz, that is 10 frames per se
ond. In Figure 15 wereport one frame from the experimental s
enario.For ea
h frame, we have 
olle
ted for ea
h visible pedestrian the time t 
orrespondingto the frame f (in this 
ase t = f/10), the pedestrian identi�er n, and the 
oordinates
pf

n = (xf
n, yf

n) identifying the lo
ation of the pedestrian in the walking plane. Fromthese raw data, we have derived the 
urrent dire
tion and speed of ea
h pedestrianusing the 
urrent and the previous frames, that is
dn = pf

n − pf−1
n ,

vn = ‖dn‖/0.1 = 10‖dn‖.Consistently with the model assumptions, the 
hosen alternative has been identi�ed asthe 
ell 
ontaining the pedestrian's lo
ation after 1 se
ond, that is pf+10
n .The repartition of the observations a
ross nests is detailed in Table 7. We note thevery low number of de
elerations and a

elerations, probably due to the experimentalnature of the data.We 
ompare the observed 
hoi
es for the Japanese and the Dut
h data set in Table 8and Figure 16. Table 8 reports the per
entage of observations for 
ells at the extremeleft of the 
hoi
e set (alts. 1, 2, 12, 13, 23, 24), the left part (alts. 3, 4, 14, 15,25, 26), the front (alts. 5-7, 16-18, 27-29), the right (alts. 8, 9, 19, 20, 30, 31) andthe extreme right ( 10, 11, 21, 22, 32, 33). Figure 16 reports normalized observation,that is, for ea
h alternative i, ∑

nyin/N, where yin is 1 if alternative i is sele
ted forobservation n, 0 otherwise, and N is the total number of observations. We observea great similarity in the observed proportions, ex
ept for alternatives 
orresponding to22



Figure 15: A representative frame from the video sequen
es used for data 
olle
tionNest # steps % of totala

eleration 1273 2.68%
onstant speed 45869 96.61%de
eleration 339 0.71%
entral 20950 44.12%not 
entral 26531 55.88%Table 7: Number of 
hosen steps in ea
h nest for Dut
h dataa

elerations and de
elerations. This suggests that a simple model, with only alternativespe
i�
 
onstants, may a
tually perform well on this data set. We show below that itis not the 
ase.Dataset extremeleft left front right extremerightJapanese 0.11% 3.95% 91.38% 4.39% 0.17%Dut
h 0.06% 4.40% 91.35% 4.15% 0.04%Table 8: Comparison between Japanese and Dut
h data sets for the observations pro-portions in the dire
tion's 
ones.We apply our model with the parameters des
ribed in Table 3 on the Dut
h data set,using the Biosim pa
kage. For ea
h observation n, we obtain a probability distribution
Pn(i) over the 
hoi
e set.Figure 17 represents the histogram of the probabilities Pn(i∗n) of the 
hosen alter-natives as predi
ted by the model, as well as the hazard value 1/33 (where 33 is thenumber of alternatives) illustrating the predi
tion of a purely random model with equalprobabilities. Again, we 
onsider observations below this threshold as outliers. We ob-serve that there are 2.48% of them. This is good news, as it is a
tually less than forthe data set used for parameters estimation. The shape of the 
urve, as well as the lownumber of outliers are signs of a good performan
e of the model. When we 
ompare itwith the predi
tions obtained with the 
onstant-only model (Figure 18), the superiorfore
asting potential of our model appears 
learly.23
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Figure 16: Comparison between the Japanese and dut
h normalized observations dis-tributions along the alternatives.The signi�
ant superiority of our model over the 
onstant-only model is also illus-trated by 
omparing the proportion of outliers (2.48% vs. 10.31%) or the loglikelihood(-51647.38 vs. -77269.28, as detailed in Table 14).
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0Figure 17: Predi
tion with the proposed modelWe now 
ompare the predi
tions performed by our model with the a
tual observa-tions. The top part of Figure 19 reports the predi
ted probabilities obtained by sampleenumeration, that is, for ea
h i, ∑

nPn(i), and the bottom part the observed shares,that is ∑

nyin. The predi
tions are very satisfa
tory, ex
ept maybe for the de
elerations(alternatives 22 to 33) and a

elerations (alternatives 1 to 11).We also perform the 
omparison at a more aggregate level, for groups of 
ells. Tables9 and 10 show a good overall performan
e of the model. Clearly, the extreme left andextreme right groups 
ontain too few observations to rea
h any 
on
lusion. The onlybias seems to 
onsist in a systemati
 over-predi
tion of a

elerations and de
elerations.24



10000

15000

20000

o
b

se
rv

a
ti

o
n

s 
(n

b
)

Predicted probabilities for dutch data

0

5000

10000

0
.0

1

0
.0

4

0
.0

7

0
.1

0

0
.1

3

0
.1

6

0
.1

9

0
.2

2

0
.2

5

0
.2

8

0
.3

1

0
.3

4

0
.3

7

0
.4

0

0
.4

3

0
.4

6

0
.4

9

0
.5

2

0
.5

5

0
.5

8

0
.6

1

0
.6

4

0
.6

7

0
.7

0

0
.7

3

0
.7

6

0
.7

9

0
.8

2

0
.8

5

0
.8

8

0
.9

1

0
.9

4

0
.9

7

1
.0

0

o
b

se
rv

a
ti

o
n

s 
(n

b
)

probabilities

proposed spec.

constant only

Figure 18: Predi
tion with the 
onstant-only and the proposed model
Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 5 − 7, 16 − 18, 27 − 29 43619.98 43374 0.0057Left 3, 4, 14, 15, 25, 26 1968.79 2089 −0.0575Right 8, 9, 19, 20, 30, 31 1764.39 1972 −0.1053Extreme left 1, 2, 12, 13, 23, 24 45.86 27 0.6985Extreme right 10, 11, 21, 22, 32, 33 81.97 19 3.3144Table 9: Predi
ted (MΓ) and observed (RΓ) shares for alternatives grouped by dire
tionswith the Dut
h data set.

Area Γ MΓ RΓ (MΓ − RΓ)/RΓa

eleration 1 − 11 3892.35 1273 2.0576
onstant speed 12 − 22 40733.53 45869 −0.112de
eleration 23 − 33 2855.12 339 7.4222Table 10: Predi
ted (MΓ) and observed (RΓ) shares for alternatives grouped by speedregime with the Dut
h data set.
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e histogram predi
ted by the model against the revealed 
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es in theDut
h data set
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This is 
onsistent with the above-des
ribed analysis. The Dut
h data set was 
olle
tedin 
ontrolled experimental 
onditions, whi
h may have introdu
ed a bias in pedestrianbehavior, depending on the exa
t instru
tions they have re
eived. This assumption issupported by the quasi absen
e of de
elerations in the data set, and by the di�erentshapes of the speed distributions (see Figure 20). While the Japanese 
urve appears tobe Gaussian, the Dut
h 
urves 
ontain some non-Gaussian features whi
h are likely tobe a result of the experimental nature of the data. In parti
ular, the support is mu
hnarrower, with few high speeds. Note that, in the Japanese 
ase, some pedestrians arerunning when the tra�
 light be
omes red and the 
ars start moving.Data Set Mean speed [m/s℄Dut
h (experimental) 1.297Japanese (real) 1.341Table 11: Average pedestrian speed in the data sets
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Figure 20: Distribution of speed in the two data setsWe report now the same aggregate predi
tion obtained with the 
onstant-only modelin Tables 12 and 13. The good performan
e of this simple model at the aggregatelevel emphasizes the need for the disaggregate validation performed above. Indeed,this apparently good performan
e of the model is due to the 
oin
idental similarityof proportions of 
hosen alternatives in the two data sets (see Table 8). The detailedanalysis presented in Figure 18 
learly reje
ts the simple model, while the aggregateanalysis does not.For the sake of 
ompleteness, a 
onstant-only model has been 
alibrated on theDut
h data set, in the same way than for the Japanese. Our model estimated on theJapanese data is better than the 
onstant-only model estimated on the Dut
h data, whenapplied on the Dut
h data set, both for log-likelihood (-51647.38 against -71847.69) andpredi
tion (2.48 %, per
entage of outliers against 4.33%). We have summarized thevarious loglikelihood values in Table 14, where ea
h 
olumn 
orresponds to a model,and ea
h row to a data set.In summary, we observe that our model applied on the estimation data (Japanese)have few outliers 
ompared to the 
onstant-only model, and reprodu
es well the ob-27



Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 5 − 7, 16 − 18, 27 − 29 43386.42 43374 0.0003Left 3, 4, 14, 15, 25, 26 1877.47 2089 −0.1013Right 8, 9, 19, 20, 30, 31 2082.10 1972 0.0558Extreme left 1, 2, 12, 13, 23, 24 51.16 27 0.8947Extreme right 10, 11, 21, 22, 32, 33 81.85 19 3.308Table 12: Predi
ted (MΓ) using the 
onstant-only model and observed (RΓ) shares foralternatives grouped by dire
tions with the Dut
h data set.Area Γ MΓ RΓ (MΓ − RΓ)/RΓa

eleration 1 − 11 5448.24 1273 3.2798
onstant speed 12 − 22 38700.42 45869 −0.1563de
eleration 23 − 33 3330.34 339 8.824Table 13: Predi
ted (MΓ) using the 
onstant-only model and observed (RΓ) shares foralternatives grouped by speed regime with the Dut
h data set.served 
hoi
es. A fore
asting 
ross-validation based on 80% of the sample ilustrate thegood robustness of the spe
i�
ation. When the model is applied on the validation data(Dut
h), we observe few outliers and an ex
ellent probability histogram. Also, it re-produ
es very well the observed 
hoi
es, in terms of dire
tions and 
onstant speed. Weemphasize that this disaggregate analysis was ne
essary, as the aggregate 
omparisondoes not reje
t the 
onstant-only model.7 Con
lusionsIn this paper we propose a dis
rete 
hoi
e model for pedestrian walking behavior. Theshort range walking behavior of individuals is modeled, identifying two main patterns:
onstrained and un
onstrained. The 
onstraints are generated by the intera
tions withother individuals. We des
ribe intera
tions in terms of a leader-follower and a 
ollisionavoidan
e models. These models 
apture self-organizing e�e
ts whi
h are 
hara
teristi
of 
rowd behavior, su
h as lane formation. Inspiration for the mathemati
al form ofthese patterns is taken from driver behaviors in transportation s
ien
e, and ideas su
has the 
ar following model and lane 
hanging models have been reviewed and re-adaptedto the more 
omplex pedestrian 
ase. The di�
ulties to 
olle
t pedestrian data as wellas the limited information 
onveyed by pure dynami
 data sets limit the possibilities inConstant-only model Constant-only modelData set Our model based on Japanese data based on Dut
h dataJapanese -13997.27 -17972.03 �Dut
h -51647.38 -77269.28 -71847.69Table 14: Loglikelihood of ea
h model applied on the two data sets28



the model spe
i�
ation step. Important individual e�e
ts 
annot be 
aptured withoutthe support of so
io-e
onomi
 
hara
teristi
s. Re
ent development of pedestrian labo-ratories, where the set up of 
ontrolled experimental 
onditions is possible, representsan important step in this dire
tion. We use experimental data in a two step validationpro
edure. First, the model is validated on the same data set used for estimation inorder to 
he
k for possible spe
i�
ation errors. Se
ond, the model is run on a newdata set 
olle
ted at Delft University under 
ontrolled experimental 
onditions. Theproposed validation pro
edure underline a good stability of the model and a good fore-
asting performan
e. Few observations are badly predi
ted, mostly 
on
entrated at theextreme of the 
hoi
e set. The estimated 
oe�
ients are signi�
ant and their sign is
onsistent with our behavioral assumptions. Di�erently from other previous models,we 
an quantify the in�uen
e of the relative kinemati
 
hara
teristi
s of leaders and
olliders on the de
ision maker behavior. Moreover, su
h quantitative analysis has beenperformed using real world pedestrian data.Future developments will fo
us in analyzing more and improving the a

elerationand de
eleration patterns. In parti
ular, we plan to investigate the use of an adaptiveresolution of the 
hoi
e set, as well as in
orporating in the model some physi
al andso
io-e
onomi
 
hara
teristi
s of the pedestrians.A
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