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Abstract

We propose and validate a model for pedestrian walking behavior, based on dis-
crete choice modeling. Two main types of behavior are identified: unconstrained
and constrained. By unconstrained, we refer to behavior patterns which are in-
dependent from other individuals. The constrained patterns are captured by a
leader-follower model and by a collision avoidance model. The spatial correla-
tion between the alternatives is captured by a cross nested logit model. The model is
estimated by maximum likelihood estimation on a real data set of pedestrian trajec-
tories, manually tracked from video sequences. The model is successfully validated
using a bi-directional flow data set, collected in controlled experimental conditions
at Delft university.

1 Introduction

Pedestrian behavior modeling is an important topic in different contexts. Architects are
interested in understanding how individuals move into buildings to create optimal space
designs. Transport engineers face the problem of integration of transportation facilities,
with particular emphasis on safety issues for pedestrians. Recent tragic events have
increased the interest for automatic video surveillance systems, able to monitor pedes-
trian flows in public spaces, throwing alarms when abnormal behaviors occur. Special
emphasis has been given to more specific evacuation scenarios, for obvious reasons. In
this spirit, it is important to define mathematical models based on behavioral assump-
tions, tested by means of proper statistical methods. Data collection for pedestrian
dynamics is particularly difficult and only few models presented in the literature have
been calibrated and validated on real data sets.

Previous methods for pedestrian behavior modeling can be classified into two main
categories: microscopic and macroscopic models. In the last years much more at-
tention has focused on microscopic modeling, where each pedestrian is modeled as an
agent. Examples of microscopic models are the social forces model in Helbing and Mol-
nar (1995) and Helbing et al. (2002) where the authors use Newtonian mechanics with
a continuous space representation to model long-range interactions, and the multi-layer
utility maximization model by Hoogendoorn et al. (2002) and Daamen (2004). Blue and
Adler (2001) and Schadschneider (2002) use cellular automata models, characterized by
a static discretization of the space where each cell in the grid is represented by a state
variable. Another microscopic approach is based on space syntax theory where people
move through spaces following criteria of space visibility and accessibility (see Penn and
Turner, 2002) and minimizing angular paths (see Turner, 2001). Finally, Borgers and
Timmermans (1986), Whynes et al. (1996) and Dellaert et al. (1998) focus on destina-
tion and route choice problems on network topologies. For a general literature review
on pedestrian behavior modeling we refer the interested reader to Bierlaire et al. (2003).
For applications of pedestrian models in image analysis, we refer the reader to our pre-
vious work ( Antonini et al., 2004, Venegas et al., 2005, Antonini, 2005 and Antonini,
Venegas, Bierlaire and Thiran, 2006)

Leader-follower and collision avoidance behaviors play a major role in explaining
pedestrian movements. Existing literature has shown the occurrence of self-organizing



processes in crowded environments. At certain levels of density, interactions between
people give rise to lane formation. In order to model these effects formally, we took in-
spiration from previous car following models in transport engineering (including Newell,
1961, Herman and Rothery, 1965, Lee, 1966, Ahmed, 1999). The main idea in these mod-
els is that two vehicles are involved in a car following situation when a subject vehicle
follows a leader, normally represented by the vehicle in front, reacting to its actions.
In general, a sensitivity-stimulus framework is adopted. According to this framework a
driver reacts to stimuli from the environment, where the stimulus is usually the leader
relative speed. Different models differ in the specification of the sensitivity term. This
modeling idea is extended here and adapted to the more complex case of pedestrian
behavior. We want to stress the fact that in driver behavior modeling a distinction
between acceleration and direction (or lane) is almost natural (see Toledo, 2003 and
Toledo et al., 2003), being suggested by the transport facility itself, organized into
lanes. The pedestrian case is more complex, the movements being two-dimensional on
the walking plane, where acceleration and direction changes are not easily separable.
The constrained behaviors in general, and the collision avoidance in particular are also
inspired by studies in human sciences and psychology, leading to the concept of personal
space (see Horowitz et al., 1964, Dosey and Meisels, 1969 and Sommer, 1969). Personal
space is a protective mechanism founded on the ability of the individual to perceive
signals from the physical and social environment. Its function is to create the spacing
patterns that regulate distances between individuals and on which individual behaviors
are based (Webb and Weber, 2003). Helbing and Molnar (1995) in their social forces
model use the term “territorial effect”. Several studies in psychology and sociology show
how individual characteristics influence the perception of the space and interpersonal
distance. Brady and Walker (1978) found for example that anxiety states are positively
correlated with interpersonal distance. Similarly, Dosey and Meisels (1969) found that
individuals establish greater distances in high-stress conditions. Hartnett et al. (1974)
found that male and female individuals approached short individuals more closely than
tall individuals. Other studies (Phillips, 1979 and Sanders, 1976) indicate that the other
person’s body size influences space.

2 Modeling framework

In this work we refer to the general framework for pedestrian behavior described by
Daamen (2004). Individuals make different decisions, following a hierarchical scheme:
strategical, tactical and operational. Destinations and activities are chosen at a strate-
gical level; the order of the activity execution, the activity area choice and route choice
are performed at the tactical level, while instantaneous decisions such as walking and
stops are taken at the operational level. In this paper, we focus on pedestrian walking
behavior, naturally identified by the operational level of the hierarchy just described.
We consider that the strategic and tactical decisions have been exogenously made, and
are interested in modeling the short range behavior in normal conditions, as a reaction
to the surrounding environment and to the presence of other individuals. With the term
“normal” we refer to non-evacuation and non-panic situations.



The motivations and the soundness of discrete choice methods have been addressed
in our introductory work (Bierlaire et al., 2003, Antonini, Bierlaire and Weber, 2006,
Antonini and Bierlaire, 2007). The objective of this paper is twofold. First, we aim to
provide an extended disaggregate, fully estimable behavioral model, calibrated on real
pedestrian trajectories manually tracked from video sequences. Second, we want to test
the coherence, interpretability and generalization power of the proposed specification
through a detailed validation on external data. Compared with Antonini, Bierlaire and
Weber (2006), we present three important contributions: (i) we estimate the model
using significantly more data representing revealed walking behavior, (ii) the model
specification explicitly captures leader-follower and collision-avoidance patterns and (iii)
the model is successfully validated both using cross-validation on the estimation data
set, and forecasting validation on another experimental data set, not involved in the
estimation process.

Pedestrian walking behavior

N

Unconstrained Constrained
Keep Toward  Free flow Collision Leader
direction destination acc/dec avoidance follower

Figure 1: Conceptual framework for pedestrian walking behavior

We illustrate in Figure [l the behavioral framework. The unconstrained decisions
are independent from the presence of other pedestrians and are generated by subjective
and/or unobserved factors. The first of these factors is represented by the individ-
ual's destination. It is assumed to be exogenous to the model. The second factor
is represented by the tendency of people to keep their current direction, minimizing
their angular displacement. Finally, unconstrained accelerations and decelerations are
dictated by the individual desired speed. The implementation of these ideas is made
through the three unconstrained patterns indicated in Figure [1

We assume that behavioral constraints are induced by the interactions with the
other individuals in the scene. The collision avoidance pattern is designed to capture
the effects of possible collisions on the current trajectory of the decision maker. The
leader-follower pattern is designed to capture the tendency of people to follow another
individual in a crowd, in order to benefit from the space she is creating.

The discrete choice model introduced by Antonini, Bierlaire and Weber (2006) is
extended here. The basic elements are the same and summarized below. Pedestrian



movements and interactions take place on the horizontal walking plane. The spatial
resolution depends on the current speed vector of the individuals. The geometrical
elements of the space model are illustrated in Figure @

Vndn

Figure 2: The basic geometrical elements of the space structure

In a given coordinate system, the current position of the decision maker n is p, =
(Xn,Yn), her current speed v, € IR, her current direction is d,, € IR? (normalized such
that ||dn|| = 1) and her visual angle is 0,, (typically, 6, = 170°). The region of interest
is situated in front of the pedestrian, ideally overlapping with her visual field. An
individual-specific and adaptive discretization of the space is obtained to generate a set
of possible places for the next step. Three speed regimes are considered. The individual
can accelerate to 1.5 times her speed, can decelerate to half time her speed, or can
maintain her current speed. Therefore, the next position will lie into one of the zones,
as depicted in Figure For a given time step t (typically, 1 second), the deceleration
zones range from 0.25v,t to 0.75v,t, with the center being at 0.5v,t, the constant speed
zones range from 0.75v,t to 1.25v,,t, with the center being at v, t, and the acceleration
zones range from 1.25v,t to 1.75v,t, with the center being at 1.5v,t. With respect to
the direction, a discretization into 11 radial directions is used, as illustrated in Figure
3(a)l, where the angular amplitudes of the radial cones are reported in degrees.

A choice set of 33 alternatives is generated where each alternative corresponds to a
combination of a speed regime v and a radial direction d, as illustrated in Figure @l Each
alternative is identified by the physical center of the corresponding cell in the spatial
discretization c,q, that is

Cvd = Ppn +vitd, (1)

where t is the time step. The choice set varies with direction and speed and so does
the distance between an alternative’s center and other pedestrians. As a consequence,
differences in individual speeds are naturally mapped into differences in their relative
interactions. Note that the presence of physical obstacles can be modeled by declaring
the corresponding cells as not available.

3 The model

Individuals walk on a 2D plane and we model two kinds of behavior: changes in direction
and changes in speed, i.e. accelerations. Five behavioral patterns are defined. In a
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(a) Discretization of directions

Acceleration

Constant speed

Deceleration
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(b) Discretization of speed regimes

Figure 3: The spatial discretization.

discrete choice context, they have to be considered as terms entering the utility functions
of each alternative, as reported in Equation @l The utilities describe the space around
the decision maker and under the rational behavior assumption the individual chooses
that location (alternative) with the maximum utility. In the following, we discuss the
different patterns and the associated assumptions in more details.

Following the framework proposed in Figure [l we report here the systematic utility
as perceived by individual n for the alternative identified by the speed regime v and



Figure 4: Choice set representation, with numbering of alternatives

direction d.
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where all the 3 parameters as well as Ascc, Adec, oc;-CC, p;-CC, y&cc, 6§CC, océec, chiec, y}iec,
65“, xc, Pc, Yc, Oc are unknown and have to be estimated. Note that this specification
is the result of an intensive modeling process, where many different specifications have
been tested. We explain in the following the different terms of the utilities.

3.1 Keep direction

This part of the model captures the tendency of people to avoid frequent variations of the
direction. People choose their next position in order to minimize the angular displace-
ment from their current movement direction. In addition to the behavioral motivation
of this factor, it also plays a smoothing role in the model, avoiding drastic changes of
direction from one time period to the next. In order to capture the nonlinearity of this
pattern, we include a different term for each group of directions. The “central” group,
identified by the indicator Iy central, contains the cones 5, 6 and 7 (see Figure []), the
“side” group, identified by the indicator Ig siqe, contains the cones 3, 4, 8 and 9, and the



“extreme” group, identified by the indicator Igextreme, contains the cones 1, 2, 10 and
11.
The associated terms in the utility function are

ﬁdiricentraldirand,central + Bdirisidedirdﬂ.ld,side + Bdiriextremedirand,extreme (3)

where the variable dirg,, is defined as the angle in degrees between the direction d and
the direction d,,, corresponding to the current direction, as shown in Figure Bl Note
that the indicators guarantee that only one of these three terms is nonzero for any given
alternative. We expect the 3 parameters to be negative.

Destination

Figure 5: The elements capturing the keep direction and toward destination behaviors

3.2 Toward destination

The destination is defined as the final location that the pedestrian wants to reach. To
be coherent with the general framework introduced in Section [ we assume that the
destination choice is performed at the strategical (or possibly tactical) level in the hier-
archical decision process, and is therefore exogenous in this model. Such a higher level
choice is naturally reflected on the short term behavior as the tendency of individuals to
choose, for the next step, a spatial location that minimize both the angular displacement
and the distance to the destination.
This behavior is captured by the term

Badistddistyan + Paairddirgn (4)

where the variable ddist, g, is defined as the distance (in meters) between the destination
and the center of the alternative C,g4n, while ddirg,, is defined as the angle in degrees
between the destination and the alternative’s direction d, as shown in Figure We
expect a negative sign for both the fgqgir and Pgaqgist parameters.

3.3 Free flow acceleration

In free flow conditions the behavior of the individual is driven by her desired speed.
The acceleration is then a function of the difference between current speed and desired



speed. However, this variable is unobserved and it cannot be introduced explicitly in
the model. As a consequence, we assume that the utility for acceleration is dependent
on the current speed. Increasing speed corresponds to decreasing utility for further
accelerations. In order to reflect that a parameter varies with speed v,, we use the

specification
A
- Vn
= . 5
p=5 () 5)
Note that
0B vn
A= ——
ovn PB

can be interpreted as the elasticity of the parameter 3 with respect to the speed vi.
The value of v, is arbitrary, and determines the reference speed corresponding to f3.
In our context, we define such a term for the parameters associated with deceleration

Bdec Iv,dec (Vn/\)max)}\dec (6)

where I goc is one if v corresponds to a deceleration, and zero otherwise, and the ref-
erence speed is selected to be the maximum speed observed vmax = 4.84 (m/s). The
impact of this term on the utility is illustrated on Figure (the estimated values
of the parameters have been used to generate Figure [Bl). It shows that the utilities of
the alternatives associated with deceleration are very low when the pedestrian already
walks slowly. For higher speeds, this term has basically no impact on the utility.

For the acceleration, we have introduced two such terms, one for lower speeds (less
or equal to 5km/h = 1.39 m/s), and one for higher speeds.

A A
BachS In,LS Iv,acc (Vn/vmaxLS ) acelS + [3accHS In,HS Iv,acc (Vn/\)max) accHS (7)

where I, 15 is one if the individual's current speed is less or equal to 1.39 and zero
otherwise, I, ys = 1 — I 1,5, and the reference speed for low speeds vmaxrs = 1.39. The
indicator Iy acc is 1 if the alternative corresponds to an acceleration and 0 otherwise. We
expect negative signs for Paccus, PaccLs, Pdec and Agec parameters, while a positive sign
is expected for Aaccrs and Aaccus. The impact of this term on the utility is illustrated on
Figure where the two parts of the curve (low and high speed) are represented. It
appears clearly that the role of the second part is to avoid a too dramatic penalization
of acceleration for high speeds.

3.4 Leader-follower

We assume that the decision maker is influenced by leaders. In our spatial representation
11 radial cones partition the space (see Figure [3]). In each of these directions a possible
leader can be identified among a set of potential leaders. A potential leader is an
individual which is inside a certain region of interest, not so far from the decision
maker and with a moving direction close enough to the direction of the radial cone
where she is. Among the set of potential leaders for each radial direction, one of them is
selected as leader for that direction (the closest to the decision maker). Once identified,
the leader induces an attractive interaction on the decision maker. Similarly to car
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following models, a leader acceleration corresponds to a decision maker acceleration.
The leader-follower model is given by the following terms

L L L L L L
L L p Y. 5 L L Pq Yd b5
Iv,accld’accocachLa“A\)La“AeLa“ + IV,deCId,deco‘decDL “A\)L “AGL ec, (8)

It is described by a sensitivity/stimulus framework. The leader for each direction is
chosen considering several potential leaders (represented by light gray circles in Figure
). An individual k is defined as a potential leader based on the following indicator
function:

1, if dy < dx < d;, (is in the cone),
*_ and 0 < Dy < Dyn  (not too far),

9 and 0 < |[ABy| < ABy, (walking in almost the same direction),
0, otherwise,

where d, and d, represent the bounding left and right directions of the cone in the
choice set (defining the region of interest) while dy is the direction identifying the
position of pedestrian k . Dy is the distance between pedestrian k and the decision
maker, ABy = 0y — 04 is the difference between the movement direction of pedestrian
k (0x) and the angle characterizing direction d, i.e. the direction identifying the radial
cone where individual k lies (04). The two thresholds Dy, and ABy, are fixed at the
values D, = 5D nax, Where Dynqx is the radius of the choice set, and A8y, = 10 degrees.
We assume an implicit leader choice process, executed by the decision maker herself
and modeled choosing as leader for each direction the potential leader at the minimum
distance D = minyck(Dy), illustrated in Figure [l by the darker circle. Once the leader
is identified, we compare her speed. The indicator I}Lacc is one if the leader in the
code d has been identified with a speed larger than v;,, and zero otherwise. Similarly,
I§ gec = 11§ o is one if the leader in cone d has been identified with a speed lower than
Vn, and zero otherwise. Finally, the indicator functions I, qcc and I, gec discriminate
between accelerated and decelerated alternatives, as for the free flow acceleration model.
The underlying assumption is that faster leaders will have an impact on the accelaration,

while slower leaders will have an impact on the deceleration.

For a given leader, the sensitivity is described by
L

sensitivity = (XIQ‘DEQ (9)
where Dy represents the distance between the decision maker and the leader. The
parameters ocg and plé have to be estimated and g = {acc, dec} indicates when the leader
is accelerating with respect to the decision maker. Both al.. and «}__ are expected to
be positive while a negative sign is expected for pL__ and deeC.
The decision maker reacts to stimuli coming from the chosen leader. We model
the stimulus as a function of the leader’s relative speed Av; and the leader’s relative

direction A9; as follows:

L L
stimulus = szg Aeig (10)

with Avy = |v{ — vy, where v and v,, are the leader’s speed module and the decision
maker’s speed module, respectively. The variable A0y = 0 — 04, where 01 represents

11



Figure 7: Leader and potential leaders in a given cone

the leader’s movement direction and 04 is the angle characterizing direction d, as shown
in Figure[ll Positive signs are expected for both the vyl and v} _ parameters, while we
expect a negative sign for both the 5L and 6§ .. A leader acceleration induces a decision
maker’s acceleration. A substantially different movement direction in the leader reduces
the influence of the latter on the decision maker. Note that in the final specification,
the parameter 6}1&6 appeared not to be significantly different from 0. Therefore, we have
decided to remove it from the model for the final estimation. The specification (&)

becomes

L L 5L L L
Ty acc g ace Xhcc DL AV 2 A + Ty dec I dec o Dy Ay dee, (11)

3.5 Collision avoidance

This pattern captures the effects of possible collisions on the decision maker trajectory.
For each direction in the choice set, a collider is identified among a set of potential
colliders. Another individual is selected as a potential collider if she is inside a certain
region of interest, not so far from the decision maker and walking in the opposite direc-
tion. The collider for a radial direction is chosen from the set of potential colliders for
that direction as the individual whose walking direction forms the larger angle with the
decision maker walking direction. This pattern is associated with repulsive interactions
in the obvious sense that pedestrians change their current direction to avoid collisions
with other individuals. The collision avoidance model is given by the following term

laa, La,cocePePC AVYC ARYS . (12)

12



The collider for each direction is chosen considering several potential colliders, as
shown in Figure Bl An individual k is defined as a potential collider based on the
following indicator function:

1, if d; < dx < d, (is in the cone),

_ and 0 < Dy < Dy, (not too far),

c- and J < |AB| < m (walking in the other direction),
0, otherwise,

where dy, d. and dy are the same as those defined for the leader-follower model. D, is
the distance between individual k and the center of the alternative, A8y = 0y — 04, is
the difference between the movement direction of pedestrian k, 0y, and the movement
direction of the decision maker, 04,. The value of the distance threshold is now fixed to
Dy}, = 10D max. We use a larger value compared to the leader-follower model, assuming
the collision avoidance behavior being a longer range interaction, happening also at a
lower density level. We assume an implicit collider choice process, which is determin-
istic and decision-maker specific. Among the set of K4 potential colliders for direction
d, a collider is chosen in each cone as that individual having AB¢c = maxyck, |ABy/.
The indicator I4c = 1 if a collider has been identified, and 0 otherwise. Finally, the
collision avoidance term is included in the utility functions of all the alternatives. So,
the indicator function I4 4, is equal to 1 for those alternatives that are not in the current
direction (d # d.), O otherwise.

collider

Figure 8: Collider and potential colliders in a given cone

We apply a similar sensitivity /stimulus framework, where the sensitivity function is

13



defined as
sensitivity = ocePcPc (13)

where the parameters occ and pc, that have to be estimated, are expected to have both
a negative sign and D¢ is the distance between the collider position and the center of
the alternative. The decision maker reacts to stimuli coming from the collider. We
model the stimulus as a function of two variables:

stimulus = AvYC A2 (14)

with ABc = 0¢c — 04, where O¢ is the collider movement direction and 04, is the
decision maker movement direction, and Avc = vc+vn, where v is the collider’s speed
module and vy, is the decision maker’s speed module. The parameters yc and d¢ have
to be estimated and a positive sign is expected for both of them. Individuals walking
against the decision maker at higher speeds and in more frontal directions (higher Af¢)
generate stronger reactions, weighted by the sensitivity function.

Note that in the final specification, the parameters yc and &¢ appeared not to be
significantly different from 0. Therefore, we have decided to remove them from the
model for the final estimation. The specification involves only the sensitivity part ([I3]).

3.6 The error term

We use a cross nested logit (CNL) model (see, among others, Wen and Koppelman,
2001, Bierlaire, 2006, Abbe et al., 2007) specification. Such a model allows flexible
correlation structures in the choice set, keeping a closed form solution. The CNL being
a Multivariate Extreme Value model (MEV, see McFadden, 1978), the probability of
choosing alternative 1 within the choice set C is:

Vi (Y1, Yy)
HG(UM)U])

where | is the number of alternatives in C, y; = eVi with V; the systematic part of the
utility described by (2]) and G is the following generating function:

P(i[C) =

(15)

n

M m
m=1 \ jeC

where M is the number of nests, o, > 0,Vj, m, an\f:] om > 0,Vj, >0, um > 0,Vm
and p < py,Vm. This formulation leads to the following expression for the choice

probability formula, using y; = ev::
L
Hm /K pm ) Bm
. M (Zgecopnuf") T
PEC) =) - T (17)
m=l Z?ﬁ:] <Zjec O(;l:/uy;l—n) D jec %m Y

We assume a correlation structure depending on the speed and direction and we
identify five nests: accelerated, constant speed, decelerated, central and not central.

14



(a) Japanese scenario

Figure 9: A frame from the Japanese video

We fix the degrees of membership to the different nests () to the constant value 0.5.
The parameter pu is normalized to 1, and the nest parameters p,, are estimated. Note
that the parameters associated with the deceleration nest has been constrained to 1 in
the final specification, as it did not appear to be significantly different to that value.

We conclude this section by emphasizing that the above specification ignores het-
erogeneity in the population. Characteristics such as age, sex, weight, height (among
others) probably influence the spatial perception, interpersonal distance and human-
human interactions. However, given the nature of the data (trajectories) it is not possi-
ble to take them into account in the model. Therefore, a specification with unobserved
heterogeneity captured by random coefficient in a panel data setup would have been
appropriate. However, the complexity of this specification did not allow us to estimate
the model with a sufficiently high number of draws.

4 Data

The data set used to estimate the model consists of pedestrian trajectories manually
tracked from video sequences.

It has been collected in Sendai, Japan, on August 2000 (see Teknomo et al., 2000,
Teknomo, 2002). The video sequence has been recorded from the 6th floor of the JTB
parking building (around 19 meters height), situated at a large pedestrian crossing point.
Two main pedestrian flows cross the street, giving rise to a large number of interactions.
A frame extracted from this video is represented in Figure

In this context, 190 pedestrian trajectories have been manually tracked at a rate
of 2 processed frames per second, for a total number of 10200 position observations.
The mapping between the image plane and the walking plane was performed by Ar-
senal Research (Bauer, 2007) using a 3D-calibration with the standard DLT algorithm
(Shapiro, 1978). The reference system on the walking plane has the origin arbitrarily

15



placed on the bottom left corner of the zebra crossing. The x axis represents the width
of the crossing while the y axis is the crossing length.

For each frame, the following information for each visible pedestrian has been col-
lected: (i) the time t corresponding to the frame f (in this case t = f/2), (ii) the
pedestrian identifier n, and (iii) the coordinates pf = (xf,yf) identifying the location
of the pedestrian in the walking plane.

From these raw data, we have first derived the current direction and speed of each
pedestrian using the current and the previous frames, that is

dn = ph—pi",
Vn |dnll/0.5 = 2||dn]l.

In Figure [I0 we report the speed histogram and in Table [l the speed statistics.

Then, a specific choice set (see Figure B) has been constructed for each pedestrian,
based on () where t = 1 sec (that is, 2 frames), v = v,, for constant speed alternatives,
v = 0.5v,, for decelerated alternatives, v = 1.5v,, for accelerated alternatives, d = d,,
for alternatives in cone 6 (alt. 6, 17, 28), and d = rot(d, ¢) is obtained by rotating d,
around p,, with an angle ( corresponding to the cone, that is

Cone 1: (=725° Conell: (=-72.5°
Cone 2: (¢ =50°, Cone 10: (= —50°,
Cone 3: (=325° Cone9: (=-32.5°,
Cone 4: (= 20°, Cone 8: (= —20°,
Cone 5: (=10°, Cone T: (=-—10°.

For each cell in the choice set, each variable in (2]) has then been computed based
on the descriptions in Section Bl Note that the destination of each individual is defined
by her location in the last frame where she is visible. Finally, the chosen alternative has
been identified as the cell containing the pedestrian’s location after 1 second, that is pf+2.
In the rare instances where pffz did not belong to any cell (because of numerical errors
due to poor image resolution, or extreme speed variations), the corresponding piece of
data was removed from the sample (for a total of 919 observations). We represent in
Figure [Tl selected generated choice sets on a given trajectory (representing them all
would have been unreadable on the figure).

We obtain a total of 9281 observations for 190 pedestrians . In Figure [[2 we report
the frequency of the revealed choices as observed in the data set. The three peaks in the
distributions arise on the central alternatives (6, 17, 28), as expected. Note that cells
1, 12, 23 and 33 are never chosen in this sample. The repartition of the observations

across the nests is detailed in Table B

5 Estimation results

We report in Table Bl the estimation results. The parameters have been estimated using
the Biogeme package (Bierlaire, 2003, biogeme.epfl.ch).

All estimates have the expected sign. Note that the parameter associated with the
deceleration nest was clearly insignificant, and fixed to 1. The p-value for the central
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Mean 1.31
Standard Error 0.012

Median 1.27
Mode 1.28
Standard Deviation 0.37
Minimum 0.43
Maximum 4.84

Note: standard error is the estimated standard deviation of the sample mean

Table 1: Speed statistics(m/sec)

Japanese speed histogram
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Figure 11: Example of one manually tracked trajectory with choice sets
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Figure 12: Revealed choices histograms

Nest # steps | % of total
acceleration 1065 11.48%
constant speed | 7565 81.51%

deceleration 651 7.01%
central 4297 46.30%
not central 4084 53.70%

Table 2: Number of chosen steps in each nest for the real data set

nest parameter is 0.27 (t-test = 1.11) which cannot be used for a clear rejection of the
null hypothesis that the true value is 1.0. However, to avoid a potential misspecification,
we prefer not constraining it to 1 in the final model.

In addition to the proposed model, we analyze also a simple model, where the utility
of each alternative is represented only by an alternative specific constant. This constant-
only model perfectly reproduces the observed shares in the sample, with 28 parameters.
Indeed, there are 33 alternatives, minus 4 which are never chosen, minus one constant
normalized to 0. With this model, the loglikelihood drops from -13997.27 down to
-17972.03, illustrating the statistical significance of the proposed specification. Note
that a classical likelihood ratio test is not appropriate here, as the hypotheses are not
nested. We believe that a more rigorous test is not really necessary given the huge jump
in loglikelihood value.

6 Model validation

Two data sets are used for validation: the Japanese data set used for estimation and
described in Section B, and a data set collected in the Netherlands, which has not been
involved at all in the estimation of the parameters.
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Variable Coefficient ¢ test 0 | Variable Coefficient ¢ test 0 ¢ test 1
name estimate name estimate

Padir -0.0790 -24.53 oL, -0.489 -2.19

Paaist -1.55 -11.66 | yvL. 0.625 2.87

Bair extreme -0.0326 -9.30 ol 3.69 6.90

Bdir side -0.0521 -21.87 | pL_ -0.663 7.11

Baic contral  -0.0252 -8.74 | v, 0.652 6.19

BaceLs 4.97 2261 | oL, -0.171 -2.33

BaccHs -7.47 -5.21 xc -0.00639 -9.82

Pdec -0.0630 -2.40 pc -0.239 -8.28

AaccLs 4.16 15.94 Hace 1.66 9.73 3.88
AaccHS 0.358 2.09 Heonst 1.50 13.46 4.48
Adec -2.41 -8.43 Heentral 2.35 1.93 1.11
ok 0.942 2.28 Hnot central 1.75 9.46 4.04
Sample size = 9281 Init log-likelihood = -32451

Nbr of estimated parameters = 24 Final log-likelihood = -13997.27

p? = 0.568 Likelihood ratio test = 36907

Table 3: CNL estimation results for the Japanese data set

In Section B, we apply the model on the Japanese data set, and compare the
predicted choices with the observed ones. In Section E2] we test the robustness of the
model specification by performing cross-validation, where a subset of the Japanese data
set is saved for validation, and the model is estimated on the rest. Finally, in Section 63
we apply both our model, and a simple constant-only model on the data set collected
in the Netherlands.

6.1 Japanese data set: validation of the model

We first apply our model with the parameters described in Table Bl on the Japanese
data set, using the Biosim package (Bierlaire, 2003). For each observation n, we obtain
a probability distribution P, (i) over the choice set.

Figure [[3 represents the histogram of the probability value P (i},) assigned by the
model to the chosen alternative i}, of each observation m, along with the hazard value
1/33 (where 33 is the number of alternatives). We consider observations below this
threshold as outliers. There are only 7.13% of them. As a comparison, there are 19.90%
of outliers with the constant-only model.

The top part of Figure [ reports, for each i, ), P(i), and the bottom part reports
> . VYin, where yi, is 1 if alternative i is selected for observation n, 0 otherwise. As
expected, the two histograms are similar, indicating no major specification error.

This is confirmed when alternatives are aggregated together, by directions (see Table
B) and by speed regimes (see Table [l). For a group I' of alternatives, the quantities

Mr = ZnZiGFPn(i)’
Rr = 2 .2 ierVin
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300 +

Hazard = 1/33

250 +—

200

150

observations (nb)

100 HH

so HH

Figure 13: Predicted probabilities of the Japanese data

and
(Mr —Rr)/Rp

are reported in columns 3, 4 and 5, respectively, of these tables.

The relative errors showed in Table B and Table B are low, except for groups of
alternatives with few observations, that is groups corresponding to extreme left and
extreme right directions.

Cone I Mr Rr (Mr — Rr)/Rr
Front 5—-7,16—18,27 — 29 | 8489.27 | 8481 0.0010
Left 3,4,14,15,25,26 349.67 | 367 —0.0472
Right 8,9,19,20, 30,31 41545. | 407 0.0208
Extreme left 1,2,12,13,23,24 12.29 10 0.2296
Extreme right | 10,11,21,22,32,33 14.30 16 —0.1059

Table 4: Predicted (Mr) and observed (Rr) shares for alternatives grouped by directions
with the Japanese data set.

6.2 Japanese data set: validation of the specification

In order to test the proposed specification, we have performed a cross validation done
on the Japanese data set. It consists in splitting the data set into 5 subsets, each
containing 20% of the observations. We perform 5 experiments. For each of them, one
of the five subsets is saved for validation purposes, and the model is re-estimated on
the remaining 4 subsets. The same procedure has been applied with the constant-only
model. The proportion of outliers for each experiment is reported in table[6l We observe
that they are consistent with 7.13% (for our model) and 19.90% (for the constant-only
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Figure 14: Predicted and observed shares for the Japanese data set

Area I Mr Rr (Mr — Rr)/Rr
acceleration 1—11 | 1041.50 | 1065 —0.0221%
constant speed | 12 — 22 | 7606.49 | 7565 0.0055
deceleration |23 —33| 633.02| 651 —0.0276%

Table 5: Predicted and observed shares for alternatives
the Japanese data set.

21
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model) of outliers obtained with the complete data set, illustrating the robustness of

the specification.

Model Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5
Proposed spec. 8.78% 6.36% 7.60% 7.87% 5.87%
Constant only | 20.79% | 20.70% | 17.13% | 19.88% | 18.64%

Table 6: Summary of the cross-validation performed on the Japanese data set

The above analysis indicates a good specification and performance of the model.
However, it is not sufficient to fully validate it. Consequently, we perform now the same
analysis on a validation data set, not involved in the estimation of the model.

6.3 Dutch data set: validation of the model

This data set has been collected at Delft University, in the period 2000-2001 (Daamen
and Hoogendoorn, 2003, Daamen, 2004) where volunteer pedestrians were called to
perform specific walking tasks in a controlled experimental setup.

For the purpose of our validation procedure we use the subset of the Dutch data set
corresponding to a bi-directional flow. This situation is the experimental version of the
Japanese data set, which corresponds to a walkway. The subset includes 724 subjects
for 47481 observed positions, collected by means of pedestrian tracking techniques on
video sequences, at a frequency of 10Hz, that is 10 frames per second. In Figure [[8 we
report one frame from the experimental scenario.

For each frame, we have collected for each visible pedestrian the time t corresponding
to the frame f (in this case t = f/10), the pedestrian identifier n, and the coordinates
pf = (xf,yl) identifying the location of the pedestrian in the walking plane. From
these raw data, we have derived the current direction and speed of each pedestrian
using the current and the previous frames, that is

dn, =
Vn

p; - prw,i]v
[[dnl/0.1 =10]|dn]|.

Consistently with the model assumptions, the chosen alternative has been identified as
the cell containing the pedestrian’s location after 1 second, that is pf+1°.

The repartition of the observations across nests is detailed in Table [ We note the
very low number of decelerations and accelerations, probably due to the experimental
nature of the data.

We compare the observed choices for the Japanese and the Dutch data set in Table
and Figure Table B reports the percentage of observations for cells at the extreme
left of the choice set (alts. 1, 2, 12, 13, 23, 24), the left part (alts. 3, 4, 14, 15,
25, 26), the front (alts. 5-7, 16-18, 27-29), the right (alts. 8, 9, 19, 20, 30, 31) and
the extreme right ( 10, 11, 21, 22, 32, 33). Figure reports normalized observation,
that is, for each alternative i, } | yin/N, where yi, is 1 if alternative i is selected for
observation n, 0 otherwise, and N is the total number of observations. We observe
a great similarity in the observed proportions, except for alternatives corresponding to
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Figure 15: A representative frame from the video sequences used for data collection

Nest # steps | % of total
acceleration 1273 2.68%
constant speed | 45869 96.61%
deceleration 339 0.71%
central 20950 44.12%
not central 26531 55.88%

Table 7: Number of chosen steps in each nest for Dutch data

accelerations and decelerations. This suggests that a simple model, with only alternative
specific constants, may actually perform well on this data set. We show below that it
is not the case.

Dataset | extremeleft left | front | right | extremeright
Japanese 0.11% | 3.95% | 91.38% | 4.39% 0.17%
Dutch 0.06% | 4.40% | 91.35% | 4.15% 0.04%

Table 8: Comparison between Japanese and Dutch data sets for the observations pro-
portions in the direction’s cones.

We apply our model with the parameters described in Table Blon the Dutch data set,
using the Biosim package. For each observation n, we obtain a probability distribution
P..(i) over the choice set.

Figure [I7 represents the histogram of the probabilities P, (i},) of the chosen alter-
natives as predicted by the model, as well as the hazard value 1/33 (where 33 is the
number of alternatives) illustrating the prediction of a purely random model with equal
probabilities. Again, we consider observations below this threshold as outliers. We ob-
serve that there are 2.48% of them. This is good news, as it is actually less than for
the data set used for parameters estimation. The shape of the curve, as well as the low
number of outliers are signs of a good performance of the model. When we compare it
with the predictions obtained with the constant-only model (Figure [I8]), the superior
forecasting potential of our model appears clearly.
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Figure 16: Comparison between the Japanese and dutch normalized observations dis-
tributions along the alternatives.

The significant superiority of our model over the constant-only model is also illus-
trated by comparing the proportion of outliers (2.48% vs. 10.31%) or the loglikelihood
(-51647.38 vs. -77269.28, as detailed in Table [14]).

Predicted probabilities for dutch data
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Figure 17: Prediction with the proposed model

We now compare the predictions performed by our model with the actual observa-
tions. The top part of Figure M@ reports the predicted probabilities obtained by sample
enumeration, that is, for each i, )  Pn(i), and the bottom part the observed shares,
thatis ) |, yin. The predictions are very satisfactory, except maybe for the decelerations
(alternatives 22 to 33) and accelerations (alternatives 1 to 11).

We also perform the comparison at a more aggregate level, for groups of cells. Tables
and [0 show a good overall performance of the model. Clearly, the extreme left and
extreme right groups contain too few observations to reach any conclusion. The only
bias seems to consist in a systematic over-prediction of accelerations and decelerations.
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Figure 18: Prediction with the constant-only and the proposed model

Cone I Mr Rr (Mr — Rr)/Rr
Front 5—-7,16—18,27 — 29 | 43619.98 | 43374 0.0057
Left 3,4,14,15,25,26 1968.79 | 2089 —0.0575
Right 8,9,19,20,30,31 1764.39 | 1972 —0.1053
Extreme left 1,2,12,13,23,24 45.86 27 0.6985
Extreme right | 10,11,21,22,32,33 81.97 19 3.3144

Table 9: Predicted (Mr) and observed (Rr) shares for alternatives grouped by directions
with the Dutch data set.

Area I Mr Rr (Mr— Rr)/Rr
acceleration 1—11 3892.35 | 1273 2.0576
constant speed | 12 — 22 | 40733.53 | 45869 —0.112
deceleration |23 —33| 2855.12 339 7.4222

Table 10: Predicted (Mr) and observed (Rr) shares for alternatives grouped by speed
regime with the Dutch data set.
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Figure 19: Choice histogram predicted by the model against the revealed choices in the
Dutch data set
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This is consistent with the above-described analysis. The Dutch data set was collected
in controlled experimental conditions, which may have introduced a bias in pedestrian
behavior, depending on the exact instructions they have received. This assumption is
supported by the quasi absence of decelerations in the data set, and by the different
shapes of the speed distributions (see Figure 20). While the Japanese curve appears to
be Gaussian, the Dutch curves contain some non-Gaussian features which are likely to
be a result of the experimental nature of the data. In particular, the support is much
narrower, with few high speeds. Note that, in the Japanese case, some pedestrians are
running when the traffic light becomes red and the cars start moving.

Data Set ‘ Mean speed [m/s]
Dutch (experimental) 1.297
Japanese (real) 1.341

Table 11: Average pedestrian speed in the data sets

Japanese and Dutch speed distribution
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DJapanese
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speed (m/s)

Figure 20: Distribution of speed in the two data sets

We report now the same aggregate prediction obtained with the constant-only model
in Tables and [31 The good performance of this simple model at the aggregate
level emphasizes the need for the disaggregate validation performed above. Indeed,
this apparently good performance of the model is due to the coincidental similarity
of proportions of chosen alternatives in the two data sets (see Table B)). The detailed
analysis presented in Figure [I8 clearly rejects the simple model, while the aggregate
analysis does not.

For the sake of completeness, a constant-only model has been calibrated on the
Dutch data set, in the same way than for the Japanese. Our model estimated on the
Japanese data is better than the constant-only model estimated on the Dutch data, when
applied on the Dutch data set, both for log-likelihood (-51647.38 against -71847.69) and
prediction (2.48 %, percentage of outliers against 4.33%). We have summarized the
various loglikelihood values in Table [[4, where each column corresponds to a model,
and each row to a data set.

In summary, we observe that our model applied on the estimation data (Japanese)
have few outliers compared to the constant-only model, and reproduces well the ob-
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Cone I Mr Rr (Mr* Rr)/Rr
Front 5—7,16—18,27 — 29 | 43386.42 | 43374 0.0003
Left 3,4,14,15,25,26 1877.47 | 2089 —0.1013
Right 8,9,19,20, 30,31 2082.10 | 1972 0.0558
Extreme left 1,2,12,13,23,24 51.16 27 0.8947
Extreme right | 10,11,21,22,32,33 81.85 19 3.308

Table 12: Predicted (Mr) using the constant-only model and observed (Rr) shares for
alternatives grouped by directions with the Dutch data set.

Area I Mr Rr (Mr* Rr)/Rr
acceleration 1—11 5448.24 | 1273 3.2798
constant speed | 12 — 22 | 38700.42 | 45869 —0.1563
deceleration |23 —33| 3330.34 339 8.824

Table 13: Predicted (Mr) using the constant-only model and observed (Rr) shares for
alternatives grouped by speed regime with the Dutch data set.

served choices. A forecasting cross-validation based on 80% of the sample ilustrate the
good robustness of the specification. When the model is applied on the validation data
(Dutch), we observe few outliers and an excellent probability histogram. Also, it re-
produces very well the observed choices, in terms of directions and constant speed. We
emphasize that this disaggregate analysis was necessary, as the aggregate comparison
does not reject the constant-only model.

7 Conclusions

In this paper we propose a discrete choice model for pedestrian walking behavior. The
short range walking behavior of individuals is modeled, identifying two main patterns:
constrained and unconstrained. The constraints are generated by the interactions with
other individuals. We describe interactions in terms of a leader-follower and a collision
avoidance models. These models capture self-organizing effects which are characteristic
of crowd behavior, such as lane formation. Inspiration for the mathematical form of
these patterns is taken from driver behaviors in transportation science, and ideas such
as the car following model and lane changing models have been reviewed and re-adapted
to the more complex pedestrian case. The difficulties to collect pedestrian data as well
as the limited information conveyed by pure dynamic data sets limit the possibilities in

Constant-only model = Constant-only model

Data set Our model based on Japanese data based on Dutch data
Japanese -13997.27 -17972.03 —
Dutch  -51647.38 -77269.28 -71847.69

Table 14: Loglikelihood of each model applied on the two data sets
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the model specification step. Important individual effects cannot be captured without
the support of socio-economic characteristics. Recent development of pedestrian labo-
ratories, where the set up of controlled experimental conditions is possible, represents
an important step in this direction. We use experimental data in a two step validation
procedure. First, the model is validated on the same data set used for estimation in
order to check for possible specification errors. Second, the model is run on a new
data set collected at Delft University under controlled experimental conditions. The
proposed validation procedure underline a good stability of the model and a good fore-
casting performance. Few observations are badly predicted, mostly concentrated at the
extreme of the choice set. The estimated coefficients are significant and their sign is
consistent with our behavioral assumptions. Differently from other previous models,
we can quantify the influence of the relative kinematic characteristics of leaders and
colliders on the decision maker behavior. Moreover, such quantitative analysis has been
performed using real world pedestrian data.

Future developments will focus in analyzing more and improving the acceleration
and deceleration patterns. In particular, we plan to investigate the use of an adaptive
resolution of the choice set, as well as incorporating in the model some physical and
socio-economic characteristics of the pedestrians.
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