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AbstractWe study adaptive route 
hoi
e models that expli
itly 
apturetravelers' route 
hoi
e adjustments a

ording to information on real-ized network 
onditions in sto
hasti
 time-dependent networks. Twotypes of adaptive route 
hoi
e models are explored: an adaptive pathmodel where a sequen
e of path 
hoi
e models are applied at inter-mediate de
ision nodes; and a routing poli
y 
hoi
e model where thealternatives 
orrespond to routing poli
ies rather than paths at the ori-gin. A routing poli
y in this paper is a de
ision rule that maps from allpossible (node, time) pairs to next links out of the node. A poli
y-sizeLogit model is proposed for the routing poli
y 
hoi
e, where poli
y-size is a generalization of path-size in path 
hoi
e models to take intoa

ount the overlapping of routing poli
ies. The spe
i�
ations of es-timating the two adaptive route 
hoi
e models are established andthe feasibility of estimation from path observations is demonstratedon an illustrative network. Predi
tion results from three models -non-adaptive path model, adaptive path model, and routing poli
ymodel - are 
ompared. The routing poli
y model is shown to better
apture the option value of diversion than the adaptive path model.The di�eren
e between the two adaptive models and the non-adaptivemodel is larger in terms of expe
ted travel time, if the network is moresto
hasti
, indi
ating that the bene�t of being adaptive is more sig-ni�
ant in a more sto
hasti
 network.
1 IntroductionTransportation systems are inherently un
ertain due to disturban
es su
has in
idents, vehi
le breakdowns, work zones, bad weather 
onditions, spe-
ial events and so forth. On the other hand, real-time information in variousformats is available, from personal observations, websites, variable messagesigns (VMS), radio broad
asts, 
ell phones to personal in-vehi
le systems.Real-time information 
an redu
e the un
ertainty of the traÆ
 network,and therefore potentially help traveler make better route 
hoi
e de
isions.Travelers usually obtain updated information at various de
ision pointsduring a trip, and potentially a route 
hoi
e is made at ea
h of the points1



based on updated per
eption of the un
ertain network. This dynami
 pro-
ess of a series of route 
hoi
es with the presen
e of real-time information ina sto
hasti
 network, is of great interest, sin
e it is 
riti
al to the evaluationof any real-time information system. We refer to models that 
apture thispro
ess as adaptive route 
hoi
e models, in that the 
hoi
es are adapted tothe realized network 
onditions revealed by real-time information.Most dis
rete 
hoi
e models for route 
hoi
e analysis are based on deter-ministi
 networks. Examples of su
h models are Path Size Logit (Ben-Akivaand Ramming, 1998; Ben-Akiva and Bierlaire, 1999), C-Logit (Cas
ettaet al., 1996), Cross-Nested Logit (Vovsha and Bekhor, 1998), and Logit Mix-ture (Ramming, 2001; Bekhor et al., 2002; Frejinger and Bierlaire, 2007).In this paper we refer to these models as non-adaptive path 
hoi
e mod-els be
ause travelers are assumed to make their 
omplete path 
hoi
e atthe origin. The fa
t that travelers adjust their route 
hoi
es en-route inresponse to revealed traÆ
 
onditions is therefore ignored.A seemingly natural way to build adaptive route 
hoi
e models is tohave a sequen
e of path 
hoi
e models at de
ision nodes, where the at-tributes of alternative paths to the destination re
e
t updated information.Any of the above mentioned route 
hoi
e models with adequate in
orpora-tion of real-time information 
ould in prin
iple be applied su

essively ina sto
hasti
 network to model adaptive route 
hoi
e behavior. DynaMIT(Ben-Akiva et al., 2002) and DYNASMART (Mahmassani, 2001) are ex-amples of dynami
 traÆ
 assignment models that apply an adaptive path
hoi
e model. Calibration of DynaMIT's route 
hoi
e model based on �elddata is reported in Balakrishna (2006) and Balakrishna et al. (2007).There have been a large number of studies of path 
hoi
e models withreal-time information, both pre-trip and en-route, and a re
ent literaturereview 
an be found in Abdel-Aty and Abdalla (2006). Some models predi
tthe de
ision to swit
h from a previous 
hosen or experien
ed route (e.g.Polydoropoulou et al., 1996; Abdel-Aty and Abdalla, 2004; Mahmassaniand Liu, 1999; Srinivasan and Mahmassani, 2003); others are route 
hoi
emodels with expli
it paths as alternatives (e.g. Bogers et al., 2005; Peetaand Yu, 2005; Abdel-Aty and Abdalla, 2006).Information is usually modeled by adding attributes to a model spe
-2



i�
ation. The attributes 
an be binary to indi
ate whether 
ertain in-formation is available or not (e.g. Abdel-Aty and Abdalla, 2004; Poly-doropoulou et al., 1996; Srinivasan and Mahmassani, 2003; Abdel-Aty andAbdalla, 2006), proxies su
h as queue length (Bogers et al., 2005) or traveltime (Mahmassani and Liu, 1999; Srinivasan and Mahmassani, 2003) orfuzzy variables with 
ontinous membership fun
tions (Peeta and Yu, 2005).Most of these models were estimated with intera
tive simulation data orsyntheti
 data (with the ex
eption of Polydoropoulou et al. (1996)), whi
hsuggests the diÆ
ulty of obtaining �eld data. Among the models, Srini-vasan and Mahmassani (2003) and Abdel-Aty and Abdalla (2006) use ob-servations from all de
ision nodes during a trip to estimate the models,whi
h 
ould be treated as panel data, while others use 
ross-se
tional datawhi
h do not 
onsider the su

essive route 
hoi
e adjustment during a trip.In this paper, we propose a novel adaptive route 
hoi
e model wherethe alternatives are not paths, but routing poli
ies. Generally speaking, arouting poli
y is a de
ision rule that maps all possible network states in asto
hasti
 network to de
isions, while a path is a �xed set of links withoutin
oporating information or sto
hasti
ity. The de�nition of a routing poli
ydepends on the underlying sto
hasti
 network and the information a

ess(Gao and Chabini, 2006). Some resear
hers refer to it as strategy, hyper-path or online path with re
ourse. The literature in
ludes a numbers of al-gorithmi
 studies of optimal routing poli
y problems (e.g. Hall, 1986; Poly-
hronopoulos and Tsitsiklis, 1996; Mar
otte and Nguyen, 1998; Pretolani,2000; Miller-Hooks and Mahmassani, 2000; Miller-Hooks, 2001; Waller andZiliaskopoulos, 2002; Gao, 2005; Gao and Chabini, 2006), however e
ono-metri
 models of routing poli
y 
hoi
e is a new area. Ukkusuri and Patil(2006) applied sequential logit loading of hyperpath 
ows in an equilib-rium traÆ
 assignment, where travelers were assumed to learn realizedtravel times on outgoing links. However the estimation problem was notaddressed. This paper therefore is the �rst resear
h e�ort to develop anestimator of a routing poli
y 
hoi
e model and demonstrate the feasibilityof estimating su
h a model.The paper is organized as follows. Ba
kground information on adaptivepath 
hoi
e and routing poli
y 
hoi
e is presented in Se
tion 2, while Se
-3



tion 3 gives an illustrative example to 
larify the 
on
epts and illustratethe di�eren
e between the two adaptive models. In Se
tion 4 we formulatethe estimation problems of adaptive path 
hoi
e and routing poli
y 
hoi
ein a sto
hasti
 time-dependent network , where the observations are man-ifested paths, and the 
hoi
e of routing poli
y is latent. Se
tion 5 
ontainsthe numeri
al experiment setup, estimation results of three models - non-adaptive path, adaptive path and routing poli
y - from syntheti
 data anddis
ussions of predi
tion results to gain insights into the adaptive route
hoi
e models. Con
lusions and future resear
h dire
tions are provided inSe
tion 6.
2 BackgroundWe study adaptive route 
hoi
e models in a sto
hasti
 time-dependent net-work, where the travel time on ea
h link ℓ = (v, w), with sour
e node vand sink node w, for an arrival time t at v is a random variable T̃ℓ,t with�nite number of dis
rete, positive and integral support points. A supportpoint is de�ned as a distin
tive value (ve
tor of values) a dis
rete randomvariable (ve
tor) 
an take, and thus the probability mass fun
tion (PMF)of a random variable (ve
tor) is the 
ombination of support points and theasso
iated probabilities. In this paper, a symbol with a ∼ over it is a ran-dom variable, while the same symbol without the ∼ is one spe
i�
 value ofthe random variable, whi
h sometimes might be supers
ripted with an in-dex for support point. Sin
e link travel time is random, a traveler enteringa link at a given time might exit the link at di�erent times, whi
h mightresult in di�erent travel time PMFs on the next link. A traveler with a
hosen path will take a �xed link out of an intermediate node regardlessof the possible di�erent arrival times at the node. In another word, a pathis purely topologi
al. On the other hand, if a traveler has a priori knowl-edge of the PMFs of time-dependent link travel times as well as the realizedarrival times at nodes, he/she 
an make adaptive route 
hoi
es a

ordingly.Two types of adaptive route 
hoi
e models are studied in this paper:adaptive path model and routing poli
y model. Travelers are assumed tomaximize their utility, whi
h 
an be a 
ombination of expe
ted travel time,4



travel time standard deviation and other attributes. In the adaptive pathmodel, at ea
h intermediate de
ision node and for ea
h possible arrivaltime, the traveler sele
ts among a set of paths to the destination, and takesthe �rst link of the 
hosen path. On
e the traveler arrives at the sink nodeof the link (with random arrival time), he/she makes another 
hoi
e out ofa new set of paths from that node to the destination, whose attributes areupdated based on the a
tual arrival time. He/She then again follows the�rst link of the 
hosen path, whi
h is not ne
essarily the se
ond link on the
hosen path from the previous de
ision node. An adaptive path appearsto be superior to a non-adaptive path whi
h ignores information on a
tualarrival time at intermediate nodes, yet the 
hoi
e is still short-sighted. Atea
h de
ision node, the next link is 
hosen based on a path, and thus thefa
t that he/she 
an be adaptive at subsequent de
ision points is not takeninto a

ount.The routing poli
y model, on the other hand, fully 
onsiders futureadaptive 
hoi
es. Generally speaking, a routing poli
y is a mapping fromnetwork states to 
hoi
es of next link, where the set of network statesdepends on the assumptions on sto
hasti
 networks and information a

ess.In this paper, a routing poli
y is a mapping (v, t) → ℓ from node v atarrival time t to next link ℓ ∈ O(v) where O(v) is the set of outgoing linksof node v. For example, denote e(v, t) as the minimum expe
ted traveltime of a routing poli
y from node v at time t to a given destination. Atraveler who minimizes expe
ted travel time would 
hoose a link ℓ = (v, w)su
h that E(T̃ℓ,t + e(w, t + T̃ℓ,t)) is the minimum among all the outgoinglinks, where E(X̃) stands for the expe
ted value of random variable X̃. These
ond addend e(w, t + T̃ℓ,t) is the expe
ted travel time of a routing poli
yfrom the sink node w to the destination, and thus future adaptive 
hoi
esare taken into a

ount. For ea
h support point of the random network, arouting poli
y will manifest as a path, but the manifested path 
hangesover support points. In this sense, a routing poli
y 
an be viewed as a
olle
tion of paths, ea
h with a 
ertain probability. The readers are referredto Gao and Chabini (2006) and Gao (2005) for a detailed a

ount of optimalrouting poli
y problems in sto
hasti
 time-dependent networks.5



3 Illustrative ExampleWe use an example to 
larify the 
on
epts related to the two adaptive
hoi
es. Figure 1 gives the topology of the sto
hasti
 and time-dependentnetwork and the PMFs of relevant link travel times, where Ti denotes thetravel time on link i. Travelers are going from nodes A to D at departuretime 0. The possible (node, time) pairs a traveler 
ould en
ounter duringthe trip are:
(A, 0), (B, x1), (B, y1), (C, x2), (C, y2)and the sets of outgoing links for all de
ision nodes are:

O(A) = {0, 1}, O(B) = {2, 3}, O(C) = {4, 5}Theoreti
ally the number of routing poli
ies are 25, sin
e there are 5possible (node, time) pairs and ea
h pair 
an be mapped to two possiblenext links. However, on
e a traveler is at node B, the mapping at node
C does not a�e
t his/her remaining trip and therefore do not need to bespe
i�ed. The same argument 
an be made at node C where the mappingat node B is not needed. Therefore there are 8 routing poli
ies as shownin Figure 1. Note that a path is a spe
ial routing poli
y, su
h that themapping from a (node, time) pair is the same regardless of the arrivaltime. Dis
ussions of 
al
ulating attributes of the routing poli
ies 
an befound in Se
tion 5.We use general symbols for the PMFs, but for illustrative purpose, wemake the example simple by assuming a = f, P1 = P2 = 0.5, x0 = x1 =

x, y0 = y1 = y.Travel times on links 0 and 1 at departure time 0 are random. It isassumed that these two random variables are independent of ea
h other.There are no restri
tions on the values of x and y, but for illustrativepurpose, we assume x < y and denote the situation where link 0 or 1 hasa travel time of x as the normal 
ase, and that where link 0 or 1 has atravel time of y as the in
ident 
ase. Travel times on links 2 and 4 aredeterministi
, but are dependent on the arrival times at sour
e nodes ofthe links, whi
h 
ould be either x or y. A later arrival time at node B(alternatively C) leads to a longer travel time on link 2 (alternatively 4)6



A D
B
C

T̃0 =

{
x0,w.p. 1 − P0

y0,w.p. P0

, t = 0
T2 =

{
a, t = x0

b, t = y0

T3 = c ∀ t

T̃1 =

{
x1,w.p. 1 − P1

y1,w.p. P1

, t = 0
T4 =

{
f, t = x1

d, t = y1

T5 = e ∀ t

A DBCPoli
y 8 (Path 4) A DBC if y1if x1Poli
y 7
A DBCPoli
y 5 (Path 3) A DBC if x1if y1Poli
y 6
A DBCPoli
y 4 (Path 2) A DBC if y0

if x0

Poli
y 3
A DBCPoli
y 1 (Path 1) A DBC if x0

if y0

Poli
y 2

Figure 1: Network7



(b > a, d > f = a). This 
ould be due to the fa
t travelers who arrives late(y) are 
aught in peak traÆ
, while those with an earlier arrival (x) 
ouldhave avoided it. Travel times on links 3 and 5 are both deterministi
 andtime-independent.The relationships among link travel time variables are: a = f < (a +

b)/2 < e < c < b < d. The peak traÆ
 
ondition on link 4 is more severethan that on link 2, su
h that the travel time on link 4 at time y (d) ishigher than that of link 2 (a). However, both links have diversions. Link 2has link 3 as the diversion link with a travel time of c, and link 4 has link5 as the diversion link with a travel time of e. Link 5 is a better diversionthan link 3, sin
e e < c.A traveler has a priori knowledge on the time-dependent link traveltime PMFs of all links in the network before a trip starts. During the trip,the traveler obtains additional online information on the a
tual arrival timeat the se
ond node (x or y). Depending on the arrival time, the traveler
hooses the next link to take to minimize expe
ted travel time.Consider �rst the route 
hoi
e pro
ess in an adaptive path model. Atnode A, four paths are available: path 1 with an expe
ted travel time
(x + a + y + b)/2, path 2 with an expe
ted travel time (x + y)/2 + c,path 3 with an expe
ted travel time (x + f + y + d)/2, and path 4 with anexpe
ted travel time (x+y)/2+e. Path 1 has the minimum expe
ted traveltime, and thus the traveler takes link 0 whi
h is the �rst link along thatpath. The traveler then arrives at node B at either time x or y, ea
h withprobability 0.5. If the arrival time is x (o� peak), the traveler takes link 2with a travel time of a; and if the arrival time is y (peak), the traveler takesa detour whi
h is link 3 with a travel time of c. Therefore the expe
tedtravel time from node A to node D by making su

essive path 
hoi
es is
(x + a + y + c)/2.Consider next the 
hoi
e pro
ess in a routing poli
y model. At node A,the traveler is a
tually 
omparing the attra
tiveness of links 0 and 1. Thetraveler knows that on
e arriving at the next node, he/she would make a
hoi
e based on realized arrive time, therefore it is better to 
onsider allthe possible diversions. The optimal routing poli
y from node B is to takethe faster of links 2 and 3: if arrival time is x, take link 2 with a travel8



time a; if arrival time is y, take link 3 with a travel time c. Similarly,the optimal routing poli
y at node C is to take the faster of links 4 and5: if arrival time is x, take link 4 with a travel time f; if arrival timeis y, take link 5 with a travel time e. With this 
al
ulation in hand, thetraveler evaluates at node A and de
ides that taking link 1 is optimal, sin
e
(x + a + y + e)/2 < (x + f + y + c)/2 (note that a = f). Re
alling that theexpe
ted travel time of making su

essive path 
hoi
es is (x+a+y+ c)/2,the optimal routing poli
y is thus more eÆ
ient as a result of 
onsideringfuture adaptive possibilities.
4 Model SpecificationsIn this se
tion we present dis
rete 
hoi
e model formulations for the pre-viously dis
ussed adaptive path and routing poli
y 
hoi
es. Note that inthe data for model estimation, only the manifested path is observed. Ea
hpath observation i of individual n is an ordered set of 
hosen links Ii. Alsoknown are the departure time and the arrival time t at the sour
e node vof ea
h link ℓ ∈ Ii. Su
h information are is available, for example, fromGlobal Positioning System (GPS), see Bierlaire and Frejinger (2007) for adis
ussion on route 
hoi
e data.
4.1 Adaptive Path Choice ModelThis model assumes that a traveler 
hooses at the sour
e node v of ea
hobserved link ℓ ∈ Ii a path p from v to the destination. We thereforede�ne an individual and time spe
i�
 
hoi
e set Cvtn of paths from v to thedestination. Hen
e, for ea
h observation there are as many 
hoi
e sets asthere are links in the observed path.The probability of an observation is de�ned as the produ
t of the prob-ability of 
hoosing ea
h link ℓ in the observed path, 
onditional on arrivaltime t at the sour
e node:

Pn(i) =
∏

ℓ∈Ii

Pn(ℓ|t, v) =
∏

ℓ∈Ii

∑

p∈Cvtn

P(ℓ|p)P(p|Cvtn; β) (1)9



Pn(ℓ|t, v) is de�ned by the sum of the probabilities for ea
h path that be-gins with ℓ. The path 
hoi
e model P(p|Cvtn; β) (β denotes the ve
tor ofparameters to be estimated) is therefore multiplied with a binary variable
P(ℓ|p) that equals one if the �rst link in path p is ℓ and zero otherwise. Notethat the path 
hoi
e 
an be modeled with any of the existing non-adaptivemodels.
4.2 Routing Policy Choice ModelConsider the model for the 
hoi
e of routing poli
y among a 
hoi
e set
G of routing poli
ies at the origin. Note that the adaptive behavior isalready 
aptured in the de�nition of a routing poli
y. The 
hoi
e of routingpoli
y is latent and only the manifested path is observable. A supportpoint is fully de�ned by the realized travel times on all random links. Weassume that the realized support point for ea
h observation is known to themodeler through, for example, adequately dispersed GPS observations orprobe vehi
les that 
over all random links. The traveler does not know therealized support point at the origin; his/her informationn a

ess is de�nedin the routing poli
y, and in this paper it is the arrival times at de
isionnodes. We model the the probability of a path observation 
onditional onsupport point r and 
hoi
e set of routing poli
ies G as

Pn(i|r) =
∑

γ∈G

P(i|γ, r)P(γ|G) (2)where γ is a routing poli
y. As des
ribed in Se
tion 3, for a given supportpoint a routing poli
y is manifested as a path. However, several di�erentrouting poli
ies 
an be manifested as the same path. We therefore sumover all routing poli
ies in G and multiply the routing poli
y 
hoi
e model
P(γ|G) with a binary variable P(i|γ, r) that equals one if i 
orresponds to
γ for support point r and zero otherwise.Gao (2005) propose the poli
y size logit to model P(γ|G) whi
h is therouting poli
y version of the path size logit model (Ben-Akiva and Ram-ming, 1998; Ben-Akiva and Bierlaire, 1999). It adds a term, poli
y size(PoS), to the deterministi
 utilities that 
orre
ts for 
orrelation among10



routing poli
ies. The model is de�ned as
P(γ) =

elnPoSγ+Vγ

∑
k∈G elnPoSk+Vk

(3)where Vγ is the deterministi
 utility of γ and the formulation of PoSPoSγ =

R∑

r=1




∑

ℓ∈Ir
γ

(
Tr

ℓ

Tr
γ

)
1

Mr
ℓ


 P(r) (4)may be viewed as \expe
ted path size" with notations

R : number of support points of link travel time distribution;
Ir

γ : set of links of the realized path of routing poli
y γ for support point r;
Tr

ℓ : travel time of link ℓ for support point r;
Tr

γ : realized travel time of routing poli
y γ for support point r;
Mr

ℓ : number of routing poli
ies using link ℓ for support point r;
P(r) : probability of support point r.Note that if the support point is unknown due to data unavailability, apath 
annot unambiguously be mat
hed with a given routing poli
y. Themodel presented in Equation (2) 
an then be generalized to

Pn(i) =
∑

γ∈G

P(i|γ)P(γ|G) =
∑

γ∈G

R∑

r=1

P(i|γ, r)P(γ|G) (5)
5 Numerical ResultsWe 
arry out numeri
al tests of the proposed adaptive route 
hoi
e modelson a hypotheti
al network. The obje
tives of the tests are to: 1) demon-strate the feasibility of estimating the two adaptive route 
hoi
e models;and 2) gain insights into the adaptive route 
hoi
e models by 
omparingpredi
tion results.
5.1 Test SettingsThe test network is the same as dis
ussed in Se
tion 3. As explained earlier,there are eight routing poli
ies. The travel time of ea
h routing poli
y is11



a dis
rete random variable with two possible values. For example, thetravel time of the routing poli
y 6 (the one dis
ussed in Se
tion 3) 
an beeither x1 + f or y1 + d, with probability 1 − P1 and P1 respe
tively. Theexpe
ted travel time and standard deviation of the routing poli
y then 
anbe 
al
ulated.The 
al
ulation of poli
y size is more involved. As shown in Equa-tion (4), poli
y size is the expe
ted value of path sizes over all supportpoints of the random network. As there are two random links in the net-work ea
h with two possible realizations of travel times, there are altogetherfour support points. Let (T0, T1) represents a support point where T0 and
T1 are realized travel times on links 0 and 1 respe
tively. The four supportpoints are then (x0, x1), (x0, y1), (y0, x1), (y0, y1). In the following, we willuse support point (x0, x1) as an example to illustrate how poli
y size is
al
ulated.Consider �rst the mapping from routing poli
ies to paths. For example,in support point (x0, x1), routing poli
y 2 takes link 2 at node B at arrivaltime x0, and therefore is manifested as path 1. Let γ be a routing poli
yand p a path, we obtain manifestation of all routing poli
ies as follows:
γ1 → p1, γ2 → p1, γ3 → p2, γ4 → p2, γ5 → p3, γ6 → p3, γ7 → p4, γ8 → p4(6)On
e the manifested path is known, we 
an 
ount the number of routingpoli
ies that use a given link in support point (x0, x1) as follows.

Mℓ0
= 4 (γ1, γ2, γ3, γ4)

Mℓ1
= 4 (γ5, γ6, γ7, γ8)

Mℓ2
= 2 (γ1, γ2)

Mℓ3
= 2 (γ3, γ4)

Mℓ4
= 2 (γ5, γ6)

Mℓ5
= 2 (γ7, γ8)

12



The routing poli
y sizes in support point (x0, x1) are thenPoS1 =
x0

x0 + a

1

4
+

a

x0 + a

1

2PoS2 =
x0

x0 + a

1

4
+

a

x0 + a

1

2PoS3 =
x0

x0 + c

1

4
+

c

x0 + c

1

2PoS4 =
x0

x0 + c

1

4
+

c

x0 + c

1

2PoS5 =
x1

x1 + f

1

4
+

f

x1 + f

1

2PoS6 =
x1

x1 + f

1

4
+

f

x1 + f

1

2PoS7 =
x1

x1 + e

1

4
+

e

x1 + e

1

2PoS8 =
x1

x1 + e

1

4
+

e

x1 + e

1

2Similarly we 
an 
al
ulate the poli
y sizes in all other support points.Take the expe
tation over the four support points and we obtain the �nalpoli
y sizes.We also need to 
al
ulate path sizes at the origin node A to be usedin both the non-adaptive path model and the adaptive path model. Pathsizes are based on expe
ted travel times.PS1 =
x0(1 − P0) + y0P0

(x0 + a)(1 − P0) + (y0 + b)P0

1

2
+

a(1 − P0) + bP0

(x0 + a)(1 − P0) + (y0 + b)P0PS2 =
x0(1 − P0) + y0P0

x0(1 − P0) + y0P0 + c

1

2
+

c

x0(1 − P0) + y0P0 + cPS3 =
x1(1 − P1) + y1P1

(x1 + f)(1 − P1) + (y1 + d)P0

1

2
+

f(1 − P1) + dP1

(x1 + f)(1 − P1) + (y1 + d)P1PS4 =
x1(1 − P1) + y1P1

x1(1 − P1) + y1P1 + e

1

2
+

e

x1(1 − P1) + y1P1 + e

5.2 Observation GenerationWe assume the routing poli
y 
hoi
e model of Equation (3) is the truemodel. We move the poli
y size into the deterministi
 utility fun
tion and13



spe
ify it with the following postulated 
oeÆ
ients
Vγ = 1.0 lnPoSγ − 0.4 Expe
tedTimeγ − 0.1 TimeSTDγ, ∀ γ ∈ GA routing poli
y is not observable, and only the manifested path for agiven support point is observed. We spe
ify the range of link travel time tobe [10, 40℄ (min). To generate one path observation from the poli
y 
hoi
emodel, we follow the steps:1. Sample a number from a uniform distribution between 10 and 40 forea
h link travel time variable: a, b, c, d, e, f;2. Sample a number from a uniform distribution between 0 and 1 forea
h link travel time probability variable: x0, y0, x1, y1;3. Cal
ulate P(γk), the 
hoi
e probability of routing poli
y k, ∀k usingthe poli
y-size logit model (Equation (3));4. Cal
ulateQk, the 
umulative probability of 
hoosing poli
ies γ1, γ2, . . . , γk,
k = 0, 1, . . . , 8, where Q0 = 0 and Q8 = 1;5. Sample a number r from a uniform distribution between 0 and 1, and
γk is 
hosen if Qk−1 < r < Qk;6. Cal
ulate Sk, the 
umulative probability of support points r1, r2, . . . , rk,
k = 0, 1, . . . , 4, where S0 = 0 and S4 = 1;7. Sample a number r ′ from a uniform distribution between 0 and 1;and support point rk is realized if Sk−1 < r ′ < Sk;8. The 
hosen routing poli
y is manifested as a path depending on thesupport point, using a similar logi
 as in the mapping of Equation (6).

5.3 EstimationThree models are estimated based on the generated path observations:1. Routing poli
y 
hoi
e model (Equation (2)) with poli
y size logit;14



2. Adaptive path 
hoi
e model (Equation (1)) with path size logit;3. Non-adaptive path 
hoi
e model with path size logit.The deterministi
 utility fun
tions have a linear-in-parameters spe
i�
ationof the same attributes as the true model, namely, expe
ted travel time,travel time standard deviation and path (poli
y) size.In the adaptive path 
hoi
e model, the 
hoi
e probability of a path isthe produ
t of 
hoosing all links along the path. The log likelihood of thepath is then the sum of the log likelihood of all the links. Therefore we 
antreat ea
h 
hosen link as an observation, and the link 
hoi
e probability isthe sum of 
hoi
e probabilities of paths beginning with the the link. Notethat the path attributes are dependent on the realized arrival time at theupstream node of the link. For example, assume γ2 is 
hosen and a traveltime of x0 is realized on link 0, and thus the manifested path is path 1.Path 1 is 
omposed of two links: 0 and 2. Choi
e probability of link 0 isthe sum of those of paths 1 and 2. At time 0 and node A, travel time onlink 0 is still random and therefore the expe
ted travel time of path 1 is
(x0+a)(1−P0)+(y0+b)P0 and that of path 2 is (x0+a)(1−P0)+(y0+c)P0.Now 
onsider the 
hoi
e of link 2. At time x0 and node B, travel time onlink 2 (
oin
iding with one of the path alternatives out of node B) is �xedas a, and su
h value should be used in the observation data.All models are estimated with BIOGEME (Bierlaire, 2003; Bierlaire,2005). The estimation results are shown in Table 1. The 
oeÆ
ient esti-mates of routing poli
y 
hoi
e model are not signi�
antly di�erent from thepostulated values whi
h shows that a poli
y 
hoi
e model 
an be estimatedbased on path observations using Equation (2). The 
oeÆ
ient estimatesof the other two models have their appropriate signs and are signi�
antlydi�erent from zero. As expe
ted the model �t of the routing poli
y modelis better than the adaptive path model and the non-adaptive path modelhas the worst model �t.
5.4 PredictionThe three estimated models are applied to predi
t route 
hoi
es in the sametopologi
al network, but with a �xed set of hypotheti
al link travel time15



Poli
y Adaptive Non-adaptivepath path
β̂PS 1.03 1.23 2.75Std error 0.452 0.437 0.344T-test 2.28 2.80 8.00
β̂exptime -0.402 -0.28 -0.265Std error 0.00805 0.00467 0.0049T-test -49.97 -60.00 -54.02
β̂stdtime -0.108 -0.071 -0.0451Std error 0.00857 0.00923 0.00643T-test -12.60 -7.69 -7.02Final log-likelihood -3257.097 -3536.324 -3932.998Adj. rho-square 0.608 0.574 0.527Number of observed paths: 6000Null log-likelihood: -8317.766BIOGEME (Bierlaire, 2003; Bierlaire, 2005) has beenused for all model estimationsTable 1: Estimation Results
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variables as follows:
a = f = 10, b = 30, c = 26, d = 38, e = 22

x0 = x1 = 14, y0 = y1 = 18

P0 = P1 = PThe value of P is a parameter of the predi
tion tests and varies from 0 to1, with an in
rement of 0.1. The values of the link travel time variablessatisfy the 
ondition in Se
tion 3, i.e. a = f < (a + b)/2 < e < c < d.Therefore the analysis in Se
tion 3 applies here: path 1 is the minimumexpe
ted travel time path; links 2 and 4 have the same travel time undernormal 
ondition (when x0 or x1 is realized); link 4 is more 
ongested thanlink 2 under in
ident 
ondition (when y0 or y1 is realized); links 3 and 5are diversions for links 2 and 4 in in
ident 
ondition, and link 5 is a betterdiversion than link 3 (e < c).Sin
e the network is sto
hasti
 with all the support points known, weobtain distributions of variables su
h as path shares, path travel times,origin-destination travel time and so forth. We take expe
tations of thesevariabls over the four support points, where the probability of ea
h sup-port is a fun
tion of P. We present the summary statisti
s (mean and/orstandard deviation) to gain a high-level understanding of the results.Figure 2 shows the expe
ted shares of all four paths. Ea
h subgraphis for a path, and results from all three models are plotted as fun
tions ofin
ident probability P. Re
all that paths 1 and 3 
ontain the links that
an be a�e
ted by the in
idents due to the time-dependen
y of their traveltimes, while paths 2 and 4 
ontain the respe
tive diversion links that arenot a�e
ted by the in
idents. Therefore it is intuitively 
orre
t that for allthree models, the shares of paths 1 and 3 are de
reasing fun
tions of P,while shares of paths 2 and 4 are in
reasing fun
tions of P.In order to better appre
iate the di�eren
es among the three models,we aggregate the results from Figure 2 to yield data for Figure 3, where theexpe
ted shares of going left and right at the origin node are plotted. Re
allthat the right bran
h has a better diversion (link 5). In the routing poli
ymodel, as P in
reases, the importan
e of diversion be
omes more signi�
antand therefore more 
ow goes to the right. In the two path models, as P17



in
reases, the left share �rst in
reases and then de
reases. This is be
ausewhen P = 0, both paths 1 and 3 (belonging to the left and right bran
hesrespe
tively) have the same minimum travel time (a = f) and zero standarddeviation. While as P in
reases, path 3 has higher disutility (d > b), andtherefore path 1 is more dominant and gains more share. However, as
P in
reases to a 
ertain value, path 4 be
omes the path with minimumdisutility, and thus the right share starts to in
rease.If we inspe
t Figures 2 and 3 together, we �nd that although the left-right shares of non-adaptive and adaptive path models are roughly thesame, the distribution of the 
ows at the se
ond nodes are di�erent. Thisis be
ause the adaptive path model redistributes 
ows at the se
ond nodesdepending on the a
tual arrival times. On the other hand, both the adap-tive path model and non-adaptive path model predi
t more 
ow taking theleft bran
h than the routing poli
y model does. This is be
ause future di-version possibility is not 
onsidered in either of the models, and the bran
hwith less expe
ted path travel time (path 1) is favored, although link 3 is aworse diversion. In another word, the routing poli
y model better 
apturethe option value of diversion than the adaptive path model.Figure 4 shows the expe
ted value and standard deviation of averagepath travel time where the average is taken over all four paths weighted bypath shares. As P is approa
hing 0 or 1, links 0 and 1 are more likely to be inthe same 
ondition and the network is less sto
hasti
 than when P is in themiddle. The �gure shows that as P approa
hes the middle point between0 and 1, the two adaptive models and non-adaptive models are fartheraway from ea
h other in terms of expe
ted average travel time. This isin a

ordan
e with the intuition that being adaptive is more advantageouswhen the network is more un
ertain.Figure 4 also shows that adaptive path and routing poli
y models havesimilar expe
ted average travel time, but their standard deviations are quitedi�erent. This is be
ause the e�e
t of a diversion is two-fold. A betterdiversion provides shorter travel time under in
ident 
ondition. On theother hand, under normal 
ondition it also results in more 
ow movingfrom the faster link, be
ause its disutility is not as far away from the fasterlink as the worse diversion. This results in longer travel time averaged18



over the faster link and the diversion. Sin
e the adaptive path modelpredi
ts more 
ow to the left bran
h (worse diversion) than the routingpoli
y model, it has longer travel time under in
ident 
ondition, but shortertravel time under normal 
ondition. Hen
e both models predi
t roughlythe same expe
ted average travel time, but the adaptive path model haslarger standard deviations.
6 Conclusions and Future DirectionsThis paper develops the �rst e
onometri
 estimator for the routing poli
y
hoi
e model and demonstrates the feasibility of estimating the model. Arouting poli
y in general is a de
ision rule that maps from all possible net-work states to next links out of de
ision nodes. It 
ollapses to a path in adeterministi
 networks. The 
on
ept of routing poli
y expli
itly 
apturestravelers' route 
hoi
e adjustments a

ording to information on realizednetwork 
onditions in sto
hasti
 time-dependent networks. Sin
e the in-formation 
omponent is embedded in the de�ntion of a routing poli
y, theestimator of the routing poli
y model is a general one and 
an be appliedto a large variety of information situations. This paper demonstrates oneof the information situations: the realized arrival times at de
ision nodes.Other information situations will be the subje
ts of future resear
h.The routing poli
y 
hoi
e model is also 
ompared to the adaptive pathmodel, whi
h is a natural approa
h to an adaptive route 
hoi
e model. Anadaptive path model is a
tually a sequen
e of path 
hoi
e models appliedat intermediate de
ision nodes; while a routing poli
y 
hoi
e model is onemodel at the origin where the alternatives are routing poli
ies. Predi
tionresults show that the routing poli
y model 
aptures better the option valueof diversion than the adaptive path model be
ause of the foresight of arouting poli
y. When the network is more sto
hasti
, the di�eren
e betweenthe two adaptive models and the non-adaptive model is larger in terms ofexpe
ted travel time. As expe
ted, this result indi
ates that the bene�t ofbeing adaptive is more signi�
ant in a more un
ertain network.Future resear
h dire
tions would in
lude estimation of the routing pol-i
y 
hoi
e model with �eld data, study of other information situations and19



investigation of alternative methods to 
apture the overlapping of routingpoli
ies.
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