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AbstractWe study adaptive route hoie models that expliitly apturetravelers' route hoie adjustments aording to information on real-ized network onditions in stohasti time-dependent networks. Twotypes of adaptive route hoie models are explored: an adaptive pathmodel where a sequene of path hoie models are applied at inter-mediate deision nodes; and a routing poliy hoie model where thealternatives orrespond to routing poliies rather than paths at the ori-gin. A routing poliy in this paper is a deision rule that maps from allpossible (node, time) pairs to next links out of the node. A poliy-sizeLogit model is proposed for the routing poliy hoie, where poliy-size is a generalization of path-size in path hoie models to take intoaount the overlapping of routing poliies. The spei�ations of es-timating the two adaptive route hoie models are established andthe feasibility of estimation from path observations is demonstratedon an illustrative network. Predition results from three models -non-adaptive path model, adaptive path model, and routing poliymodel - are ompared. The routing poliy model is shown to betterapture the option value of diversion than the adaptive path model.The di�erene between the two adaptive models and the non-adaptivemodel is larger in terms of expeted travel time, if the network is morestohasti, indiating that the bene�t of being adaptive is more sig-ni�ant in a more stohasti network.
1 IntroductionTransportation systems are inherently unertain due to disturbanes suhas inidents, vehile breakdowns, work zones, bad weather onditions, spe-ial events and so forth. On the other hand, real-time information in variousformats is available, from personal observations, websites, variable messagesigns (VMS), radio broadasts, ell phones to personal in-vehile systems.Real-time information an redue the unertainty of the traÆ network,and therefore potentially help traveler make better route hoie deisions.Travelers usually obtain updated information at various deision pointsduring a trip, and potentially a route hoie is made at eah of the points1



based on updated pereption of the unertain network. This dynami pro-ess of a series of route hoies with the presene of real-time information ina stohasti network, is of great interest, sine it is ritial to the evaluationof any real-time information system. We refer to models that apture thisproess as adaptive route hoie models, in that the hoies are adapted tothe realized network onditions revealed by real-time information.Most disrete hoie models for route hoie analysis are based on deter-ministi networks. Examples of suh models are Path Size Logit (Ben-Akivaand Ramming, 1998; Ben-Akiva and Bierlaire, 1999), C-Logit (Casettaet al., 1996), Cross-Nested Logit (Vovsha and Bekhor, 1998), and Logit Mix-ture (Ramming, 2001; Bekhor et al., 2002; Frejinger and Bierlaire, 2007).In this paper we refer to these models as non-adaptive path hoie mod-els beause travelers are assumed to make their omplete path hoie atthe origin. The fat that travelers adjust their route hoies en-route inresponse to revealed traÆ onditions is therefore ignored.A seemingly natural way to build adaptive route hoie models is tohave a sequene of path hoie models at deision nodes, where the at-tributes of alternative paths to the destination reet updated information.Any of the above mentioned route hoie models with adequate inorpora-tion of real-time information ould in priniple be applied suessively ina stohasti network to model adaptive route hoie behavior. DynaMIT(Ben-Akiva et al., 2002) and DYNASMART (Mahmassani, 2001) are ex-amples of dynami traÆ assignment models that apply an adaptive pathhoie model. Calibration of DynaMIT's route hoie model based on �elddata is reported in Balakrishna (2006) and Balakrishna et al. (2007).There have been a large number of studies of path hoie models withreal-time information, both pre-trip and en-route, and a reent literaturereview an be found in Abdel-Aty and Abdalla (2006). Some models preditthe deision to swith from a previous hosen or experiened route (e.g.Polydoropoulou et al., 1996; Abdel-Aty and Abdalla, 2004; Mahmassaniand Liu, 1999; Srinivasan and Mahmassani, 2003); others are route hoiemodels with expliit paths as alternatives (e.g. Bogers et al., 2005; Peetaand Yu, 2005; Abdel-Aty and Abdalla, 2006).Information is usually modeled by adding attributes to a model spe-2



i�ation. The attributes an be binary to indiate whether ertain in-formation is available or not (e.g. Abdel-Aty and Abdalla, 2004; Poly-doropoulou et al., 1996; Srinivasan and Mahmassani, 2003; Abdel-Aty andAbdalla, 2006), proxies suh as queue length (Bogers et al., 2005) or traveltime (Mahmassani and Liu, 1999; Srinivasan and Mahmassani, 2003) orfuzzy variables with ontinous membership funtions (Peeta and Yu, 2005).Most of these models were estimated with interative simulation data orsyntheti data (with the exeption of Polydoropoulou et al. (1996)), whihsuggests the diÆulty of obtaining �eld data. Among the models, Srini-vasan and Mahmassani (2003) and Abdel-Aty and Abdalla (2006) use ob-servations from all deision nodes during a trip to estimate the models,whih ould be treated as panel data, while others use ross-setional datawhih do not onsider the suessive route hoie adjustment during a trip.In this paper, we propose a novel adaptive route hoie model wherethe alternatives are not paths, but routing poliies. Generally speaking, arouting poliy is a deision rule that maps all possible network states in astohasti network to deisions, while a path is a �xed set of links withoutinoporating information or stohastiity. The de�nition of a routing poliydepends on the underlying stohasti network and the information aess(Gao and Chabini, 2006). Some researhers refer to it as strategy, hyper-path or online path with reourse. The literature inludes a numbers of al-gorithmi studies of optimal routing poliy problems (e.g. Hall, 1986; Poly-hronopoulos and Tsitsiklis, 1996; Marotte and Nguyen, 1998; Pretolani,2000; Miller-Hooks and Mahmassani, 2000; Miller-Hooks, 2001; Waller andZiliaskopoulos, 2002; Gao, 2005; Gao and Chabini, 2006), however eono-metri models of routing poliy hoie is a new area. Ukkusuri and Patil(2006) applied sequential logit loading of hyperpath ows in an equilib-rium traÆ assignment, where travelers were assumed to learn realizedtravel times on outgoing links. However the estimation problem was notaddressed. This paper therefore is the �rst researh e�ort to develop anestimator of a routing poliy hoie model and demonstrate the feasibilityof estimating suh a model.The paper is organized as follows. Bakground information on adaptivepath hoie and routing poliy hoie is presented in Setion 2, while Se-3



tion 3 gives an illustrative example to larify the onepts and illustratethe di�erene between the two adaptive models. In Setion 4 we formulatethe estimation problems of adaptive path hoie and routing poliy hoiein a stohasti time-dependent network , where the observations are man-ifested paths, and the hoie of routing poliy is latent. Setion 5 ontainsthe numerial experiment setup, estimation results of three models - non-adaptive path, adaptive path and routing poliy - from syntheti data anddisussions of predition results to gain insights into the adaptive routehoie models. Conlusions and future researh diretions are provided inSetion 6.
2 BackgroundWe study adaptive route hoie models in a stohasti time-dependent net-work, where the travel time on eah link ℓ = (v, w), with soure node vand sink node w, for an arrival time t at v is a random variable T̃ℓ,t with�nite number of disrete, positive and integral support points. A supportpoint is de�ned as a distintive value (vetor of values) a disrete randomvariable (vetor) an take, and thus the probability mass funtion (PMF)of a random variable (vetor) is the ombination of support points and theassoiated probabilities. In this paper, a symbol with a ∼ over it is a ran-dom variable, while the same symbol without the ∼ is one spei� value ofthe random variable, whih sometimes might be supersripted with an in-dex for support point. Sine link travel time is random, a traveler enteringa link at a given time might exit the link at di�erent times, whih mightresult in di�erent travel time PMFs on the next link. A traveler with ahosen path will take a �xed link out of an intermediate node regardlessof the possible di�erent arrival times at the node. In another word, a pathis purely topologial. On the other hand, if a traveler has a priori knowl-edge of the PMFs of time-dependent link travel times as well as the realizedarrival times at nodes, he/she an make adaptive route hoies aordingly.Two types of adaptive route hoie models are studied in this paper:adaptive path model and routing poliy model. Travelers are assumed tomaximize their utility, whih an be a ombination of expeted travel time,4



travel time standard deviation and other attributes. In the adaptive pathmodel, at eah intermediate deision node and for eah possible arrivaltime, the traveler selets among a set of paths to the destination, and takesthe �rst link of the hosen path. One the traveler arrives at the sink nodeof the link (with random arrival time), he/she makes another hoie out ofa new set of paths from that node to the destination, whose attributes areupdated based on the atual arrival time. He/She then again follows the�rst link of the hosen path, whih is not neessarily the seond link on thehosen path from the previous deision node. An adaptive path appearsto be superior to a non-adaptive path whih ignores information on atualarrival time at intermediate nodes, yet the hoie is still short-sighted. Ateah deision node, the next link is hosen based on a path, and thus thefat that he/she an be adaptive at subsequent deision points is not takeninto aount.The routing poliy model, on the other hand, fully onsiders futureadaptive hoies. Generally speaking, a routing poliy is a mapping fromnetwork states to hoies of next link, where the set of network statesdepends on the assumptions on stohasti networks and information aess.In this paper, a routing poliy is a mapping (v, t) → ℓ from node v atarrival time t to next link ℓ ∈ O(v) where O(v) is the set of outgoing linksof node v. For example, denote e(v, t) as the minimum expeted traveltime of a routing poliy from node v at time t to a given destination. Atraveler who minimizes expeted travel time would hoose a link ℓ = (v, w)suh that E(T̃ℓ,t + e(w, t + T̃ℓ,t)) is the minimum among all the outgoinglinks, where E(X̃) stands for the expeted value of random variable X̃. Theseond addend e(w, t + T̃ℓ,t) is the expeted travel time of a routing poliyfrom the sink node w to the destination, and thus future adaptive hoiesare taken into aount. For eah support point of the random network, arouting poliy will manifest as a path, but the manifested path hangesover support points. In this sense, a routing poliy an be viewed as aolletion of paths, eah with a ertain probability. The readers are referredto Gao and Chabini (2006) and Gao (2005) for a detailed aount of optimalrouting poliy problems in stohasti time-dependent networks.5



3 Illustrative ExampleWe use an example to larify the onepts related to the two adaptivehoies. Figure 1 gives the topology of the stohasti and time-dependentnetwork and the PMFs of relevant link travel times, where Ti denotes thetravel time on link i. Travelers are going from nodes A to D at departuretime 0. The possible (node, time) pairs a traveler ould enounter duringthe trip are:
(A, 0), (B, x1), (B, y1), (C, x2), (C, y2)and the sets of outgoing links for all deision nodes are:

O(A) = {0, 1}, O(B) = {2, 3}, O(C) = {4, 5}Theoretially the number of routing poliies are 25, sine there are 5possible (node, time) pairs and eah pair an be mapped to two possiblenext links. However, one a traveler is at node B, the mapping at node
C does not a�et his/her remaining trip and therefore do not need to bespei�ed. The same argument an be made at node C where the mappingat node B is not needed. Therefore there are 8 routing poliies as shownin Figure 1. Note that a path is a speial routing poliy, suh that themapping from a (node, time) pair is the same regardless of the arrivaltime. Disussions of alulating attributes of the routing poliies an befound in Setion 5.We use general symbols for the PMFs, but for illustrative purpose, wemake the example simple by assuming a = f, P1 = P2 = 0.5, x0 = x1 =

x, y0 = y1 = y.Travel times on links 0 and 1 at departure time 0 are random. It isassumed that these two random variables are independent of eah other.There are no restritions on the values of x and y, but for illustrativepurpose, we assume x < y and denote the situation where link 0 or 1 hasa travel time of x as the normal ase, and that where link 0 or 1 has atravel time of y as the inident ase. Travel times on links 2 and 4 aredeterministi, but are dependent on the arrival times at soure nodes ofthe links, whih ould be either x or y. A later arrival time at node B(alternatively C) leads to a longer travel time on link 2 (alternatively 4)6
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(b > a, d > f = a). This ould be due to the fat travelers who arrives late(y) are aught in peak traÆ, while those with an earlier arrival (x) ouldhave avoided it. Travel times on links 3 and 5 are both deterministi andtime-independent.The relationships among link travel time variables are: a = f < (a +

b)/2 < e < c < b < d. The peak traÆ ondition on link 4 is more severethan that on link 2, suh that the travel time on link 4 at time y (d) ishigher than that of link 2 (a). However, both links have diversions. Link 2has link 3 as the diversion link with a travel time of c, and link 4 has link5 as the diversion link with a travel time of e. Link 5 is a better diversionthan link 3, sine e < c.A traveler has a priori knowledge on the time-dependent link traveltime PMFs of all links in the network before a trip starts. During the trip,the traveler obtains additional online information on the atual arrival timeat the seond node (x or y). Depending on the arrival time, the travelerhooses the next link to take to minimize expeted travel time.Consider �rst the route hoie proess in an adaptive path model. Atnode A, four paths are available: path 1 with an expeted travel time
(x + a + y + b)/2, path 2 with an expeted travel time (x + y)/2 + c,path 3 with an expeted travel time (x + f + y + d)/2, and path 4 with anexpeted travel time (x+y)/2+e. Path 1 has the minimum expeted traveltime, and thus the traveler takes link 0 whih is the �rst link along thatpath. The traveler then arrives at node B at either time x or y, eah withprobability 0.5. If the arrival time is x (o� peak), the traveler takes link 2with a travel time of a; and if the arrival time is y (peak), the traveler takesa detour whih is link 3 with a travel time of c. Therefore the expetedtravel time from node A to node D by making suessive path hoies is
(x + a + y + c)/2.Consider next the hoie proess in a routing poliy model. At node A,the traveler is atually omparing the attrativeness of links 0 and 1. Thetraveler knows that one arriving at the next node, he/she would make ahoie based on realized arrive time, therefore it is better to onsider allthe possible diversions. The optimal routing poliy from node B is to takethe faster of links 2 and 3: if arrival time is x, take link 2 with a travel8



time a; if arrival time is y, take link 3 with a travel time c. Similarly,the optimal routing poliy at node C is to take the faster of links 4 and5: if arrival time is x, take link 4 with a travel time f; if arrival timeis y, take link 5 with a travel time e. With this alulation in hand, thetraveler evaluates at node A and deides that taking link 1 is optimal, sine
(x + a + y + e)/2 < (x + f + y + c)/2 (note that a = f). Realling that theexpeted travel time of making suessive path hoies is (x+a+y+ c)/2,the optimal routing poliy is thus more eÆient as a result of onsideringfuture adaptive possibilities.
4 Model SpecificationsIn this setion we present disrete hoie model formulations for the pre-viously disussed adaptive path and routing poliy hoies. Note that inthe data for model estimation, only the manifested path is observed. Eahpath observation i of individual n is an ordered set of hosen links Ii. Alsoknown are the departure time and the arrival time t at the soure node vof eah link ℓ ∈ Ii. Suh information are is available, for example, fromGlobal Positioning System (GPS), see Bierlaire and Frejinger (2007) for adisussion on route hoie data.
4.1 Adaptive Path Choice ModelThis model assumes that a traveler hooses at the soure node v of eahobserved link ℓ ∈ Ii a path p from v to the destination. We thereforede�ne an individual and time spei� hoie set Cvtn of paths from v to thedestination. Hene, for eah observation there are as many hoie sets asthere are links in the observed path.The probability of an observation is de�ned as the produt of the prob-ability of hoosing eah link ℓ in the observed path, onditional on arrivaltime t at the soure node:

Pn(i) =
∏

ℓ∈Ii

Pn(ℓ|t, v) =
∏

ℓ∈Ii

∑

p∈Cvtn

P(ℓ|p)P(p|Cvtn; β) (1)9



Pn(ℓ|t, v) is de�ned by the sum of the probabilities for eah path that be-gins with ℓ. The path hoie model P(p|Cvtn; β) (β denotes the vetor ofparameters to be estimated) is therefore multiplied with a binary variable
P(ℓ|p) that equals one if the �rst link in path p is ℓ and zero otherwise. Notethat the path hoie an be modeled with any of the existing non-adaptivemodels.
4.2 Routing Policy Choice ModelConsider the model for the hoie of routing poliy among a hoie set
G of routing poliies at the origin. Note that the adaptive behavior isalready aptured in the de�nition of a routing poliy. The hoie of routingpoliy is latent and only the manifested path is observable. A supportpoint is fully de�ned by the realized travel times on all random links. Weassume that the realized support point for eah observation is known to themodeler through, for example, adequately dispersed GPS observations orprobe vehiles that over all random links. The traveler does not know therealized support point at the origin; his/her informationn aess is de�nedin the routing poliy, and in this paper it is the arrival times at deisionnodes. We model the the probability of a path observation onditional onsupport point r and hoie set of routing poliies G as

Pn(i|r) =
∑

γ∈G

P(i|γ, r)P(γ|G) (2)where γ is a routing poliy. As desribed in Setion 3, for a given supportpoint a routing poliy is manifested as a path. However, several di�erentrouting poliies an be manifested as the same path. We therefore sumover all routing poliies in G and multiply the routing poliy hoie model
P(γ|G) with a binary variable P(i|γ, r) that equals one if i orresponds to
γ for support point r and zero otherwise.Gao (2005) propose the poliy size logit to model P(γ|G) whih is therouting poliy version of the path size logit model (Ben-Akiva and Ram-ming, 1998; Ben-Akiva and Bierlaire, 1999). It adds a term, poliy size(PoS), to the deterministi utilities that orrets for orrelation among10



routing poliies. The model is de�ned as
P(γ) =

elnPoSγ+Vγ

∑
k∈G elnPoSk+Vk

(3)where Vγ is the deterministi utility of γ and the formulation of PoSPoSγ =

R∑

r=1
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ℓ∈Ir
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(
Tr

ℓ

Tr
γ

)
1

Mr
ℓ


 P(r) (4)may be viewed as \expeted path size" with notations

R : number of support points of link travel time distribution;
Ir

γ : set of links of the realized path of routing poliy γ for support point r;
Tr

ℓ : travel time of link ℓ for support point r;
Tr

γ : realized travel time of routing poliy γ for support point r;
Mr

ℓ : number of routing poliies using link ℓ for support point r;
P(r) : probability of support point r.Note that if the support point is unknown due to data unavailability, apath annot unambiguously be mathed with a given routing poliy. Themodel presented in Equation (2) an then be generalized to

Pn(i) =
∑

γ∈G

P(i|γ)P(γ|G) =
∑

γ∈G

R∑

r=1

P(i|γ, r)P(γ|G) (5)
5 Numerical ResultsWe arry out numerial tests of the proposed adaptive route hoie modelson a hypothetial network. The objetives of the tests are to: 1) demon-strate the feasibility of estimating the two adaptive route hoie models;and 2) gain insights into the adaptive route hoie models by omparingpredition results.
5.1 Test SettingsThe test network is the same as disussed in Setion 3. As explained earlier,there are eight routing poliies. The travel time of eah routing poliy is11



a disrete random variable with two possible values. For example, thetravel time of the routing poliy 6 (the one disussed in Setion 3) an beeither x1 + f or y1 + d, with probability 1 − P1 and P1 respetively. Theexpeted travel time and standard deviation of the routing poliy then anbe alulated.The alulation of poliy size is more involved. As shown in Equa-tion (4), poliy size is the expeted value of path sizes over all supportpoints of the random network. As there are two random links in the net-work eah with two possible realizations of travel times, there are altogetherfour support points. Let (T0, T1) represents a support point where T0 and
T1 are realized travel times on links 0 and 1 respetively. The four supportpoints are then (x0, x1), (x0, y1), (y0, x1), (y0, y1). In the following, we willuse support point (x0, x1) as an example to illustrate how poliy size isalulated.Consider �rst the mapping from routing poliies to paths. For example,in support point (x0, x1), routing poliy 2 takes link 2 at node B at arrivaltime x0, and therefore is manifested as path 1. Let γ be a routing poliyand p a path, we obtain manifestation of all routing poliies as follows:
γ1 → p1, γ2 → p1, γ3 → p2, γ4 → p2, γ5 → p3, γ6 → p3, γ7 → p4, γ8 → p4(6)One the manifested path is known, we an ount the number of routingpoliies that use a given link in support point (x0, x1) as follows.

Mℓ0
= 4 (γ1, γ2, γ3, γ4)

Mℓ1
= 4 (γ5, γ6, γ7, γ8)

Mℓ2
= 2 (γ1, γ2)

Mℓ3
= 2 (γ3, γ4)

Mℓ4
= 2 (γ5, γ6)

Mℓ5
= 2 (γ7, γ8)
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The routing poliy sizes in support point (x0, x1) are thenPoS1 =
x0
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2Similarly we an alulate the poliy sizes in all other support points.Take the expetation over the four support points and we obtain the �nalpoliy sizes.We also need to alulate path sizes at the origin node A to be usedin both the non-adaptive path model and the adaptive path model. Pathsizes are based on expeted travel times.PS1 =
x0(1 − P0) + y0P0
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1
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5.2 Observation GenerationWe assume the routing poliy hoie model of Equation (3) is the truemodel. We move the poliy size into the deterministi utility funtion and13



speify it with the following postulated oeÆients
Vγ = 1.0 lnPoSγ − 0.4 ExpetedTimeγ − 0.1 TimeSTDγ, ∀ γ ∈ GA routing poliy is not observable, and only the manifested path for agiven support point is observed. We speify the range of link travel time tobe [10, 40℄ (min). To generate one path observation from the poliy hoiemodel, we follow the steps:1. Sample a number from a uniform distribution between 10 and 40 foreah link travel time variable: a, b, c, d, e, f;2. Sample a number from a uniform distribution between 0 and 1 foreah link travel time probability variable: x0, y0, x1, y1;3. Calulate P(γk), the hoie probability of routing poliy k, ∀k usingthe poliy-size logit model (Equation (3));4. CalulateQk, the umulative probability of hoosing poliies γ1, γ2, . . . , γk,
k = 0, 1, . . . , 8, where Q0 = 0 and Q8 = 1;5. Sample a number r from a uniform distribution between 0 and 1, and
γk is hosen if Qk−1 < r < Qk;6. Calulate Sk, the umulative probability of support points r1, r2, . . . , rk,
k = 0, 1, . . . , 4, where S0 = 0 and S4 = 1;7. Sample a number r ′ from a uniform distribution between 0 and 1;and support point rk is realized if Sk−1 < r ′ < Sk;8. The hosen routing poliy is manifested as a path depending on thesupport point, using a similar logi as in the mapping of Equation (6).

5.3 EstimationThree models are estimated based on the generated path observations:1. Routing poliy hoie model (Equation (2)) with poliy size logit;14



2. Adaptive path hoie model (Equation (1)) with path size logit;3. Non-adaptive path hoie model with path size logit.The deterministi utility funtions have a linear-in-parameters spei�ationof the same attributes as the true model, namely, expeted travel time,travel time standard deviation and path (poliy) size.In the adaptive path hoie model, the hoie probability of a path isthe produt of hoosing all links along the path. The log likelihood of thepath is then the sum of the log likelihood of all the links. Therefore we antreat eah hosen link as an observation, and the link hoie probability isthe sum of hoie probabilities of paths beginning with the the link. Notethat the path attributes are dependent on the realized arrival time at theupstream node of the link. For example, assume γ2 is hosen and a traveltime of x0 is realized on link 0, and thus the manifested path is path 1.Path 1 is omposed of two links: 0 and 2. Choie probability of link 0 isthe sum of those of paths 1 and 2. At time 0 and node A, travel time onlink 0 is still random and therefore the expeted travel time of path 1 is
(x0+a)(1−P0)+(y0+b)P0 and that of path 2 is (x0+a)(1−P0)+(y0+c)P0.Now onsider the hoie of link 2. At time x0 and node B, travel time onlink 2 (oiniding with one of the path alternatives out of node B) is �xedas a, and suh value should be used in the observation data.All models are estimated with BIOGEME (Bierlaire, 2003; Bierlaire,2005). The estimation results are shown in Table 1. The oeÆient esti-mates of routing poliy hoie model are not signi�antly di�erent from thepostulated values whih shows that a poliy hoie model an be estimatedbased on path observations using Equation (2). The oeÆient estimatesof the other two models have their appropriate signs and are signi�antlydi�erent from zero. As expeted the model �t of the routing poliy modelis better than the adaptive path model and the non-adaptive path modelhas the worst model �t.
5.4 PredictionThe three estimated models are applied to predit route hoies in the sametopologial network, but with a �xed set of hypothetial link travel time15



Poliy Adaptive Non-adaptivepath path
β̂PS 1.03 1.23 2.75Std error 0.452 0.437 0.344T-test 2.28 2.80 8.00
β̂exptime -0.402 -0.28 -0.265Std error 0.00805 0.00467 0.0049T-test -49.97 -60.00 -54.02
β̂stdtime -0.108 -0.071 -0.0451Std error 0.00857 0.00923 0.00643T-test -12.60 -7.69 -7.02Final log-likelihood -3257.097 -3536.324 -3932.998Adj. rho-square 0.608 0.574 0.527Number of observed paths: 6000Null log-likelihood: -8317.766BIOGEME (Bierlaire, 2003; Bierlaire, 2005) has beenused for all model estimationsTable 1: Estimation Results
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variables as follows:
a = f = 10, b = 30, c = 26, d = 38, e = 22

x0 = x1 = 14, y0 = y1 = 18

P0 = P1 = PThe value of P is a parameter of the predition tests and varies from 0 to1, with an inrement of 0.1. The values of the link travel time variablessatisfy the ondition in Setion 3, i.e. a = f < (a + b)/2 < e < c < d.Therefore the analysis in Setion 3 applies here: path 1 is the minimumexpeted travel time path; links 2 and 4 have the same travel time undernormal ondition (when x0 or x1 is realized); link 4 is more ongested thanlink 2 under inident ondition (when y0 or y1 is realized); links 3 and 5are diversions for links 2 and 4 in inident ondition, and link 5 is a betterdiversion than link 3 (e < c).Sine the network is stohasti with all the support points known, weobtain distributions of variables suh as path shares, path travel times,origin-destination travel time and so forth. We take expetations of thesevariabls over the four support points, where the probability of eah sup-port is a funtion of P. We present the summary statistis (mean and/orstandard deviation) to gain a high-level understanding of the results.Figure 2 shows the expeted shares of all four paths. Eah subgraphis for a path, and results from all three models are plotted as funtions ofinident probability P. Reall that paths 1 and 3 ontain the links thatan be a�eted by the inidents due to the time-dependeny of their traveltimes, while paths 2 and 4 ontain the respetive diversion links that arenot a�eted by the inidents. Therefore it is intuitively orret that for allthree models, the shares of paths 1 and 3 are dereasing funtions of P,while shares of paths 2 and 4 are inreasing funtions of P.In order to better appreiate the di�erenes among the three models,we aggregate the results from Figure 2 to yield data for Figure 3, where theexpeted shares of going left and right at the origin node are plotted. Reallthat the right branh has a better diversion (link 5). In the routing poliymodel, as P inreases, the importane of diversion beomes more signi�antand therefore more ow goes to the right. In the two path models, as P17



inreases, the left share �rst inreases and then dereases. This is beausewhen P = 0, both paths 1 and 3 (belonging to the left and right branhesrespetively) have the same minimum travel time (a = f) and zero standarddeviation. While as P inreases, path 3 has higher disutility (d > b), andtherefore path 1 is more dominant and gains more share. However, as
P inreases to a ertain value, path 4 beomes the path with minimumdisutility, and thus the right share starts to inrease.If we inspet Figures 2 and 3 together, we �nd that although the left-right shares of non-adaptive and adaptive path models are roughly thesame, the distribution of the ows at the seond nodes are di�erent. Thisis beause the adaptive path model redistributes ows at the seond nodesdepending on the atual arrival times. On the other hand, both the adap-tive path model and non-adaptive path model predit more ow taking theleft branh than the routing poliy model does. This is beause future di-version possibility is not onsidered in either of the models, and the branhwith less expeted path travel time (path 1) is favored, although link 3 is aworse diversion. In another word, the routing poliy model better apturethe option value of diversion than the adaptive path model.Figure 4 shows the expeted value and standard deviation of averagepath travel time where the average is taken over all four paths weighted bypath shares. As P is approahing 0 or 1, links 0 and 1 are more likely to be inthe same ondition and the network is less stohasti than when P is in themiddle. The �gure shows that as P approahes the middle point between0 and 1, the two adaptive models and non-adaptive models are fartheraway from eah other in terms of expeted average travel time. This isin aordane with the intuition that being adaptive is more advantageouswhen the network is more unertain.Figure 4 also shows that adaptive path and routing poliy models havesimilar expeted average travel time, but their standard deviations are quitedi�erent. This is beause the e�et of a diversion is two-fold. A betterdiversion provides shorter travel time under inident ondition. On theother hand, under normal ondition it also results in more ow movingfrom the faster link, beause its disutility is not as far away from the fasterlink as the worse diversion. This results in longer travel time averaged18



over the faster link and the diversion. Sine the adaptive path modelpredits more ow to the left branh (worse diversion) than the routingpoliy model, it has longer travel time under inident ondition, but shortertravel time under normal ondition. Hene both models predit roughlythe same expeted average travel time, but the adaptive path model haslarger standard deviations.
6 Conclusions and Future DirectionsThis paper develops the �rst eonometri estimator for the routing poliyhoie model and demonstrates the feasibility of estimating the model. Arouting poliy in general is a deision rule that maps from all possible net-work states to next links out of deision nodes. It ollapses to a path in adeterministi networks. The onept of routing poliy expliitly apturestravelers' route hoie adjustments aording to information on realizednetwork onditions in stohasti time-dependent networks. Sine the in-formation omponent is embedded in the de�ntion of a routing poliy, theestimator of the routing poliy model is a general one and an be appliedto a large variety of information situations. This paper demonstrates oneof the information situations: the realized arrival times at deision nodes.Other information situations will be the subjets of future researh.The routing poliy hoie model is also ompared to the adaptive pathmodel, whih is a natural approah to an adaptive route hoie model. Anadaptive path model is atually a sequene of path hoie models appliedat intermediate deision nodes; while a routing poliy hoie model is onemodel at the origin where the alternatives are routing poliies. Preditionresults show that the routing poliy model aptures better the option valueof diversion than the adaptive path model beause of the foresight of arouting poliy. When the network is more stohasti, the di�erene betweenthe two adaptive models and the non-adaptive model is larger in terms ofexpeted travel time. As expeted, this result indiates that the bene�t ofbeing adaptive is more signi�ant in a more unertain network.Future researh diretions would inlude estimation of the routing pol-iy hoie model with �eld data, study of other information situations and19



investigation of alternative methods to apture the overlapping of routingpoliies.
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Figure 2: Expeted Path Shares
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