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AbstractThis paper presents a new paradigm for hoie set generation inthe ontext of route hoie. We assume that the hoie sets ontainall paths onneting eah origin-destination pair. These sets are ingeneral impossible to generate expliitly. Therefore, we propose animportane sampling approah to generate subsets of paths suitablefor model estimation. Using only a subset of alternatives requiresthe path utilities to be orreted aording to the sampling protoolin order to obtain unbiased parameter estimates. We derive suh asampling orretion for the proposed algorithm.Estimating models based on samples of alternatives is straightfor-ward for some types of models, in partiular the Multinomial Logit(MNL) model. In order to apply MNL for route hoie, the utilitiesmust also be orreted to aount for the orrelation using, for in-stane, a Path Size (PS) formulation. We show that the PS should beomputed based on the full hoie set. Again, this is not feasible ingeneral, and we propose an operational solution, alled the ExtendedPS.We present numerial results based on syntheti data. The resultsshow that models inluding a sampling orretion are remarkably bet-ter than the ones that do not. Moreover, the Extended PS appears tobe a good approximation of the true one.
1 IntroductionRoute hoie models play an important role in many transport applia-tions. The modeling is omplex for various reasons and involves severalsteps before the atual route hoie model estimation. We start by givingan overview of the modeling proess in Figure 1. In a real network a verylarge set of paths (atually in�nitely many if the network ontains loops)onnet an origin so and a destination sd. This set, referred to as the uni-versal hoie set U , annot be expliitly generated. In order to estimate aroute hoie model, a subset of paths needs to be de�ned and path gener-ation algorithms are used for this purpose. There exist deterministi andstohasti approahes for generating paths.Deterministi methods always generate the same set M of paths fora given origin-destination pair. Most of them are based on some formof repeated shortest path searh. This type of approah is omputation-2



ally appealing thanks to the eÆieny of shortest path algorithms. Exam-ples are link elimination (Azevedo et al., 1993), link penalty (de la Barraet al., 1993) and labeled paths (Ben-Akiva et al., 1984). Instead of perform-ing repeated shortest path searhes, a onstrained enumeration approah re-ferred to as branh-and-bound has reently been proposed. Friedrih et al.(2001) present an algorithm for publi transport networks, Hoogendoorn-Lanser (2005) for multi-modal networks and Prato and Bekhor (2006) forroute networks.Stohasti methods generate an individual (or observation) spei� sub-set Mn. Atually, most of the deterministi approahes an be madestohasti by using random generalized ost for the shortest path om-putations. Ramming (2001) proposes a simulation method that produesalternative paths by drawing link osts from di�erent probability distribu-tions. The shortest path aording to the randomly distributed generalizedost is alulated and introdued in the hoie set. Reently, Bovy andFiorenzo-Catalano (2006) proposed the doubly stohasti hoie set gener-ation approah. It is similar to the simulation method but the generalizedost funtions are spei�ed like utilities and both the parameters and theattributes are stohasti. They also propose to use a �ltering proess suhthat, among the generated paths, only those satisfying some onstraintsare kept in the hoie set.One M (or Mn) has been generated, a hoie set Cn for individual
n an be de�ned in either a deterministi way by inluding all feasiblepaths, Cn = M (or Cn = Mn), or by using a probabilisti model P(Cn)where all non-empty subsets Gn of M (or Mn) are onsidered. De�ninghoie sets in a probabilisti way is omplex due to the size of Gn and hasnever been used in a real size appliation. See Manski (1977), Swait andBen-Akiva (1987), Ben-Akiva and Boara (1995) and Morikawa (1996)for more details on probabilisti hoie set models. Casetta and Papola(2001) (Casetta et al., 2002) propose to simplify the omplex probabilistihoie set models by viewing the hoie set as a fuzzy set in a impliitavailability/pereption of alternatives model.The formal evaluation of the relevane and realism of generated hoiesets is diÆult in pratie sine the atual hoie sets in general are un-known to the modeler. Several researhers, inluding Ramming (2001),Hoogendoorn-Lanser (2005), Bekhor et al. (2006), Bovy and Fiorenzo-Catalano (2006), Prato and Bekhor (2006), Bekhor and Prato (2006), van3



Set of all paths U from so to sd

M ⊆ U Mn ⊆ U

Deterministi Stohasti

P(i|Cn) P(i) =
∑

Cn∈Gn

P(i|Cn)P(Cn)

Deterministi Probabilisti
Path generation
Choieset formation
Routehoie modelFigure 1: Choie Set Generation OverviewNes et al. (2006), Bovy (2007) and Fiorenzo-Catalano (2007), have proposedvarious measures of quality of the generated sets. Empirial analysis showthat no hoie set generation algorithm is able to fully reprodue observedpaths.In the ontext of our new paradigm based on sampling from the uni-versal hoie set, these measures do not apply, as all possible paths belongto the hoie set. Moreover, the observed path is always in the sample bydesign. The validation of our approah is based on the veri�ation thatunbiased estimates of the parameters are obtained.In the following setion we give an introdution to sampling of alter-natives. We desribe the proposed algorithm in Setion 3 and we ontinueby deriving the sampling orretion in Setion 4. In Setion 5 we presentnumerial results based on syntheti data and desribe the heuristi foromputing the Extended Path Size attribute. Finally we present onlu-sions and issues for future researh.
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2 Sampling of AlternativesThe Multinomial Logit model an be onsistently estimated on a subset ofalternatives (MFadden, 1978) using lassial onditional maximum likeli-hood estimation. The probability that an individual n hooses an alter-native i is then onditional on the hoie set Cn de�ned by the modeler.This onditional probability is
P(i|Cn) =

eVin+lnq(Cn |i)

∑

j∈Cn

eVjn+lnq(Cn |j)
(1)and inludes an alternative spei� term, lnq(Cn|j), orreting for samplingbias. This orretion term is based on the probability of sampling Cn giventhat j is the hosen alternative, q(Cn|j). See for example Ben-Akiva andLerman (1985) for a more detailed disussion on sampling of alternatives.Bierlaire et al. (to appear) have reently shown that Multivariate ExtremeValue (also alled Generalized Extreme Value) models an also be onsis-tently estimated and propose a new estimator.Importane sampling of alternatives has been used in the literature. Forexample, Ben-Akiva and Watanatada (1981) use samples of destinations forpredition and Train et al. (1987) sample alternatives for the estimation ofloal telephone servie hoie models. A sampling of alternatives approahhas however never been used for route hoie modeling, to the best of ourknowledge.If all alternatives have equal seletion probabilities, the estimation onthe subset is done in the same way as the estimation on the full set of al-ternatives. Indeed, q(Cn|i) is equal to q(Cn|j) ∀ j ∈ Cn and the orretionsfor sampling bias anel out in Equation (1). A simple random samplingprotool is however not eÆient if the full set of alternatives is very large.The sample should inlude attrative alternatives sine omparing a hosenalternative to a set of highly unattrative alternatives would not providemuh information on the hoie. In order to ensure that attrative alter-natives are inluded, the sample would need to be prohibitively large.When using a sampling protool seleting attrative alternatives withhigher probability than unattrative alternatives (importane sampling),the orretion terms in Equation (1) do not anel out. Note that if al-ternative spei� onstants are estimated, all parameter estimates exept5



the onstants would be unbiased even if the orretion is not inluded inthe utilities (Manski and Lerman, 1977). In a route hoie ontext it is ingeneral not possible to estimate alternative spei� onstants due to thelarge number of alternatives and the orretion for sampling is thereforeessential. Therefore, the key element of our approah onsists in designinga stohasti path generation algorithm suh that the probability q(Cn|i)an easily be derived. We propose a simple example in the next setion.
3 A Stochastic Path Generation ApproachThis stohasti path generation approah is exible and an be used invarious algorithms inluding those presented in the literature. We start bydesribing the general approah and then fous on a spei� instane basedon a biased random walk.For a given origin-destination pair (so, sd), the general approah as-soiates a weight with eah link ℓ = (v, w) based on its distane to theshortest path aording to a given generalized ost. More preisely, theweight ω(ℓ|a, b) is de�ned by the double bounded Kumaraswamy distribu-tion (proposed by Kumaraswamy, 1980), that is

ω(ℓ|a, b) = 1 − (1 − xℓ
a)b. (2)

a and b are shape parameters and xℓ ∈ [0, 1] represents a measure of dis-tane to the shortest path and is de�ned as
xℓ =

SP(so, sd)

SP(so, v) + C(ℓ) + SP(w, sd)
, (3)where C(ℓ) is the generalized ost of link ℓ, and SP(v1, v2) is the generalizedost of the shortest path between nodes v1 and v2. Note that xℓ equals one if

ℓ is part of the shortest path and xℓ → 0 as C(ℓ) → ∞. In Figure 2 we showthe umulative distribution funtion for di�erent values of a when b = 1.The weights assigned to the links an be ontrolled by the de�nition of thedistribution parameters. High values of a when b = 1 yield low weights forlinks with high ost. Low values of a have the opposite e�et.Note that other distributions with suitable properties an be used. Itis also worth mentioning that this idea presents similarities in its naturewith the approah proposed by Dial (1971).6
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Figure 2: Kumaraswamy Distribution: Cumulative Distribution FuntionOne a weight has been assigned to eah link, various methods an beapplied. Bierlaire and Frejinger (2007b) propose a gateway approah, usedby Bierlaire and Frejinger (2007a) for modeling long distane route hoiebehavior in Switzerland. Note also that the method an be generalized tosubpaths instead of links, in order to better reet behavioral pereptions(see Frejinger and Bierlaire, 2007 and Frejinger, 2008).In this paper, we use a biased random walk algorithm whih is appro-priate for the importane sampling approah. First, it generates any pathin U with non-zero probability. Seond, path seletion probabilities an beomputed in a straightforward way.Given an origin so and a destination sd, an ordered set of links Γ isgenerated as follows:
Initialize v = so, Γ = ∅

Loop While v 6= sd perform the following
Weights For eah link ℓ = (v, w) ∈ Ev, where Ev is the set of outgoinglinks from v, we ompute the weights based on (2) where xℓ isde�ned by

xℓ =
SP(v, sd)

C(ℓ) + SP(w, sd)
. (4)7



Note that this is equivalent to (3) where so = v.
Probability For eah link ℓ = (v, w) ∈ Ev, we ompute

q(ℓ|Ev, a, b) =
ω(ℓ|a, b)

∑
m∈Ev

ω(m|a, b)
(5)

Draw Randomly selet a link (v, w∗) in Ev based on the above prob-ability distribution.
Update path Γ = Γ ∪ (v, w∗)

Next node v = w∗.The algorithm biases the random walk towards the shortest path ina way ontrolled by the parameters of the distribution. The algorithmorresponds to a simple random walk if a uniform distribution (speialase of Kumaraswamy distribution with a = 0 and b = 1) is used. Notehowever that a simple random walk does not generate paths with equalprobability.The probability q(j) of generating a path j is the probability of seletingthe ordered sequene of links Γj

q(j) =
∏

ℓ∈Γj

q(ℓ|Ev, a, b), (6)where q(ℓ|Ev, a, b) is de�ned by (5).With this algorithm, it is easy to ompute path seletion probabilitiesand it is not omputationally demanding sine at most |V |2 shortest pathomputations are needed for any number of observations, where V is thenumber of nodes in the network.Note that existing stohasti path generation approahes may also beviewed as importane sampling approahes. We are however unaware ofhow to ompute the sampling orretion in a straightforward way for thesealgorithms.
4 Sampling CorrectionAs disussed in Setion 2, the orretion terms q(Cn|j) ∀ j ∈ Cn mustbe de�ned for this type of sampling protool in order to obtain unbiasedparameter estimates. 8



We de�ne a sampling protool for path generation as follows: a set C̃nis generated by drawing R paths with replaement from the universal setof paths U using the biased random walk method desribed before, andthen adding the hosen path to it (|C̃n| = R + 1). We assume without lossof generality that U is bounded with size J. Note that J is unknown inpratie. Eah path j ∈ U has sampling probability q(j) de�ned by (6).The outome of this protool is (k̃1n, k̃2n, . . . , k̃Jn) where k̃jn is the num-ber of times alternative j is drawn (∑j∈U k̃jn = R). Following Ben-Akiva(1993) we derive q(Cn|j) for this sampling protool. The probability of anoutome is given by the multinomial distribution
P(k̃1n, k̃2n, . . . , k̃Jn) =

R!
∏

j∈U k̃jn!

∏

j∈U

q(j)
ekjn . (7)The number of times alternative j appears in C̃n is kjn = k̃jn + δjc, where cdenotes the index of the hosen alternative and δjc equals one if j = c andzero otherwise. Let Cn be the set ontaining all alternatives orrespondingto the R draws (Cn = {j ∈ U | kjn > 0}). The size of Cn ranges from one to

R + 1; |Cn| = 1 if only dupliates of the hosen alternative were drawn and
|Cn| = R + 1 if the hosen alternative is not drawn nor were any dupliates.The probability of drawing Cn given the hosen alternative i (randomlydrawn kin − 1 times) an be de�ned using Equation (7) as

q(Cn|i) = q(C̃n|i) =
R!

(kin − 1)!
∏

j∈Cn

j6=i

kjn!
q(i)kin−1

∏

j∈Cn

j6=i

q(j)kjn (8)where the produts now are over all elements in Cn sine the terms foralternatives that are not drawn (kjn = 0) equal one. Equation (8) an bereformulated as
q(Cn|i) =

R!

1

kin

∏

j∈Cn

kjn!

1

q(i)

∏

j∈Cn

q(j)kjn = KCn

kin

q(i)
(9)where

KCn
=

R!
∏

j∈Cn
kjn!

∏

j∈Cn

q(j)kjn .Note that the positive onditioning property is trivially veri�ed, that is
q(Cn|i) > 0 =⇒ q(Cn|j) > 0 ∀j ∈ Cn.9



We an now de�ne the probability (1) that an individual hooses alternative
i in Cn as

P(i|Cn) =
e

Vin+ln“
kin
q(i)

”

∑

j∈Cn

e
Vjn+ln“

kjn

q(j)

” , (10)where KCn
in Equation (9) anels out sine it is onstant for all alternativesin Cn. When using the previously presented biased random walk algorithmwe onsequently only need to ount the number of times a given path j isgenerated as well as its sampling probability given by Equation (6) whihare both straightforward to ompute.

5 Numerical ResultsThe numerial results presented in this setion aim at evaluating the impaton estimation results of� the sampling orretion,� the de�nition of the Path Size (PS) attribute and� the biased random walk algorithm parameters.Syntheti data are used for whih the true model struture and parametervalues are known. Based on this data we then evaluate di�erent modelspei�ations with the t-test values of the parameter estimates with respetto (w.r.t.) their orresponding true values. In the following we refer to aparameter estimate as biased if it is signi�antly di�erent from its truevalue at 5% signi�ane level (ritial value: 1.96).
5.1 Synthetic DataThe network is shown in Figure 3 and is omposed of 38 nodes and 64 links.It is a network without loops and the universal hoie set U an thereforebe enumerated (|U | = 170). The length of the links is proportional to thelength in the �gure and some links have a speed bump (SB).Observations are generated with a postulated model. In this ase weuse a Path Size Logit (PSL) model (Ben-Akiva and Ramming, 1998 and10



Ben-Akiva and Bierlaire, 1999), and we speify a utility funtion for eahalternative i and observation n:
Uin = βPS lnPSU

i + βLLengthi + βSBNbSBi + εin, (11)where βPS = 1, βL = −0.3, βSB = −0.1 and εin are i.i.d. Extreme Valuewith sale 1 and loation 0. The PS attribute is de�ned byPSUi =
∑

a∈Γi

La

Li

1
∑

j∈U

δaj

(12)where Γi is the set of links in path i, La is the length of link a, Li the lengthof path i and δaj equals one if path j ontains link a, zero otherwise. Notethat we expliitly index U to emphasize on whih path set it is omputed.3000 syntheti observations have been generated by simulation, assoiatinga hoie with the alternative having the highest utility.
5.2 Model SpecificationsSampling CorretionWithout WithPathSize C MNoCorr

PS(C) MCorr
PS(C)

U MNoCorr
PS(U) MCorr

PS(U)Table 1: Model Spei�ationsTable 1 present the four di�erent model spei�ations that are usedin order to evaluate both the PS attribute and the sampling orretion.For eah of these models we speify the deterministi term of the utilityfuntion as follows
MNoCorr

PS(C) Vin = µ
(
βPS lnPSC

in − 0.3Lengthi + βSBNbSBi

)

MCorr
PS(C) Vin = µ

(
βPS lnPSCin − 0.3Lengthi + βSBNbSBi + ln(

kin

q(i)
)

)

MNoCorr
PS(U) Vi = µ

(
βPS lnPSU

i − 0.3Lengthi + βSBNbSBi

)

MCorr
PS(U) Vin = µ

(
βPS lnPSUi − 0.3Lengthi + βSBNbSBi + ln( kin

q(i)
)

)
.
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The PS attribute based on sampled paths is de�ned byPSCin =
∑

a∈Γi

La

Li

1
∑

j∈Cn

δaj

. (13)Note that the two �rst spei�ations are based on (13) and the two laston (12). βL is �xed to its true value and we estimate µ, βPS and βSB. Inthis way the sale of the parameters is the same for all models and we anompute the t-tests w.r.t. the orresponding true values.
5.3 Estimation ResultsFor a spei� parameter setting of the biased random walk algorithm (10draws, Kumaraswamy parameters a = 5 and b = 1, length is used asgeneralized ost for the shortest path omputations), we generate one hoieset per observation and estimate the models. The orresponding estimationresults are reported in Table 2. The t-test values show that only the modelinluding a sampling orretion and PS omputed based on U (MCorr

PS(U)) hasunbiased parameter estimates.The models inluding sampling orretion have smaller variane of therandom terms ompared to the models without orretion. (Reall that
µ2 is inversely proportional to the variane.) The standard errors of theparameter estimates are also in general smaller indiating more eÆient es-timates. Moreover, the model �t is remarkably better for the models withorretion ompared to those without. Despite of this the model with PSomputed based on sampled hoie sets (MCorr

PS(C)) has biased parameter es-timates. Hene, these results support the hypothesis that the PS should beomputed based on the true orrelation struture, otherwise the attributebiases the results. In a real appliation it is however not possible to om-pute PS based on the true orrelation struture sine U annot be expliitlygenerated. This is further disussed in the following setion.We now analyze the estimation results as a funtion of two of the bi-ased random walk algorithm parameters: the Kumaraswamy distributionparameter a and the number of draws. First we note from Figure 4 that,as expeted, the number of generated paths inrease with the number ofdraws but derease as a inrease. Reall from Figure 2 that the higherthe value of a the more the biased random walk is oriented towards the13



True MNoCorr
PS(C) MCorr

PS(C) MNoCorr
PS(U) MCorr

PS(U)PSL PSL PSL PSL PSL
βL �xed -0.3 -0.3 -0.3 -0.3 -0.3

µ̂ 1 0.182 0.724 0.141 0.994standard error 0.0277 0.0226 0.0263 0.0286
t-test w.r.t. 1 -29.54 -12.21 -32.64 -0.2
β̂PS 1 1.94 0.411 -1.02 1.04standard error 0.428 0.104 0.383 0.0474
t-test w.r.t. 1 2.20 -5.66 -5.27 0.84
β̂SB -0.1 -1.91 -0.226 -2.82 -0.0867standard error 0.25 0.0355 0.428 0.0238
t-test w.r.t. -0.1 -7.24 -3.55 -6.36 0.56Final log likelihood -6660.45 -6082.53 -6666.82 -5933.98Adj. rho-square 0.018 0.103 0.017 0.125Null log likelihood: -6784.96, 3000 observationsAlgorithm parameters: 10 draws, a = 5, b = 1, C(ℓ) = LℓAverage size of sampled hoie sets: 9.66BIOGEME (Bierlaire, 2007, and Bierlaire, 2003) has been used for allmodel estimationsTable 2: Path Size Logit Estimation Results
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shortest path. Figure 5 shows the absolute value of the t-tests w.r.t. thetrue values for the MCorr
PS(U) model. With few exeptions the parameters areunbiased for both 10 and 40 draws and for all values of a. (A line is shownat the ritial value 1.96.) These results indiate that for this example theestimation results are robust w.r.t. to the algorithm parameter settings.The other three model spei�ations (MNoCorr

PS(C) , MCorr
PS(C) and MNoCorr

PS(U) ) havebiased estimates for at least one parameter for all values of a and for allnumber of draws. The detailed results are presented in the Appendix.
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Figure 4: Average Number of Paths in Choie Sets
5.4 Heuristic for Extended Path SizeIn a real appliation where U annot be generated it is not possible toompute the PS attribute on the true orrelation struture. It is important,though, to ompute it based on a set of paths larger than the sampled set Cn.It is therefore interesting to �rst study, for the previous example, how manypaths are needed in order to obtain unbiased parameter estimates. Seond,we propose a heuristi for omputing a PS attribute that approximates thetrue orrelation struture.We generate an extended hoie set Cextendedn for eah observation inthe network shown in Figure 3. This hoie set is only used for omputingthe PS attribute. In addition to all paths in Cn we randomly draw (uniformdistribution) a number of paths from U\Cn and add these to Cextendedn . The15
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deterministi utilities for a model inluding sampling orretion are nowde�ned as
Vin = µ

(
βPS lnPSCextendedin − 0.3Lengthi + βSBNbSBi + ln( kin

q(i)
)

) (14)where PSCextendedin =
∑

a∈Γi

La

Li

1
∑

j∈Cextendedn
δaj

.The estimation results as a funtion of the average size of Cextendedn are shownin Figure 6 where x-axis ranges from the average number of paths in Cn(9.66) up to |U | = 170. For eah parameter estimate we report the absolutevalue of the t-test w.r.t. its true value. An important improvement ofthe t-test values an be noted after only 20 additional paths in Cextendednwhere both the speed bump and PS oeÆients are unbiased. The saleparameter is unbiased from 80 additional paths. Even though many paths(average number in Cextendedn approximately 0.5|U |) are needed in order forall parameter estimates to be unbiased, we an improve signi�antly theestimates by using an extended hoie set for the PS omputation.Note that the purpose of the results presented in Figure 6 is to have anindiation of the parameter estimates when the PS attribute is omputed onmore paths than those in Cn. Eah data point orrespond to one randomsample of paths. More samples would be needed in order to perform adeeper analysis, but this is already a lear indiation on the need for usinglarger sets for omputing the PS attribute.
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In order to use an extended hoie set for the PS omputation in a realnetwork, we need to generate paths suh that the true orrelation strutureis approximated. That is, the number of paths in the extended hoie setusing eah link in the network should reet the number of paths in U usingeah link. For this purpose we propose a reursive gateway algorithm thatuses the general stohasti approah presented in Setion 3. An extendedhoie set Cextended is de�ned for eah origin-destination pair as follows:� For eah link in the network we generate a path and add it to Cextendedif it is not already present.� A path is generated by reursively drawing links based on weightsde�ned by (2) and (3).� In order to avoid seleting links sattered over the network, we update
so, sd, v and w in Equation (3) eah draw so that higher probabilitiesare assigned to links lose to already seleted links than those furtheraway, as illustrated below.The Extended PS attribute for alternative j and observation n is thenomputed based on Cextendedn = Cextended ∪ Cn.We illustrate the heuristi with a small network in Figure 7 where wegenerate a path (dashed links in part IV) for link (2, D) (bold link in partI). The weight for a link ℓ = (v, w) in the �rst iteration is given by (we use

a = b = 1):
ω(ℓ) =

SP(O, 2)

SP(O, v) + C(ℓ) + SP(w, 2)and the �rst link to be drawn is (O, 3) (part II). The weights are thenupdated aording to
ω(ℓ) =

SP(3, 2)

SP(3, v) + C(ℓ) + SP(w, 2)where only one link is possible, namely (3, 2) (part III).The heuristi has been tested on the example network (Figure 3) andthe average size of Cextendedn is 57 paths. The estimation results, with de-terministi utility spei�ations given by Equation (14), are reported inTable 3 where the referene model MorrPS(C) from Table 2 is also shown. µ̂and β̂SB are omparable to the ones obtained by randomly sampling from18
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Figure 7: Illustration of Heuristi for Extended Path Size
U\Cn (Figure 6) with the same average size of Cextendedn ; the sale parameterestimate µ̂ is improved in MorrPS(Cextended)

ompared to MorrPS(C) but remainsbiased and the speed bump oeÆient is unbiased in MorrPS(Cextended)
. ThePS oeÆient is biased, this is however expeted sine Cextendedn is only anapproximation of U . Moreover, this approximation does not have the nieproperties of a simple random sample and poorer β̂PS than the results re-ported in Figure 6 seems reasonable. Finally we note that the model �t isremarkably better for MorrPS(Cextended)

.
6 Conclusions and Future WorkThis paper presents a new paradigm for hoie set generation and routehoie modeling. We view path generation as an importane samplingapproah and derive a sampling orretion to be added to the path utilities.We hypothesize that the true hoie set is the set of all paths onnetingan origin-destination pair. Aordingly, we propose to ompute the PathSize attribute based on an approximation of the true orrelation struture.We present numerial results based on syntheti data whih learly showthe strength of the approah. Models inluding a sampling orretion areremarkably better than the ones that do not. Moreover, unbiased estima-tion results are obtained if the Path Size attribute is omputed based on allpaths and not on generated hoie sets. This is ompletely di�erent fromroute hoie modeling pratie where generated hoie sets are assumed to19



True MorrPS(Cextended)
MorrPS(C)PSL PSL PSL

β̂L �xed -0.3 -0.3 -0.3

µ̂ 1 0.885 0.724Standard error 0.0259 0.0266
t-test w.r.t. 1 -4.43 -12.21
β̂PS 1 1.52 0.411Standard error 0.102 0.104
t-test w.r.t. 1 5.10 -5.66
β̂SB -0.1 -0.131 -0.266Standard error 0.0281 0.0355
t-test w.r.t. -0.1 -1.10 -3.55Adj. Rho-Squared 0.114 0.103Final Log-likelihood -6006.96 -6082.53Table 3: Estimation Results for Extended Path Sizeorrespond to the true ones and Path Size (or Commonality Fator for theC-Logit model Casetta et al., 1996) is omputed on these generated pathsets. Sine it is not possible in real networks to ompute these attributes onall paths, we study how many paths are needed in order to obtain unbiasedestimates and we propose a heuristi for generating extended hoie sets.It is important to note that the proposed sampling approah an beused with Multinomial Logit (MNL) based models (Path Size Logit and C-Logit). A onsistent estimator for mixture of MNL (MMNL) models basedon samples of alternatives does not exist but is available for MultivariateExtreme Value models (see Nerella and Bhat, 2004, for an empirial studyof the bias in MMNL models when estimated on samples of alternatives).Sine the purpose of this paper is to illustrate the proposed method-ology, it is appropriate to use syntheti data for whih the atual modelis known. This allows to test the parameter estimates against their truevalues. A natural next step is to test the approah on real data. Moreover,future researh an be dediated to sampling of alternatives for predition.
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A Estimation ResultsThe following tables show the absolute value of t-test values for the fourdi�erent models disussed in the paper.Kumaraswamy parameter aParameter Nb. Draws 0 1 3 5
β̂SB 5 24.68 21.99 17.12 6.6510 24.20 20.61 16.68 7.2420 21.31 18.10 12.76 7.7130 19.11 15.03 10.52 6.9340 15.99 14.17 8.92 5.89
β̂PS 5 5.17 5.11 0.22 2.4610 5.08 3.98 2.18 2.2020 6.93 5.23 0.30 3.5230 6.93 3.93 0.22 3.2840 4.97 5.12 0.10 3.38
µ̂

5 0.66 6.52 18.7 29.3510 0.27 6.47 18.34 29.5420 0.06 5.92 18.01 27.4930 0.53 5.75 17.45 26.5140 0.31 5.38 16.93 25.66Table 4: Model MNoCorr
PS(C) (no onvergene for a > 5 due to µ̂ lose to zero)
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Kumaraswamy parameter aParameter Nb. Draws 0 1 3 5
β̂SB 5 28.02 24.67 18.92 5.6310 29.06 25.26 19.90 6.3520 28.38 24.93 18.78 8.2030 28.02 23.96 17.71 9.3140 26.81 22.88 16.47 9.83
β̂PS 5 36.35 28.19 15.18 5.3410 37.07 28.12 14.69 5.2920 35.01 25.84 12.05 3.9830 32.31 23.04 9.81 2.2640 29.17 20.50 7.80 0.94
µ̂

5 3.06 4.54 19.25 31.310 3.69 4.65 19.23 32.6420 3.56 4.43 19.68 32.4130 3.75 4.41 19.15 31.6540 3.37 4.38 18.77 30.99Table 5: Model MNoCorr
PS(U) (no onvergene for a > 5 due to µ̂ lose to zero)
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Kumaraswamy parameter aParameter Nb. Draws 0 1 3 5 7 10 15 20 30
β̂SB 5 1.99 2.10 3.54 4.67 4.73 4.45 2.22 1.34 0.5010 0.48 0.17 3.31 3.56 2.93 2.45 0.72 0.13 1.4020 1.58 1.56 0.06 0.73 1.82 1.22 0.37 0.78 1.9830 2.98 3.76 2.11 0.19 0.95 0.35 0.36 1.48 2.5640 5.19 4.17 3.63 1.31 0.01 0.48 0.70 1.47 2.56
β̂PS 5 4.62 4.87 2.66 3.49 4.36 3.91 4.23 4.70 3.0510 3.93 3.45 5.82 5.66 4.80 3.51 2.81 3.01 3.3420 4.72 4.57 4.22 5.02 6.86 6.40 3.95 3.40 4.1830 3.85 2.99 3.99 5.48 4.64 7.21 5.26 4.39 4.1940 1.62 3.60 3.39 5.25 7.66 7.09 5.75 5.33 4.80

µ̂

5 8.78 10.18 12.56 11.14 12.04 8.12 3.88 2.12 3.2810 8.35 10.03 12.69 12.21 11.66 10.08 5.48 2.86 1.6520 8.26 8.21 10.95 11.26 12.01 10.86 7.05 4.06 1.8330 8.06 6.92 8.03 11.02 11.97 10.38 8.03 3.72 2.0340 7.22 6.84 6.53 10.03 11.97 10.38 8.03 3.72 2.03Table 6: Model MCorr
PS(C)



Kumaraswamy parameter aParameter Nb. Draws 0 1 3 5 7 10 15 20 30
β̂SB 5 1.22 1.94 1.34 0.19 0.46 0.22 1.53 1.17 1.1710 1.79 2.16 1.23 0.56 0.31 0.14 0.86 1.11 1.5820 2.32 2.33 1.42 0.93 0.52 0.60 0.66 0.29 1.0830 1.94 2.08 1.70 0.82 0.82 0.60 0.26 0.65 1.2340 1.85 1.82 1.53 0.90 0.83 0.56 0.16 0.62 0.98
β̂PS 5 2.04 1.67 1.45 0.60 1.31 0.02 0.23 1.85 1.3210 1.77 1.55 1.99 0.85 0.80 0.57 0.18 1.04 1.2720 1.37 1.41 1.59 0.88 1.04 0.79 0.19 0.34 0.9430 1.16 0.95 1.41 0.88 1.07 0.61 0.57 0.24 0.9240 1.17 0.93 0.94 0.67 0.87 0.62 0.58 0.24 0.80

µ̂

5 1.70 1.27 0.48 0.41 1.35 0.36 1.48 1.62 1.1610 2.52 1.38 0.63 0.20 1.19 1.57 0.17 1.22 1.9120 2.03 2.31 0.40 0.07 1.54 2.03 0.83 0.35 0.8430 1.78 2.37 1.55 0.63 1.37 1.51 1.48 0.96 0.4440 2.08 1.36 1.27 0.44 1.37 1.51 1.48 0.96 0.44Table 7: Model MCorr
PS(U)
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