
A column generation algorithm for disrupted
airline schedules

N. Eggenebrg ∗ M. Salani ∗ M. Bierlaire ∗

December 3, 2007

Report TRANSP-OR 071203
Transport and Mobility Laboratory

Ecole Polytechnique Fédérale de Lausanne
transp-or.epfl.ch

∗Transp-OR, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland,
niklaus.eggenberg@ep�.ch, matteo.salani@ep�.ch, michel.bierlaire@ep�.ch

1

Abstract
We consider the recovery of an airline schedule after an unforeseen event, called

disruption, that makes the planned schedule unfeasible. In particular we consider
the aircraft recovery problem for a heterogeneous �eet of aircrafts, made of regular
and reserve planes, where the aircrafts' maintenances are planned in an optimal
way in order to satisfy the operational regulations.

We propose a column generation scheme, where the pricing problem is modeled
as a commodity �ow problem on a dedicated network, one for each plane of the �eet.
We present a dynamic programming algorithm to build the underlying networks
and a dynamic programming algorithm for resource constrained elementary shortest
paths to solve the pricing problem. We provide some computational results on real
world instances.

2

1 Introduction
Air travel is nowadays one of the most frequent modes of transportation for business,
leisure, and tourism. The market of airlines is no longer protected both in Europe as
in the US and airlines have the possibility to decide their routes as well as their fares.
It is crucial for them to manage their operations in an e�cient way in order to lead the
market and to optimize their pro�ts and services.

Airlines need to coordinate a relevant number of resources to provide their service to
the customers. Strategical and operational decisions are taken to provide a reasonable
expected revenue for the company: routes must be planned in terms of location and
arrival/departure time, aircrafts have to be a�ected to routes complying with all the
safety regulations and technical constraints, crews must operate the aircrafts within
the contractual speci�cations traded with the unions of workers.

From a computational point of view airline scheduling is one of the most challenging
decisional problems. It has been addressed in the last decades by algorithms based on
operations research techniques. The problem is usually decomposed into stages. The
reasons are that airlines are organized in departments in which decisions on �ights,
planes and crews are taken separately, with di�erent publication deadlines and di�erent
required knowledge on the problem. Moreover it is commonly believed that the entire
scheduling problem is computationally intractable.

The �rst objective is the route choice, where the airline decides on the legs to
be �own, which is typically done 6 to 12 months in advance. Next step is the �eet
assignment, where �eets of planes are assigned to legs. The tail assignment then builds
routes satisfying all technical constraints, such as maintenances for individual planes,
which is done from 1 to 6 months in advance. Next step is to compute crew pairings that
satisfy the corresponding union of workers' requirements. This is done between 1 and
2 months before the day of operations, as is the crew roistering, where individual crews
are assigned to a pairing with respect to their working history and union constraints for
individuals. Finally, usually up to the day before the day of operations, the passenger
routing is done in order to determine the passenger's connections.

Unfortunately, on the day of operations, it is unlikely that the optimized sched-
ule obtained by the airline scheduling is actually carried out as planned: most of the
time, disruptions such as bad weather, unpredicted technical maintenances or propa-
gated delays a�ect the planned schedule. Thus, when disruptions make the schedule
unfeasible, aircrafts, crews and passengers have to be reaccommodated.

In the European airline punctuality report (2006), the Association of European
Airlines reports that 20.6% of departures and 22.1% of arrivals of the European �ights

1

are delayed by more than 15 minutes and that the yearly average is increasing. Inter-
estingly, weather conditions delay only 3.6% of the �ights, while the propagation of the
delays of late planes a�ects the whole schedule up to 15.1%.

The delay costs for airlines is estimated between 840 and 1200 million Euros in 2002
by the EuroControl Association (Cook et al., 2004) and the delay cost per minute is
estimated to be around 72 Euros.

In the Challenges to growth report (2004) by EuroControl we �nd four scenario
based forecasts on the air tra�c demand for the next years. An estimation about the
increase of the demand for �ights lies between 2.5% and 4.3%, yearly based, for the
next 20 years. With the highest growth scenario, annual demand increases to 21 million
�ights, a growth by a factor 2.5 compared to 2003. However, despite 60% potential
capacity increase of the airport network, only twice the volume of 2003 tra�c can be
accommodated, and 17.6% of demand (i.e. 3.7 million �ights per year) cannot be served.
This is expected to have a signi�cant impact on airport operations: in this scenario,
more than 60 airports are congested, and the top-20 airports are saturated at least 8-10
hours per day. Given this forecast on the increase of air tra�c and airport congestion it
is obvious that a disruption in the airline schedule would have a deeper operational and
economic consequence because of the cascade e�ect on other scheduled �ights. Thus it
is crucial for airlines to adopt more and more e�ective recovery strategies.

Schedule recovery decisions are taken at the Operations Control Center (OCC) with
the aim of �nding a set of feasible operations that rebuild the planned schedule as soon
as possible. Moreover OCC operators are required to provide quickly reliable decisions
without ensuring the total recover of the planned schedule in case of emergency situ-
ations. Because of the real-time nature of the problem, recovery decisions are taken
thanks to their knowledge and experience. OCC operators will certainly bene�t from
the use of a decision support system based on a recovery algorithm able to provide
several recovery alternatives.

The original contributions of this paper are related to the integrated re-scheduling
of �ights and maintenances for an heterogeneous �eet of aircrafts in case of unfore-
seen disruptions. In this work we adapt, implement and validate some state-of-the-art
algorithms based on column generation and dynamic programming and we report a
computational study based on real world instances to validate the importance of con-
sidering the optimization of maintenance operations.

The motivation for simultaneously optimizing �ight and maintenances comes from
actual rules in civil aviation. The Joint Aviation Authorities (JAA) is an associated
body of the European Civil Aviation Conference (ECAC) representing the civil avia-
tion regulatory authorities of a number of European States. It provides a set of rules,

2

called JAR-OPS, that cover the operational requirements of any civil aircraft owned by
an airline belonging to a JAA Member State. Under civil aviation rules, maintenance
operations are enforced when aircrafts reach some resource limits (typically �y hours,
number of take-o� and landing operations, and total time between two maintenances).
An extension of an aircraft maintenance limit can be obtained through written per-
mission from the authority. As such, it is not a regular occurrence. Any airline that
continually asks for exemptions could be subject to an audit from the authority. Usu-
ally airlines prefer to operate under JAR-OPS rules to avoid additional audits at all
costs.

We �rst give in Section 2 an overview on the state of the art. We provide the
problem description in Section 3. Section 4 describes the recovery algorithm based on
column generation. Finally, Section 5 reports on some computational results.

2 Literature Survey
Schedule recovery plans, in opposition to deterministic or robust scheduling, usually
use a deterministic schedule and an irregular event as an input an try to recover the
now unfeasible schedule at lowest cost. This is an a posteriori approach to cope with
irregularities, in the sense that decisions are made when the actual schedule is already
unfeasible. Some also refer to this problem as the day of operations problem. This
category has been developing in the last 10 years mainly, as the more the airline network
develops, the more (proportionally) irregularities occur: for each 1% increase in airport
tra�c it is estimated that there will be a corresponding 5% increase in delays (Schaefer
et al., 2005).

As a motivation for our work we refer to Shavell (2001), who studies the economical
impact of schedule disruptions on airline companies.

For a general survey on airline scheduling in the recovery perspective, we refer to
Kohl et al. (2007), who give an overview of the literature on airline scheduling and
discuss di�erent aspects of the problem when irregular events occur.

Wei et al. (1997) introduce a recovery method for crew management based on a
multi-commodity integer network �ow and also develop a heuristic branch-and-bound
search algorithm. The originality of this work lies in the business-like criteria the built
solution has to meet: the recovered solution has to be as close to the actual schedule as
possible, i.e. there is an upper bound on the number of modi�ed pairings, the number
of impacted �ights etc.

In his thesis, Sojkovic (1998) introduces three approaches to solve the Day of Op-

3

eration Scheduling problem (DAYOPS). The �rst method consists of regenerating a
new �ight schedule without changing the rest of the schedule. The Second approach
allows for modi�cations of aircraft itineraries, crew rotations and the planned schedule.
Optimization is done separately for aircrafts, pilots and �ight attendants. The last
approach is based on the Benders decomposition to separate the initial integral multi-
commodity �ow formulation and solves the resulting problems using the Dantzig-Wolfe
formulation by branch-and-bound.

Yu et al. (2003) introduce a decision aid algorithm (CALEB) tested on data of
Continental Airlines. They test their algorithm on probably the worst day ever for
aviation, namely September 11th 2001. They show impressive results on how fast the
return to normal schedule is achieved when such a severe disruption happens. The
estimated savings for the 9/11 is up to $29, 289, 000, almost half of it coming from the
avoided �ight cancellations.

Rosenberger et al. (2003a) present a stochastic approach to model the uncertainty
that occurs in the schedule. The stochastic model is a discrete event semi-Markov
process. The authors consider independent random events, not taking into account
that a severe climatic perturbation could extend on several airports, for example.

Kohl et al. (2007) give a survey of the previous work on airline scheduling and sched-
ule recovery approaches. They also develop a crew solver and describe a prototype of
a multiple resource decision support system (Descartes project), which includes inde-
pendent algorithms to solve the plane recovery, the crew recovery and the passenger
recovery problems. The tests are run on data where small irregularities in a database
of 4000 events are generated randomly, at most 10% of the �ights being delayed from
15 to 120 minutes.

Rosenberger et al. (2003b) work on di�erent aspects of the airline scheduling prob-
lem, mainly in automated recovery policies. One of these projects is based on the
aircraft rerouting problem when a schedule has to be recovered. They develop a model
that reschedules legs and reroutes aircrafts in order to minimize the rerouting and can-
cellation costs. They also develop a heuristic to choose which aircraft to reroute, and
discuss a model that minimizes the crew and passenger disruption.

When only planes are involved in the recovery problem, we refer to the problem as
the Aircraft Recovery Problem (ARP).

Teodorvi¢ and Guberni¢ (1984) are the pioneers of the ARP. Given that one or more
aircrafts are unavailable, the objective is to minimize the total delay of the passengers
by �ight re-timing and aircraft swappings. The algorithm is based on a branch-and-
bound framework where the relaxation is a network �ow problem with side constraints.

Teodorvi¢ and Stojkovi¢ (1990) is a direct extension. The authors consider both

4

aircraft shortage and airport curfews and they try to minimize the number of canceled
�ights, with a secondary objective of minimizing the total passenger delay if the number
of cancellations is equal. A heuristic based on dynamic programming is proposed to
solve the problem. No experiments are reported.

Several articles published by S. Yan are related to the same underlying model which
is a time-line network in which �ights are represented by edges. The network has
position arcs corresponding to potential shortage of an aircraft. The possibility of
�ight re-timing is modeled by several arc copies. In Yan and Lin (1997) an instance of
39 �ights is solved. In Yan and Tu (1997) the authors solve larger instances, up to 273
�ights, within a small optimality gap and below 30 minutes of computation. Yan and
Yang (1996) and Yan and Young (1996) are related to the previous ones.

Jarrah et al. (1993) use two separate approaches to the ARP: cancellation and
re-timing. The problem is modeled with a time-line network and three methods are
reported: the successive shortest path method for cancellations, and two network �ow
models for cancellations and re-timings. The possibility of swapping aircrafts is taken
into account. Instances with three airports with considerable air tra�c are presented
with several disruption scenarios.

In Argüello et al. (1997) and Argüello et al. (2001) the authors use a time-band
model to solve the ARP. In the �rst article the authors propose a fast heuristic based
on randomized neighborhood search. The second article presents a heuristic based on
an integral minimum cost �ow on the time-band network. Furthermore, the method
proves to be e�ective for some medium-sized instances up to 162 �ights serviced by 27
aircrafts.

An extension to the network model of Argüello et al. (1997) is presented by Theng-
vall et al. (2000). The authors present a model in which they penalize in the objective
function the deviation from the original schedule and they allow human planners to
specify preferences related to the recovery operations. Computational results are pre-
sented for a daily schedule recovery of two homogeneous �eets of 16 and 27 aircrafts.
Disruption scenarios are simulated grounding one, two or three planes.

There are few contributions in which the maintenance operations are considered as
variable. In Stojkovi¢ et al. (2002) the authors consider the maintenance constraints and
provide a real time algorithm that does not a�ect the routing decision. Only Sriram
and Hagani (2003) consider maintenance and routing decisions together but aircraft
maintenance checks can be performed only during the night. In an unpublished report,
Clarke (1997) enforces the satisfaction of maintenance requirements within a given time
slot but, in the computational experience, all the �ights are constrained to be operated
either on time or with 30 minutes delay or canceled, restricting drastically the degrees

5

of freedom of the algorithm and thus the overall complexity of the problem.
In this paper, we consider the ARP problem where all the aircraft related operational

decisions can be optimized simultaneously, namely plane re-routing, continuous �ight
delays, and maintenance operations. Such an integrated approach allows airlines to
avoid the iterative procedure between OCC and technical department for validating
the produced recovery plan. The results we show come from instances of a medium
sized airline with similar sizes than the one we could �nd in the literature.

3 The Aircraft Recovery Problem
We focus on the Aircraft Recovery Problem (ARP), where decisions are taken on the
plane's schedule. When irregularities occur, OCC operators need to �nd a way to
get back to the initial schedule by delaying or canceling �ights or reassigning them to
other planes (plane swappings). They are given a planned (or initial) schedule and its
disrupted state, i.e. the location and time of the planes at the moment the disruption
occurs.

The objectives are to both minimize costs produced by delays, cancellations and
plane swappings, and makespan. The makespan is the time needed to recover the initial
schedule. We refer to it as the recovery period denoted by T . The two objectives are
contrasting: minimizing T leads to more severe and costly decisions, typically canceling
�ights, while to minimize recovery costs more time is needed.

It is a common approach, for multi-objective optimization, to �x a threshold on an
objective and to optimize the other. We solve the ARP by optimizing the recovery
costs given a �xed recovery period and solve the problem iteratively. This decision is
motivated by practitioners: it is usually appreciated to have several recovery scenarios
based on di�erent recovery periods.

The solution of the ARP is a recovery plan, i.e. a new global schedule up to the end
of the recovery period T such that the initial schedule can be carried out as planned
after T . The recovery plan is composed of one recovery scheme for every plane.

Notice that in our formulation, repositioning �ights are prohibited due to their high
cost even if they might be the only possibility to recover the schedule without canceling
�ights. Thus, only the initial set of �ights can be used in a recovery scheme.

As we discuss in Section 1, the technical constraints involved in the ARP are the
maintenance constraints. The maintenances are ruled by civil aviation regulatory au-
thorities: they are enforced by a resource capacity, e.g. the number of �own hours, the
number of take-o�s and landings or the total time between two maintenances. Once the

6

resource capacity limit is reached, the plane is forced to undergo maintenance before
being able to perform any �ight. The resources are consumed along the time between
two maintenances, and are renewed when maintenance is performed. In a general for-
mulation, without explicitly specifying their nature, the resources are given as a vector
H and the capacity limits as a vector U. Thus, ui is the capacity limit of resource hi,
the i-th component of vector H and U, respectively.

We de�ne the state of a plane p by the vector [a, t,H]p, where a is an airport, t is
a point in time and H is the vector of consumed resources since last maintenance.

Given a schedule, its disrupted situation and the length of the recovery period,
the initial state of a plane p is de�ned as the vector [a0, t0,H0]p, which is known
deterministically as the disruption is known. Notice that for planes performing a �ight,
the initial state is at the destination airport of this �ight, the time being the earliest
possible take o� time, that we refer to as the earliest availability time. A �nal state
is a state [aT , tT ,HT] at the end of the recovery period a plane is required to be at in
order to perform the schedule as planned after T . As the initial schedule is known, we
know where and when the planes are expected and how much of each resource is needed
(at least) to reach the next planned maintenance. Thus, HT is the maximal resource
consumption allowed for a plane to reach the �nal state. If in the initial schedule a
�ight with scheduled departure before and landing after T exists, then the �nal state
is set at the take-o� time at the origin airport. As we allow plane swappings, a �nal
state is not necessarily associated with a unique plane, and therefore, �nal states are
not indexed by planes.

We illustrate the ARP with a small example. In Table 1 we have a schedule for
planes p1 and p2. We consider a single resource hToL being the number of take-o�s and
landings, where uToL = 20 and the initial consumption hToL

0 is known for both planes.
At time 0905, when p1 lands in AMS, it comes up to knowledge that an unplanned
maintenance has to be performed on p1 because of problems incurred during the landing
phase. It is known that this maintenance will take 2 hours. We are now in a situation of
disruption because the schedule cannot be implemented as planned (p1 cannot take o�
to MIL at 1000, it will be ready for take o� at 1105). Thus we have an ARP where the
initial state for p1 is represented by the state [AMS,0905, 20]p1

. The initial state for p2

is [AMS,0930, 10]p2
and, assuming that we want to recover the disrupted situation by

the evening (T = 1800) where both planes will undergo maintenance during the night,
meaning that resource consumption can be at capacity limit at T , i.e. hToL

T = uToL = 20,
we have two �nal states [BCN,1800,20] and [GVA,1800,20].

In terms of states, the initial schedule of plane p2 is given by the following succession
of states: [MIL,0740, 10]p2

, [AMS,1120, 12]p2
and [BCN,1430, 14]p2

.

7

Plane 1 Flight ID Origin Destination Departure time Landing time
F1 GVA AMS 0830 0905
F2 AMS MIL 1000 1130
F3 MIL BCN 1200 1340
F4 BCN GVA 1415 1550

Plane 2 Flight ID Origin Destination Departure time Landing time
F5 MIL AMS 0740 0930
F6 AMS BCN 1120 1430

Table 1: The original schedule for two planes

In this small example a possible recovery plan is to swap the assignment of �ights
F2, F3 and F4 to plane p2 and of �ight F6 to plane p1 with the recovery schedule of
Table 2. The resource consumption constraints at the �nal states are clearly satis�ed,
as p1 reaches the �nal state [BCN,1800,20] with hToL = 4 < 20 and plane p2 reaches
�nal state [GVA,1800, 20] with hToL = 18 < 20.

Plane 1 Flight ID Origin Destination Departure time Landing time
F1 GVA AMS 0830 0905 (1105)
F6 AMS BCN 1120 1430

Plane 2 Flight ID Origin Destination Departure time Landing time
F5 MIL AMS 0740 0930
F2 AMS MIL 1000 1130
F3 MIL BCN 1200 1340
F4 BCN GVA 1415 1550

Table 2: A recovered schedule for two planes

The complexity of considering simultaneously the Fleet Assignment Problem and
the Plane Routing Problem with explicit consideration of technical constraints (main-
tenances) makes the problem hard to solve, given that those problems are already
NP-hard when considered separately. Nonetheless their combination is taking more
and more interest in applications as pointed out in some recent AGIFORS conferences
(see Challenges to growth report, 2004 and Scheidereit, 2006).

The solution of the ARP requires to reassign aircrafts to �ights in order to mini-
mize the recovery costs obeying the operational constraints on the maintenances. Each
scheduled �ight has either to be served by an aircraft or canceled. The cost of a recovery

8

plan is determined considering the costs related to cancellations, delays, aircraft swap-
pings and additional maintenances. The original schedule must be recovered within a
given horizon such that the maintenance requirements and aircraft type at the end of
the recovery period are compatible with the originally planned schedule.

3.1 De�nitions
In this section we provide some de�nitions which we use through the paper.

We assume as given:

� the recovery period T ,

� the number | H | of resources that enforce maintenance,

� the maximal resource consumption vector U enforcing maintenance,

� the delay cost per time unit cD,

� the set of airports A and for each airport a ∈ A:

� the minimal turn around time mtta, which is the time needed to prepare an
aircraft for the next take-o�,

� the set of activity slots Oa, which are time intervals when take-o� and landing
operations can take place,

� the set of maintenance slots Ma, which are time intervals when maintenance
operations can take place,

� the maintenance duration dM
a ,

� the set of planes P and for each plane p ∈ P:

� the initial state [a0, t0,H0]p, speci�ed by initial time-location and initial
resource consumption,

� the set of required �nal states S, where Sp ⊆ S is the set of �nal states coverable
by plane p ∈ P. For each [aT , tT ,HT] ∈ Sp:

� the required location aT and point in time tT ,
� the maximal allowed resource consumption given by HT ,

� the set of �ights F, where Fp ⊆ F is the set of �ights that can be �own by plane
p ∈ P. For each f ∈ F:

9

� the scheduled departure time sdtf,
� the duration df,
� the �ight cost gf

� the cancellation cost cf,

The set of planes P and the initial state [a0, t0,H0]p for each plane p ∈ P are used to
model plane disruptions such as unavailability or plane delay by increasing the earliest
availability time t0. Moreover unpredicted aircraft maintenance can be modeled by
setting the resource consumption in the initial state at the capacity U, as shown in the
example, where we create the initial state [AMS,0905, 20]p1

to enforce maintenance. The
activity slots and maintenance slots are used to model airport closure or maintenance
disruptions, for example due to strikes.

The time tT of a �nal state [aT , tT ,HT] might be smaller than T when a scheduled
�ight f leaps over T . In this case tT = sdtf − mttaT

.
Finally, remark that the �nal state is a crucial point in recovery problems. Final

states are what di�erentiates recovery to usual scheduling problems. In a normal plane
routing problem, we want to cover as many �ights as possible but without having
restrictions on the �nal plane's location, as for recovery, reaching the �nal states is
crucial in order to carry out the initial schedule after the recovery period. Not covering
a �nal state means recovery is not realized.

In the next section we introduce the recovery network model. Each plane has its
own network given its initial state and the set of �nal states that are compatible with
it. This is the recovery network of the plane.

4 The Column Generaion Algorithm for the ARP
The objective of ARP is twofold: minimize both the recovery period T and the recovery
costs. Our approach is to optimize the costs given a �xed recovery period. We then
generate several recovery plans for di�erent values of T that will help the decision taker
to identify the best trade-o� between cost and time.

For each �xed value of T , we model the ARP as a set partitioning problem with ad-
ditional constraints. This model is based on an integral combination of feasible recovery
schemes, one for each plane of the �eet. The set of feasible schemes is exponential in
size. Thus, we resort to column generation to solve the linear relaxation of this model,
commonly referred as Restricted Linear Master Problem (RLMP). We refer the reader
to Desaulniers et al. (2005) for the theoretical details of the method.

10

The key point of a column generation algorithms is the way we model and solve
the pricing problem. In the case of the ARP as formulated in section 4.1, the pricing
problem is to �nd a recovery scheme, i.e. a schedule for a plane within the recovery
period, which is promising for improving the solution of the RLMP. The model we
use for the computation of these recovery schemes is the recovery network described in
section 4.2. Section 4.3 explains the main properties and parameters of the recovery
network generation algorithm that is reported in Appendix A.

Section 4.4 describes the dynamic programming algorithm used to solve the pricing
problem on the recovery networks, which is based on modern algorithmic techniques,
namely decremental state space relaxation, presented by Righini and Salani (to appear).
Finally section 4.5 reports some implementation details of the whole algorithm.

4.1 Applying Column Generation to the ARP
Let Ω be the set of all possible single-plane recovery schemes. They must be combined
together to obtain a minimum cost recovery plan for the set of scheduled �ights such
that each �ight is either serviced by exactly one plane or canceled. In addition, to carry
out the original schedule after T , all the �nal states must be reached by a plane with
enough resource potential.

We model the ARP as a set partitioning problem with additional constraints (MP)
as follows:

min zMP =
∑

r∈Ω

crxr +
∑

f∈F

cfyf (1)
∑

r∈Ω

bf
rxr + yf = 1 ∀f ∈ F (2)

∑

r∈Ω

bs
rxr = 1 ∀s ∈ S (3)

∑

r∈Ω

bp
r xr ≤ 1 ∀p ∈ P (4)

xr ∈ {0, 1} ∀r ∈ Ω (5)
yf ∈ {0, 1} ∀f ∈ F (6)

Each recovery scheme r has a cost cr and is associated with a binary variable xr

that is equal to one if it is taken into the solution, 0 otherwise. A recovery scheme
is described by the binary constants bf

r, bs
r and bp

r . Those constants take value one if
the scheme r covers the �ight f, ends with the �nal state s and is serviced by plane

11

p, respectively. A binary variable yf is associated with each �ight and it is equal to
one if the �ight f is canceled with cost cf. Constraints (2) ensure that each �ight is
either serviced or canceled. The feasibility of the already planned schedule at the end
of the recovery period is ensured by constraints (3). Constraints (4) ensure that an
aircraft can be assigned at most to one recovery scheme. Constraints (5) and (6) enforce
integrality on the variables.

Since the dimension of the set Ω is exponential in the dimension of the problem, we
consider a subset of recovery schemes, Ω ′ ⊆ Ω and we solve the linear relaxation of the
so obtained restricted problem (RLMP). We then recourse to column generation either
to prove the optimality of the linear problem or to generate new pro�table recovery
schemes to enter the formulation. If the optimal solution of the restricted master
problem is not integral we recourse to an enumeration tree where, at each node, we
take branching decisions.

Given the optimal solution of the linear restricted master problem, z∗RLMP, the col-
umn generation algorithm solves a pricing problem to compute the recovery scheme r

with minimum reduced cost for each aircraft p. The reduced cost is computed consid-
ering the dual variable λf associated with each �ight f, the dual variable related to the
�nal states ηs and the non-positive dual variable µp of the plane p as follows:

�cp
r = cp

r −
∑

f∈F

bf
rλf −

∑

s∈S

bs
rηs − µp ∀p ∈ P. (7)

If a column with �cp
r < 0 exists it is added to the RLMP, i.e. added to Ω ′, otherwise

the LP optimality is proved. We thus have to compute, for each plane p, the recovery
scheme minimizing the reduced cost given the dual multipliers λf, ηs and µp, i.e. �nd
the feasible combination of the vector (bf

r, b
s
r, b

p
r)

T minimizing �cp
r .

We introduce in the next section the recovery network model that allows to compute,
for each plane independently, the recovery scheme minimizing the reduced cost as a
Resource Constrained Elementary Shortest Path Problem (RCESPP).

4.2 The Recovery Network
We introduce an extension of the time-space network model proposed by Argüello
et al. (2001) that includes the plane maintenances and we describe a generation and
a preprocessing algorithm to control the size of the network in terms of nodes and
arcs. An independent recovery network associated with every plane and therefore, we
consider a unique plane p ∈ P and might omit the index p for simplicity of notation.

In the time-space network, a node {a, t} corresponds to a point in space and time
and it is labeled with a unique state [a, t,H].

12

A schedule of a plane in a time-space network is a set of nodes {a, t} corresponding
to the earliest departure time (edt) t at corresponding airport a, that are linked
by �ight arcs. The grounding time between the earliest departure time and the real
take-o� time at the origin airport a and the minimal turn around time mtta ′ at the
destination airport a ′ are included in the �ight arc, in order to avoid vertical arcs.

In the graphical representation of the network, we report time vertically and space
horizontally.

Since the initial state of every plane is known, we introduce a (unique) source node
{a0, t0} corresponding to the location and �rst availability time of a plane and labeled
by the initial state [a0, t0,H0]. The initial state records the information about the
resource consumption associated with the plane.

We de�ne a sink node {aT , tT } associated for every �nal state [aT , tT ,HT] in the set
of the coverable �nal states Sp of plane p. Recall that we do not restrict every plane
to recover to it's initial schedule, we thus might have more than one sink node for each
network. Information on the needed resource potential before the next maintenance is
stored in HT , which is an upper bound on the consumed resource. A sink cannot be
covered by a plane with to high resource consumption, as the plane would not be able
to carry out the initial schedule after the recovery period until the next maintenance.

Intermediate nodes are time-locations where the plane is ready to take o� after
having performed some �ights. The particularity of a node is that it is only a transition
state that the plane can visit.

We have three type of nodes: sources, sinks and nodes and four arc types: �ight,
maintenance, termination, and maintenance termination.

A �ight arc is associated with a �ight and links two nodes corresponding to origin
and destination airports at speci�c times. We represent several possibilities to delay a
�ight by several �ight arcs connected to di�erent nodes. A maintenance arc is similar
to a �ight arc, except that the maintenance is performed before proceeding the �ight
at the origin airport. Flight and maintenance arcs are not permitted to reach a sink
node by convention.

Termination arcs link nodes (including eventually the source) to sinks. A termi-
nation arc is never associated with a �ight, thus it is always vertical. A maintenance
termination is the same as a termination arc but where a maintenance is performed
before reaching the sink.

Figure 1 shows how the di�erent nodes and arcs are represented.
Each arc a�ects the resource consumption H of the plane in a di�erent way: �ight

arcs increase the resource consumption by a certain amount, whereas maintenance arcs
reset it to zero before performing the �ight.

13

Source

Sink

Node

Flight Arc

Maintenance Arc

Termination Arc

Maintenance

Termination Arc

Figure 1: Representation of the di�erent nodes and arcs

Finally we associate a cost with every arc type as follows:

� �ight arcs: the �ight cost plus the delay cost,

� maintenance arcs: the sum of the �ight cost, the maintenance cost and the delay
cost,

� termination arcs: no cost,

� maintenance termination: the maintenance cost.

The delay cost is incurred by a delayed departure. Usually, the cost of a delay is
measured linearly with a time unit delay cost of 72 Euros per minute (Cook et al., 2004).

The algorithm for the recovery network generation is reported in Appendix A in
Algorithm 1.

We consider the example of the schedule of Table 1 for plane p2. We assume that
p2 can also cover the �ights initially scheduled for p1 and cover both �nal states. We
thus have initial state [MIL,0740,10] and we create the source {MIL,0740} and apply
Algorithm 1, with Fp being the set of �ights Fp = {F1, F2, F3, F4, F5, F6}, and the set of
sinks being Sp2

= {[GVA, 1800, 20], [BCA, 1800, 20]}. Airports are all in an activity slot
with equal minimum turn around time of 30 minutes and there is only a maintenance
slot in AMS, with maintenance duration dm = 1h. The generated recovery network is
shown in Figure 2 (we remove �ights delayed by more than 4 hours).

The recovery network helps us to identify the di�erent possible ways to recover the
schedule. Each of them corresponds to a path from the source to a sink. In Figure 2,
we clearly see the exponential behavior of the recovery network generation algorithm.
We have 8 di�erent possible paths from the source to a sink, each one corresponding
to a feasible recovery scheme for plane p2. The path corresponding to the recovery
scheme of plane p2 in Table 2 is the succession of the nodes {MIL,0740}, {AMS,1000},
{MIL,1200}, {BCN,1410}, {GVA,1620} and {GVA,1830} (including the source and the

14

MIL AMS BCN GVA

0740

1000

F5

F2

F3

1410

1200
F2

1300

1500

F3

1510

F3

F6

1620

1705

1715

1830

F4

F4

F4

F6

Figure 2: Recovery network of plane p2 with initial schedule of Table 1 and initial state
[BCN,0740,10].

sink). The succession of nodes is linked by the �ight arcs corresponding to �ight F5,
F2, F3 and F4.

In this example, there is no maintenance termination arc, as there is no maintenance
slot at GVA nor at BCN, the locations for the �nal states. Notice that there can be
several arcs, both �ight or maintenance, associated with the same �ight but delayed.

In the next section we describe a generation algorithm for the recovery networks
where we introduce a set of parameters that allow to control the exponential behavior.

4.3 Properties of the Recovery Network Generation Algorithm
The main idea of the generation algorithm is to extend dynamically the labels associated
with every node (by increasing time) {a, t} with all possible �ights f ∈ Fp departing at
a to create a �ight arc and a maintenance arc and corresponding destination nodes,
and if there is a �nal state in airport a, to create a termination and maintenance
termination arc. This approach has an exponential behavior in the number of �ights,
we thus introduce some parameters to control it.

Following the approach of Argüello et al. (2001), we use time discretization in order

15

to control the size of the networks. The idea is to merge all nodes at same location
within a time window, whose width is of size T

∆
, where ∆ is a parameter, into one single

node. In order not to discard any feasible solution, we keep a time label corresponding
to the earliest departure time edt from a node. We then use edt to determine whether
a �ight arc should be created or not. Notice that by doing so, we might underestimate
the true delay cost, but the delay is evaluated exactly in the pricing algorithm. This
parameter has been introduced for practical reasons: a high value for time discretization
drastically reduces computing time and gives to the planner a qualitative feedback on
the recoverability of the schedule and allows him to estimate reasonable values for the
recovery period, T .

We then introduce two parameters to restrict the �ight extension set. The �rst is
the delay bound τ. We remove from the �ight extension set all �ights having a bigger
delay than τ. The maximal waiting time bound ψ is similar to τ but in the reverse
way. A �ight is removed from the extension set of a node if sdtf − edt > ψ, i.e. if the
plane is grounded for a too long period before performing �ight f.

The grounding time parameter Γ is the extension of ψ to termination arcs. If the
node is too far in time from a sink, we do not create a termination nor a maintenance
termination arc from this node.

The parameters ψ and Γ capture the fact that a long inactivity period is unlikely
to be optimal.

The parameter ρ ∈ [0, 1] corresponds to the minimal resource consumption propor-
tion required before performing a maintenance and it captures the fact that it is unlikely
to perform maintenance when only a low percentage of the resources are consumed.

In order to obtain an operational network model with a reasonable number of nodes
and arcs, a preprocessing is necessary to decrease the complexity and remove useless
arcs an nodes after the generation.

We �rst check feasibility with respect to resource consumption: for every node we
compute upper and lower bounds (hi and hi) for the consumption of resource hi. Note
that with that notation, parameter ρ allows a maintenance arc only if the upper bound
h

i ≥ ρui.
We illustrate the principle with the example of the number of �own hours since last

maintenance. In a feasible schedule, a plane cannot perform more than uFlh �y hours
between two consecutive maintenances.

We compute the lower and upper bounds on the resource consumption using an un-
constrained shortest and longest path algorithm, respectively, according to the resource
consumptions. Given the capacity limit uFlh and the corresponding lower bound hFlh

it is possible to erase an arc from the network if hFlh + df > uFlh.

16

We also compute a shortest path with respect to the resource consumption from
a sink to every node {a, t}, which corresponds to the minimal resource potential hFlh

sink
needed to reach the sink. Thus, if hFlh

sink +hFlh > uFlh, there is no feasible path from the
source to the sink going through node {a, t}. We maintain a list of reachable sinks for
every node. If this list is empty at a node because of resource consumption we remove
the node as well as all its ingoing and outgoing arcs.

Finally we remove all nodes (except the source) that have no predecessor and all
nodes (except the sinks) that have no successor, as they are not leading to any feasible
recovery scheme for plane p.

We thus have a recovery network for every plane that encodes all interesting recovery
schemes as a path from the unique source to a sink. In order to solve the pricing
problem, we thus have to compute the one minimizing the reduced cost �cp

r , given the
dual multipliers λf, ηs and µp. We describe the RCESPP algorithm that solves the
pricing problem in the next section.

4.4 Resource Constrained Elementary Shortest Path Problem
A pricing problem needs to be solved for each aircraft on its own recovery network, i.e.
we need to solve a Resource Constrained Elementary Shortest Path Problem (RCESPP)
on the recovery network for each plane. In the reminder we omit index p from the
reduced cost formulation in (7).

Variable µ is a constant and it is not considered in the optimization but only to
compute the �nal reduced cost. The dual variables λf and ηs can be taken into account
in the recovery network by adding them to the �ight and termination arcs, respectively,
as follows:

� �ight arcs: cost −λf

� maintenance arcs: cost −λf

� termination arcs: −ηs

� maintenance termination: cost −ηs

By consequence negative cost arcs could be present.
By updating the arc costs as described above, solving the pricing problem amounts

to solve a resource constrained elementary shortest path problem (RCESPP) in each
recovery network. The optimal column is the one having the minimum reduced cost
of the | P | columns obtained (one for each plane). Moreover, resource consumption

17

ensures feasibility according to maintenance requirements, whereas elementarity is set
on �ights, ensuring one �ight is covered at most once by a feasible column.

To solve the RCESPP for each recovery network, we use the algorithm proposed by
Righini and Salani (2006). The idea of the algorithm is to create labels associated with
nodes, which hold a feasible partial path to reach the node. If several labels are active
at the same node, it is possible to eliminate some labels that are dominated, i.e. that
we know that they cannot lead to the optimal path. In our case, one label at node n is
given by the vector (H, C, n), where H is the vector of consumed resources since last
maintenance at this stage of the partial path and C its reduced cost. We say that label
(H ′, C ′, n) is dominated by label (H, C, n) at node n if and only if:

� hi ≤ hi ′, ∀i = 1, · · · | H |,

� C ≤ C ′,

� at least one of these equalities is strict.

If a label is not eliminated by domination, it will be extended through all feasible
arcs (n,m) to a new label at node m. The optimal solution is the label with lowest
cost at the sinks.

The network is acyclic by construction but, since multiple arcs could identify the
same �ight in order to model delay decisions, we must ensure that there are not two
di�erent arcs corresponding to the same �ight traversed in the same path. Indeed, the
elementarity of the �ights corresponding to the traversed arcs is needed as we do not
allow a �ight to be covered more than once. This elementarity does not come for free
though, the only cost minimization objective of a resource constrained shortest path
cannot ensure it. To enforce elementarity, we use the idea introduced by Beasley and
Christo�des (1989), by adding a dummy resource vector L, where Lf is one if �ight f is
covered, and 0 otherwise. Thus, an arc (n, m) corresponding to a �ight that has already
been covered by the partial path (L,H, C, n) will not be feasible for label extension. The
disadvantage is that the domination rules must be extended by adding the following
rule for (L,H, C, n) to dominate (L ′,H ′, C ′, n):

� Lf ≤ L ′f, ∀f ∈ F

To tackle the computational e�ort issued by the additional elementarity constraint
we exploited the Decremental State Space Relaxation (DSSR) technique that has been
recently introduced by Righini and Salani (to appear).

18

In order to control the number of non dominated labels, we discretize the resource
consumption as we do for time: resource consumptions falling into the same interval are
considered as equivalent. We introduce a logarithmic resource discretization, given as
the parameter θ. It corresponds to the number of logarithmic intervals the resources are
divided in, and the length of the intervals being proportional to log(θ). The intervals
for resource hi ∈ H are denoted by Ii

j, j = 1 · · · θ. The idea behind this logarithmic
discretization is that for low resource consumption maintenance is unlikely, and few
precision is needed. In the RCESPP algorithm, the domination criteria of a label in
the resource dimension compares the resource interval Ii

j rather than the real resource
consumption hi, i.e. if hi ∈ Ii

j and hi ′ ∈ Ii
j ′, domination occurs if j ≤ j ′. Therefore a

label can now erroneously dominate another if they belong to the same discretization
interval.

Notice that in a linear discretization, it might occur that two values of resource
consumption fall again in the same discretization interval when taking more intervals.
In the logarithmic case, for increasing θ, if two labels fall into di�erent intervals once,
they always stay in di�erent intervals for bigger θ. The example in Figure 3 shows the
behavior for increasing θ with linear interval lengths on the left hand side and with
logarithmic lengths on the right hand side for a resource hi and resource limit ui = 100.
We see that two labels corresponding to resource consumption 49 and 51, represented
by l, always fall in di�erent intervals in the logarithmic case for θ ≥ 2. In the linear
case however, they are in the same interval for θ = 1, they are not for θ = 2, they
are again when θ = 3 etc. Figure 3 also shows the saturation e�ect in logarithmic
discretization when θ grows too large, i.e. that we get almost empty intervals for big
θ.

4.5 Implementation Issues
The algorithm is implemented in C++ exploiting BCP, an open source framework
implementing a Branch&Cut&Price algorithm, provided by the Computational Infras-
tructure for Operations Research (COIN-OR) project1. Test are run on a computer
with a 2GHz processor and 2GB memory.

In our algorithm, we perform column generation only at the root node of the search
tree, thus we solve the linear relaxation of the root node to optimality and we obtain
a valid lower bound. Then we �nd an integral solution by branching on the column
variables closest to 0.5. The algorithm we obtain is therefore an optimization based
heuristic with a measure of the optimality gap.

1www.coin-or.org

19

0 50 100 0 50 100

1

2

3

4

15

... ...

Figure 3: Linear on the left and logarithmic discretization on the right for increasing
number θ of intervals (θ = 1, 2, 3, 4, 15).

We devise a branching strategy where the structure of the pricing problem is not
a�ected. First of all we search for �ights covered by di�erent planes and we branch on
the �ight-plane association. When no �ight is covered by di�erent planes we search for
�ights covered fractionally by several recovery schemes belonging to the same plane.
We then branch on �ight sequences following the scheme presented in Ryan and Foster
(1981). The results we present in this paper are referred to the optimization based
heuristic.

Column generation is known as a primal method, that is while the primal feasibility
of the RLMP is guaranteed, the feasible dual vector is searched trough the addition of
valid dual cuts in the dual space. Indeed each cut corresponds to a feasible column in
the primal space. It is known that for an e�cient implementation of column generation
methods (see for example Vanderbeck, 2005), one needs to provide a relevant set of
columns to obtain a good estimation of the dual vector and to prove its optimality in
the end of the generation. As discussed in Section 4.4, a NP-hard pricing subproblem
must be solved for each plane of the �eet to prove LP optimality.

Since the dual vector estimation during the early iterations of the method is poor,
it is a common practice to solve the pricing problem heuristically in order to produce
quickly negative reduced cost columns.

We obtain three pricing heuristics from the exact dynamic programming method
using two relaxations of the problem. In the �rst relaxation we keep the elementarity
constraint during the construction of the partial paths but we relax it in the domination

20

test. In this way we enlarge the possibility of a good label, in terms of reduced cost
and resource consumption, to dominate the others. The second method is to order the
labels by reduced cost and to bound the number of active labels for each node by a
constant k. Thus, thanks to the time discretization, the heuristic algorithm we obtain
is polynomial in time and space since the number of nodes as well as the number of
labels are bounded by a polynomial function.

We combine the two relaxations to obtain a third and fast heuristic we apply as
the �rst choice. If this heuristic fails in �nding new columns we apply the heuristic
with �xed number of labels per node varying the bound on the number of active labels.
Then we apply the heuristic in which we relax the elementarity dominance criteria.
Finally if none of the heuristic methods returns a column with negative reduced cost,
we resort to exact pricing.

Moreover, we add to the master problem all the new columns with negative re-
duced cost we �nd in the heuristic phase to accelerate the convergence of the column
generation, useless columns are then removed from the LP by reduced cost �xing.

5 Computational Results
The data used in the instances comes from Thomas Cook Airlines (TC). TC is a medium
size airline relying on a heterogeneous �eet of 30 aircrafts and operating around 500
�ights a week. The size of the �ight set in our instances varies from 40 to 250 �ights
but it is associated with a unique �eet. Thus, every �ight is coverable by any plane,
which increases the combinatorial complexity. We use the schedule implemented by
Thomas Cook during May 2006 and we simulate some disruption scenarios using the
following experimental setup:

� size of the �eet concerned by the disruptions: 5 and 10 aircrafts;

� recovery period T : from 1 to 7 days;

� delay of a plane: availability of plane is later than expected;

� grounding a plane: the plane is never available during the whole recovery period;

� close 1 airport: activity slots of an airport do not cover the whole recovery period;

� force maintenance: initial resource consumption of some aircrafts is set too high
not to perform a maintenance.

21

Note that to get instances with larger number of �ights, we need to consider a longer
recovery period instead of considering a bigger �eet. In our experiments we notice that
the computational complexity is a�ected more by the length of the recovery period
than by the size of the �eet. This increase is due to the high number of leg copies
(same origin and destination) that occurs more often with long recovery periods.

We extract initial schedules from TC's schedule of May 2006 and simulate some
disruptions using delays or forced groundings. We derive more than 20 instances,
combining grounding and delay for some of them. The name of the instance is related
to its size: xD_yAC, where x is the number of days considered in the recovery period
and y is the number of aircrafts. We denote the number n of grounded planes by ngrd
and the number m of delayed planes by mdel.

We present the results in details for the original schedules and some small disrup-
tions, i.e. plane delays, in a qualitative way in order to get a feeling of the solvable
instances. We then present the results of a generated set of instances derived from an
original schedule. We also discuss the impact of the parameters on the solution quality
and present the added value of considering maintenances when solving the ARP. Fi-
nally, we illustrate the con�icting e�ect between cost and makespan optimization with
an example.

5.1 Recovery Plans
Table 3 shows the size of the instances we are able to solve and the needed compu-
tation time. We see that the small disruption introduced in instance 2D_5AC_1del is
recoverable within 2 days. For this reason, in this instance, considering more days or
more planes will lead to the same recovery decisions, namely cancel two �ights, and
delay another four by the same amount. The results of the corresponding instances are
not shown here, as the recovery decision remains the same and computational e�ort is
equivalent to similar problem sizes.

When a schedule can be carried out almost as initially planned, the algorithm solves
the problem within a second on the root node. Only bigger instances require branching,
which drastically increases the computation time, as shown by the two last instances.

We also mention here that with the set of parameters we use to solve the instances,
instance 7D_16AC fails because of too high memory consumption. The results pre-
sented for this instance are obtained with more restrictive parameters on delay and on
inactivity time (τ and ψ).

We test the behavior of the algorithm on 12 di�erent disrupted instances obtained
from an instance with 10 planes and 36 �ights during one day. The instance is a

22

Instance 2D_5AC 2D_5AC_1del 2D_10AC 2D_10AC_1del 2D_10AC_2del
planes 5 5 10 10 10
�ights 38 38 75 75 75

delayed planes 0 1 0 1 2
canceled �ts 0 2 0 2 2
delayed �ts 0 4 0 4 5

total delay [min] 0 969 0 969 989
max delay [min] 0 370 0 370 370

cost 380(*) 21175(*) 750(*) 21545(*) 21745(*)
tree size 1 1 1 1 1

run time [s] < 0.1 < 0.1 0.7 0.7 1.0

Instance 3D_10AC 4D_10AC 5D_5AC 5D_10AC 7D_16AC
planes 10 10 5 10 16
�ights 113 147 93 184 242

delayed planes 0 0 0 0 0
canceled �ts 0 0 0 0 0
delayed �ts 0 0 0 0 11

total delay [min] 0 0 0 0 310
max delay [min] 0 0 0 0 45

cost 1130(*) 1470(*) 930(*) 1840(*) 5600
tree size 1 1 1 5 2033

run time [s] 3.0 6.5 1.0 29.1 3603

Table 3: Results for some instances, costs followed by (*) are proved to be optimal

hub and spoke situation where all the planes start and end at Denver. Disruption
scenarios consider either delayed planes only, grounded planes only, a mix of delayed
and grounded planes or airport closure(s).

The instances Den_3x100 and Den_1x300 simulate a closure of the hub airport,
i.e. Denver. In the �rst instance, Denver airport is closed during three periods of
100 minutes, with a gap of 100 minutes between each closure. The second instance
simulates a longer closure of 300 minutes in a row. We also try to simulate a storm
a�ecting several local airports. In instance Den_Storm1, four airports are closed for 300
minutes, and is instance Den_Storm2, the same airports are closed 500 minutes.

Table 4 shows the results of the algorithm applied to the di�erent instances. The
�rst two lines report the number of delayed and grounded planes, respectively. The
third line reports the number of �ights directly a�ected by the disruption without any
forecast on the propagation of the disruption to other �ights, thus it represents the

23

minimum number of �ights on which the planner must take a recovery decision. It is
evident (see for example instance Den6grd) that the number of a�ected �ights is more
important because of delay propagation (18 �ights are canceled or delayed while the
minimum number is estimated to be equal to 16).

Instance Den2del Den2grd Den4del Den4grd Den2del2grd Den6del
delayed planes 2 0 4 0 2 6
grounded planes 0 2 0 4 2 0
min. a�ected 1 4 3 8 5 5
canceled �ts 0 2 0 8 4 0
delayed �ts 1 4 7 2 7 13
total delay 10 920 230 380 490 640

max delayed �ight 10 275 85 200 200 100
cost 36100(*) 83200(*) 38300(*) 163800(*) 84900(*) 42400(*)

tree size 1 1 1 1 1 41
run time 0.7 0.5 0.6 0.3 0.5 1.6

Instance Den6grd Den3del3grd Den_3x100 Den_1x300 Den_St1 Den_St2
delayed planes 0 3 0 0 0 0
grounded planes 6 3 0 0 0 0
min. a�ected 16 9 11 7 3 6
canceled �ts 16 6 0 4 0 0
delayed �ts 2 12 11 11 6 6
total delay 380 950 675 2560 350 1550

max delayed �ight 200 200 90 385 140 340
cost 251800(*) 127500(*) 42750(*) 125600(*) 39500(*) 51500(*)

tree size 1 1 1 35 1 3
run time 0.2 0.4 0.3 0.8 0.5 0.5

Table 4: Results for di�erent disruption scenarios. A�ected �ights is the number of
�ights a�ected directly by the disruption without any propagation.

We see from Table 4 that a grounded plane incurs more often �ight cancellation than
a delayed plane. This follows intuition, as when a plane is grounded, original schedule
must be recovered with one plane less than when a plane is simply delayed and can
still operate. In the instances combining grounded and delayed planes, the e�ects of
cancellations due to the grounded plane and the delays incured by the delayed plane
are combined. This is a direct consequence of the network's density, meaning that if
there are not enough available planes, the other plane's schedules do not permit to
introduce supplementary �ights.

24

In general, we see that the bigger the number of directly a�ected �ights, the higher
the delay or cancellation rates, except for the two Denver closure scenarios. Even
though instance Den_3x100 has more a�ected �ights, the solution is better than for
Den_1x300. The explanation is that the closure is splitted and covers more take-o�s
and landings at Denver, but the slots between closures allow planes to leave and start
rotations from Denver to then land and take o� at airports that are not a�ected by
Denver's closure. This is not possible before the whole 300 minutes closure are over in
Den_1x300. We see from Table 4 that the closure of the hub airport has, as expected,
dramatic impact due to delay propagation. Surprisingly, for the storm instances, all
the �ights could be covered but only by inducing huge delays.

These di�erent instances allow us to derive some informations about the algorithm's
behavior against increasingly severe disruptions.

The parameters may signi�cantly in�uence the computation time but their actual
impact on the solution depends strongly on the instance itself. We test several in-
stances with di�erent disruption types. The delay, maximum waiting time and maxi-
mum grounding time bounds (τ, ψ and Γ respectively) are drastically decreasing the
computation time. The quality of the solution is not a�ected as long as the bounds are
higher than a certain threshold corresponding to the highest delay of all the planes at
the beginning of the recovery period for τ, and to the maximal grounding time between
two �ights for ψ.

One sensitive parameter is the estimated delay cost per minute cD, which controls
the delay limit before deciding to cancel a �ight on the one hand. The lower the delay
cost, the more the algorithm tries to cover all the �ights regardless of the produced
delay. On the other hand, if delay cost is high, the recovery plan will avoid as much
as possible delays, canceling more �ights if necessary. Since our approach does not
consider repositioning �ights, a single cancellation rarely occurs alone.

Finally, we test the logarithmic resource discretization against the linear one. The
logarithmic resource discretization outperforms the linear one when using (the same)
low number of intervals (up to θ = 10). When increasing θ, the linear resource dis-
cretization performs globally better, but not necessarily homogeneously.

This is due to the saturation e�ect of the logarithmic resource discretization: when
increasing the number θ of intervals, we reach a point where we get empty intervals,
containing no realizable value of the resource consumption. Therefore, after a certain
threshold, we do not gain any more precision. In opposition, increasing the number of
linear intervals decreases linearly their length and thus we gain more precision.

However, the solutions do not improve homogeneously when increasing the number
of linear intervals. This is due to the fact that labels do not always fall in the same

25

interval for increasing θ: improvement can only happen when an erroneously domi-
nated label falls outside its dominant label's interval, and the two labels might oscillate
between same and di�erent intervals for increasing values of θ with linear interval (see
Figure 3), explaining the non homogeneous decrease of the solution cost.

The number of intervals plays a crucial role to control memory usage, thus it is
more interesting to use a low number of intervals, making the logarithmic resource
discretization more e�cient.

We see from these results that our algorithm is able to solve to optimality instances
of up to 184 �ights in less than 30 seconds. Even if state of the art algorithms in the
literature are able to address bigger instances they do not consider explicitly mainte-
nance optimization. Moreover, notice that in the instances we address, the average
number of �ights per plane is higher than what we �nd in the literature.

We see that the introduced parameters are useful to accelerate computation and that
they do not decrease the solution quality dramatically. The resulting recovery plans
are indeed following intuition and behave as we would expect, deleting as few �ights as
possible by swapping planes or delaying �ights. Finally, we see that the solution of the
recovery algorithm depends on the initial schedule as much as on the actual disruption.
The density of the schedule Denver instances of Table 4 shows propagation e�ect due
to the low rest time of the planes between two �ights. In the next section, we discuss
the advantage of planning the maintenance and compare the results of our algorithm
against simulated benchmark algorithms, and show the behavior of the solution when
increasing the recovery period length.

5.2 Maintenance Scheduling
We want to show the added value of optimizing maintenances simultaneously with
�ight re-scheduling. To this extent we compare di�erent recovery approaches that can
be implemented at OCCs. The �rst approach (that probably no planner would use) is
to use aircrafts up to their maximal resource consumption without scheduling a mainte-
nance and eventually ask for a 5 to 10% limit extension, as mentioned in section 1. We
refer to this approach as the No maintenance algorithm. The second approach, which
is probably closer to human planner behavior, is to schedule a maintenance as soon
as the resource consumption gets critical. We refer to it as the Greedy maintenance
algorithm. This is achieved by �xing the minimal consumption before maintenance
parameter ρ to a high value (it is set to 0.9 in our test, meaning maintenance can be
performed when at least 90% of the resource is consumed). The third approach, called
Maintenance Optimization is to let the algorithm schedule the maintenances in an

26

optimal way (ρ = 0).
We consider two instances of 36 and 147 �ights, respectively. For an illustration,

we consider the �rst small instance with 10 planes and 36 �ights used in the two
previous sections where all the planes start and end at Denver. For this reason, we
allow maintenance only at Denver, at any time in the recovery period. One plane,
with ID P42, has a high resource consumption at the beginning of the recovery scheme
(88%). The results for di�erent algorithms are presented in Table 5.

Without allowing any maintenance, plane P42 cannot perform its schedule as ex-
pected. We thus need to delay 2 �ights for a total delay of 210 minutes to get a feasible
solution. However when allowing a 5% consumption excess for plane P42 the original
schedule can be carried out as planned without performing any additional maintenance.

The solution given by the greedy maintenance algorithm is better than the one
with no maintenance. This solution still has two delayed �ights, but the total delay is
reduced to only 30 minutes, which is a huge saving compared to the 210 minutes if no
maintenance is possible.

Finally, our algorithm allows to forecast the maintenances and places them with
more �exibility. Using the maintenance optimization algorithm, P42 has now the pos-
sibility to perform maintenance at the beginning of the recovery period and by doing
so, no �ight is delayed at all.

Instance No maint. No maint.+ 5% Greedy maint. Maint. Opt.
canceled �ts 0 0 0 0
delayed �ts 5 0 2 0

uncovered �nal states 0 0 0 0
total delay [min] 210 0 30 0
max delay [min] 80 0 20 0
Additional costs 2100 0 800 500

Table 5: Results for maintenance optimization against three di�erent simulated behav-
iors: no maintenance at all, no maintenance with a 5% consumption excess allowed and
a greedy maintenance scheduling algorithm.

The presented Denver instance is made up arti�cially to show in a qualitative way
the di�erences between our algorithm and the other algorithms. We generate a set of
instances derived from the instance 4D_10AC with 10 planes and 147 �ights, allowing
maintenances at half of the airports to get a quantitative comparison. We generate the
initial resource consumptions for the 10 planes with di�erent mean values and variances.
Thus, we are in the situation where we know at the beginning of the recovery period

27

which planes will have to perform a maintenance earlier than expected and try to
recover from this situation. We show the results of our algorithm against the greedy
algorithm and three simulations where no maintenance is allowed, but respectively
5,10 and 20% more resource is available. Table 6 shows the average results over the 10
instances.

Instance No maint. + 5% No maint. + 10% No maint. + 20%
canceled �ts 52.7 46.7 33.2
delayed �ts 5 4.7 5.5

uncovered �nal states 1.2 0.7 0.3
total delay [min] 851.3 635.7 712.5
max delay [min] 271.3 251.5 218.2

cost 289462 272067 144388
optimality gap [%] 0.61 0.54 1.27

Instance Greedy maint. Maint. Opt
canceled �ts 2.2 2
delayed �ts 2.7 1.5

uncovered �nal states 0.1 0.1
total delay [min] 89.6 52.3
max delay [min] 37.7 37.1

cost 15881 14683
optimality gap [%] 0.73 0

Table 6: Average results for maintenance optimization on 10 randomly generated in-
stances.

We see that even when allowing up to 20% more resource consumption, we still
have a massive cancellation rate and hudge delays. We however mention that the
20% performs better than our algorithm for one of the ten instances, where actually
this 20% increase is su�cient to perform the whole schedule, given the initial resource
consumption, without any maintenance. In this instance, the only added costs in the
solution of our algorithm are the maintenance costs, no delay nor �ight cancellation is
needed. Remarkably even with the 20% increase of the resource capacity, we get only
seven feasible solutions out of the ten instances.

With the greedy algorithm, the solution performs much better than the no mainte-
nance cases reducing the average cost by one order of magnitude. However, the greedy
algorithm leads to solutions that are 7.5% higher than those given by our algorithm.
The main savings are made thanks to delay reductions. The greedy algorithm �nds

28

the same solution as our algorithm for three of the ten instances but never leads to a
better one.

We see from these results that considering maintenances is not only necessary in
order to ensure feasibility of the recovery scheme, but the more freedom given to the
maintenance scheduling, the better the solution.

These results show that the maintenance planing does improve the solution quality,
it's main advantage being to reduce the delay. The results clearly show that allowing re-
source consumption excess is not performing well and this, without taking into account
the negotiation and incurred costs for the airline to get the capacity limit extension.

5.3 Trade-o� between cost and recovery period
We show in Table 7 the behavior of the solution when increasing the recovery period T .
We solve the instance 5D_10AC with one plane grounded up to time 2160, and compute
a solution for increasing recovery periods, going from 720 minutes up to 6480 minutes.
Table 7 shows the details of the solutions, where additional costs mean the aggregated
delay and cancellation costs over the whole period, assuming schedule is recovered at
T . Figure 4 shows the Pareto frontier, i.e. the additional costs against the recovery
period length.

Figure 4: Pareto frontier: additional solutions costs against recovery period length T

First of all, we notice that for T ≤ 2160, we do not get a feasible solution, which
is evident, since one plane is grounded until time 2160 and one �nal state remains
uncovered. Since the recovery costs after T are neglected by the algorithm, it is still

29

Recovery Period T 720 min 1440 min 2160 min 2880 min 3600 min
canceled �ts 1 3 5 6 5
delayed �ts 0 1 3 5 9

uncovered �nal states 1 1 1 0 0
total delay [min] 0 3 14 461 636
max delay [min] 0 3 8 153 153
Additional costs 7000(#) 19555(#) 25415(#) 38910 33960

optimality gap [%] 0 0 0 0 0.25
tree size 1 1 1 1 7

run time [s] < 0.1 < 0.1 0.4 1.7 8.3

Recovery Period T 4320 min 5040 min 5760 min 6480 min
canceled �ts 5 5 5 5
delayed �ts 9 8 8 8

uncovered �nal states 0 0 0 0
total delay [min] 630 627 627 627
max delay [min] 153 153 153 153
Additional costs 33900 33870 33870 33870

optimality gap [%] 0 0 0 0
tree size 9 3 1 1

run time [s] 25.0 81.8 73.6 183.6

Table 7: Results for the same instance with di�erent recovery periods T . Solutions
having cost followed by (#) are unfeasible.

useful to run it for T equal to 720, 1440, and 2160 minutes because we get an estimation
of the recovery cost, which is more precise when T reaches the instant where a feasible
recovery can be computed.

Once we �nd a feasible solution for a given T , we see that its increase leads quickly
to a stable solution, i.e. we generate the same recovery plan even considering longer
recovery periods. Thus, no additional recovery costs are incurred. We must mention
here that due to computational complexity we have to restrict the delay bound to 800
minutes, ignoring therefore potential recovery solutions for longer recovery periods T

with longer delays.
Finally, Table 7 and Figure 4 show the con�ict between the two objectives when

minimizing both T and the recovery costs.
The results here show that the choice to �x a recovery period and optimize the

costs is reasonable. Thanks to the several parameters, namely delay bounds and time
and resources discretization, we can quickly identify a reasonable value for T and then

30

optimize the recovery costs around that value with less restrictive parameters, thus
with more precision.

The numerical results we provide here give an intuition of the e�ciency of the
column generation scheme to solve the ARP problem. We also show how the recovery
plans depend on the initial schedule and disruptions. We show that there is a clear ben-
e�t in planning the maintenances and the recovery decisions simultaneously. Moreover,
this approach is saving the validation time as technical feasibility is ensured. There-
fore interactions between the OCC and the technical department are no longer needed.
Finally, we show how the algorithm can be exploited to optimize costs and recovery
periods in a multi-objective optimization way. The valuable result of this approach is
the possibility to evaluate alternative recovery plans of di�erent cost and due date.

6 Conclusions and Future work
We present an airline schedule recovery algorithm based on column generation. The
proposed algorithm arises from a collaboration, sponsored by the swiss government
within the fund for technology transfer (CTI - Projet 8007.2 ESPP-ES), between EPFL
and APM Technologies. We consider the aircraft recovery problem and we propose an
algorithm where aircraft technical constraints (maintenances) are ful�lled and their
placement within the aircraft schedule optimized. We detail a column generation
scheme based on a commodity network �ow model, where each plane has an associated
recovery network, a dynamic programming algorithm to build the underlying recovery
networks and a dynamic programming algorithm to solve the pricing problem.

The main contributions of this work are that we include maintenance planning,
unconstrained delay management and plane swapping decisions within the aircraft re-
covery problem and that we introduce a multi-objective optimization algorithm based
on column generation. This allows us to solve real instances for a medium sized airline
e�ciently by improving the existing network model of Argüello et al. (1997) thanks to
the resource management we use to model maintenance constraints. Finally, we include
some modern implementation issues to fasten up the computations.

Since this is an ongoing project, several issues should be re�ned and extended. In
particular:

� the proposed algorithm must be validated against a wider set of instances, even
though real-world cases are more di�cult to obtain and to analyze, in particular
when the set of disruptions must be collected during the day of operations.

31

� although most of the instances where solved to optimality at the root node, a
branching scheme, thus a full Branch&Price algorithm, is needed to obtain a
proved optimal solution. We intend to implement the branching decision de-
scribed in Section 4.5.

� from a modeling point of view, the proposed algorithm does not consider all the
possibilities a human planner does. We intend to add to the network generation
algorithm the possibility to include positioning �ights.

Acknowledgment
The authors would like to acknowledge the Swiss Center for Technology Transfer (CTI) 2

for supporting this project and Alberto De Min and Viet Dang, from APM Technologies
3, for their support.

References
Argüello, M., Bard, J. and Yu, G. (1997). A grasp for aircraft routing in response to

groundings and delays, Journal of Combinatorial Optimization 5: 211�228.

Argüello, M., Bard, J. and Yu, G. (2001). Optimizing aircraft routings in response to
groundings and delays, IIE Transactions 33: 931�947.

Beasley, J. and Christo�des, N. (1989). An algorithm for the resource constrained
shortest path problem, Networks 19: 379�394.

Challenges to growth report (2004). EUROCONTROL.
URL: www.eurocontrol.int

Clarke, G. (1997). The airline schedule recovery problem, working paper (1997).

Cook, A., Tanner, G. and Anderson, S. (2004). Evaluating the true cost to airlines of
one minute of airborne or ground delay, EUROCONTROL.
URL: http://www.eurocontrol.int

Desaulniers, G., Desrosiers, J. and Solomon, M. (eds) (2005). Column Generation,
GERAD 25th Anniversary Series, Springer.

2www.bbt.admin.ch/kti/
3www.apmtechnologies.com

32

European airline punctuality report (2006). Association of European Airlines.
URL: www.aea.be

Jarrah, A., Krishnamurthy, N. and Rakshit, A. (1993). A decision support framework
for airline �ight cancellations and delays, Transportation Science 27(3): 266�280.

Kohl, N., Larsen, A., Larsen, J., Ross, A. and Tiourine, S. (2007). Airline disruption
management - perspectives, experiences and outlook, Journal of Air Transport
Management 13(3): 149�162.

Righini, G. and Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic
programming for the elementary shortest path problem with resource constraints,
Discrete Optimization 3(3): 255�273.

Righini, G. and Salani, M. (to appear). New dynamic programming algorithms for the
resource constrained shortest path problem, Networks .

Rosenberger, J., Johnson, E. and Nemhauser, G. (2003b). Rerouting aircraft for airline
recovery, Transportation Science 37(4): 408�421.

Rosenberger, J., Schaefer, A., Golldsman, D., Johnson, E., Kleywegt, A. and
Nemhauser, G. (2003a). A stochastic model of airline operations, Transporta-
tion science 36(4).

Ryan, D. and Foster, B. (1981). An integer programming approach to scheduling, in
W. A. (ed.), Computer Scheduling of Public Transportation Urban Passenger
and Crew Scheduling, North-Holland, pp. 269�280.

Schaefer, A., Johnson, E., Kleywegt, A. and Nemhauser, G. (2005). Airline crew
scheduling under uncertainty, Transportation Science 39(3): 340�348.

Scheidereit, H. C. (2006). The costs of delays & cancellations, m2p consulting, AGI-
FORS Operations Conference.

Shavell, Z. A. (2001). The e�ects of schedule disruptions on the economics of air-
line operations, Progress in Astronautics and Aeronautics, Vol. 193, American
Institute of Aeronautics and Astronautics, Inc.

Sojkovic, G. (1998). Gestion des Avions et des Equipages durant le Jour
d'Opération, PhD thesis, Université de Montréal.

33

Sriram, C. and Hagani, A. (2003). An optimization model for aircraft maintenance
scheduling and re-assignment, Transportation Research Part A 37: 29�48.

Stojkovi¢, G., Soumis, F., Desrosiers, J. and Solomon, M. (2002). An optimization
model for a real-time �ight scheduling problem, Transportation Research Part
A 36: 779�788.

Teodorvi¢, D. and Guberni¢, S. (1984). Optimal dispatching strategy on and airline
network after a schedule perturbation, European Journal of Operations Research
15: 178�182.

Teodorvi¢, D. and Stojkovi¢, G. (1990). Model for operational airline daily scheduling,
Transportation Planning and Technology 14(4): 273�285.

Thengvall, B. G., Bard, J. F. and Yu, G. (2000). Balancing user preferences for aircraft
schedule recovery during irregular operations, IIE TransactionsV32(3): 181�193.

Vanderbeck, F. (2005). Implementing Mixed Integer Column Generation, Springer-
Verlag, pp. 331�358.

Wei, G., Yu, G. and Song, M. (1997). Optimization model and algorithm for crew
management during airline irregular operations, Journal of Combinatorial Ot-
pimization 1: 305�321.

Yan, S. and Lin, C. (1997). Airline scheduling for the temporary closure of airports,
Transportation Science 31: 72�78.

Yan, S. and Tu, Y. (1997). Multi�eet routing and multistop �ight scheduling for
schedule perturbation, European Journal of Operations Research 103: 155�169.

Yan, S. and Yang, D. (1996). A decision support framework for handling schedule
pertubations, Transportation Research 30: 405�419.

Yan, S. and Young, H. (1996). A decision support framework for multi-�eet routing and
multi-stop �ight scheduling, Transportation Research Part A 30(5): 379�398.

Yu, G., M.Argüello, G.Song, McCowan, S. and A.White (2003). A new era for crew
scheduling recovery at continental airlines, Interfaces 33(1): 5�22.

34

A Recovery Network Generation
For notational simplicity, we denote a �nal state [aT , tT ,HT] by s.

Algorithm 1 shows the dynamical structure of the generation algorithm, thus the
networks' exponential behavior with respect to the size of the �ight sets Fp. In the
algorithm N represents the set of time-location nodes ordered by increasing time. The
way nodes and arcs are created is described in the Table 8.

The notational detail are given in Section 3.1 and the parameters are introduced in
Section 4.5.

Tables 9 and 10 give an overview of the di�erent constraints that must be satis�ed
in each function (parametrized constraints are labeled by (P)).

CreateFlight({a, t}, f) Given depart node {a, t}, computes the destination
node {a ′, t ′} and the �ight arc ({a, t}; {a ′, t ′}), where
a ′ is destination airport, and t ′ is the earliest depar-
ture time at airport a ′. To compute this, �rst com-
pute edtf, the earliest departure time for the �ight
f according to the activity slots and the scheduled
departure time sdtf, then t ′ = edtf + df + mtta ′.

CreateMaintenance({a, t}, f) Similar to CreateFlight({a, t}, f), it computes the
maintenance time and the cost of the maintenance
arc.

CreateTermination({a, t}, s) Given depart node {a, t}, it creates the termination
arc ({a, t}; s).

CreateMaintTermination({a, t}, s) Given depart node {a, t}, it creates the maintenance
termination arc ({a, t}; s). By convention, the �rst
available maintenance slot is used.

Table 8: Functions used is Algorithm 1

35

Algorithm 1 Recovery Network Generation for plane p ∈ P

Require: Set P of planes, set Fp of coverable �ights, initial states [a0, t0,H0]p and set
Sp of �nal states

1: for p ∈ P do
2: INITIALIZATION: Create source node {a0, t0}, set N = {{a0, t0}}

3: while N 6= ∅ do
4: Select the �rst node {a, t} ∈ N

5: for f ∈ Fp where a is the departure of f do
6: if FeasibleForFlightArc({a, t}, f) then
7: {a ′, t ′} = CreateFlight({a, t}, f)

8: set N ← N ∪ {a ′, t ′}
9: end if
10: if FeasibleForMaintArc({a, t}, f) then
11: {a ′, t ′} = CreateMaintenance({a, t}, f)

12: set N ← N ∪ {a ′, t ′}
13: end if
14: end for
15: for s ∈ Sp where a is the airport of s do
16: if FeasibleForTermArc({a, t}, s) then
17: CreateTermination({a, t}, s)

18: end if
19: if FeasibleForMaintTermArc({a, t}, s) then
20: CreateMaintTermination({a, t}, s)

21: end if
22: end for
23: Set (N ← N \ {a, t})

24: Sort N by increasing time
25: end while
26: end for

36

FeasibleForFlightArc({a, t}, f) The �ight arc can only be created if �ight is actually
departing from airport a and if feasible departure
and landing times are available at airports a and a ′.
The following constraints are checked:

� ∃ edt ≥ max{sdtf, t} such that

1. ∃ oa ∈ Oa such that edt ∈ oa

2. ∃ oa ′ ∈ Oa ′, such that edt + df ∈ oa ′

� delay ≤ τ (P)

� edtf − t ≤ ψ (P)

where τ and ψ are representing the maximal delay
bound and the maximal waiting bound respectively.

FeasibleForMaintArc({a, t}, f) The maintenance arc can only be created if there is
a maintenance slot available at airport a. tM is the
starting time of the maintenance if feasible, i.e. if we
�nd a feasible departure time for take-o� in a and
landing in a ′. The following constraints are checked:

� ∃ tM ≥ t,ma ∈ Ma such that tM ∈ ma

� ∃ edt ≥ max{sdtf, t
M + dM

a } such that

1. ∃ oa ∈ Oa such that edt ∈ oa

2. ∃ oa ′ ∈ Oa ′, such that edt + df ∈ oa ′

� delay ≤ τ (P)

� edtf − t − dm ≤ ψ(P)

� hi ≥ ρui, ∀i = 1 · · · | H | (P)

where τ and ψ are the same as in
FeasibleForFlightArc({a, t}, f) and ρ is the
parameter of minimal resource consumption ratio
before considering maintenance.

Table 9: Feasibility functions for �ight and maintenance arcs used is Algorithm 1
37

FeasibleForTermArc({a, t}, s) A termination arc can be created between {a, t}

and the sink node s if the airports are matching
and if the expected time tT is not yet reached.
A parameter Γ is used to bound the grounding
time needed to reach the sink from {a, t}.

� tM + dM
a ≤ tT

� tT − t ≤ Γ (P)

where Γ is the grounding time bound

FeasibleForMaintTermArc({a, t}, s) Similarly a maintenance termination arc can be
created between {a, t} and the sink node s if
there is a maintenance slot available.

� ∃ tM ≥ t, ma ∈ Ma such that t ∈ ma

� t ≤ tT

� tT − t ≤ Γ (P)

� hi ≥ ρui, ∀i = 1 · · · | H | (P)

where Γ is the grounding time bound and ρ the
resource consumption proportion.

Table 10: Feasibility functions for termination and maintenance termination arcs used
is Algorithm 1

38

