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Abstract

Discrete choice models in general and random utility models in
particular may be intractable when the number of alternatives is large.
In the transportation context, it typically happens for route choice
and destination choice models. In the specific case of the widely used
multinomial logit model, it has been shown that the model could be
estimated as if the choice was made among a subset of the alternatives.
In this paper, we propose to design the sampling of alternatives based
on a Principal Component Analysis and a Cluster Analysis of the
actual data set, in order to increase the efficiency of the estimates.
We present a case study of a destination choice model to empirically
illustrate the added value of our approach.

1 The Multinomial logit

The multinomial logit is the simplest model in discrete choice analysis
when more than two alternatives are in a choice set. It is derived from
utility-maximizing theory. The consumer chooses the alternative which
maximizes this utility (McFadden 1978). Obviously not all the attributes of
the alternatives will be observed. The utility is divided into two parts, Vin
which is the systematic part, and ¢;,, which summarizes the contribution
of unobserved variables. The probability to select an alternative i from the
choice set C,, is then:
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If we assume that the disturbances are independent and identically ex-
treme value distributed we obtain a Multinomial Logit model. The proba-
bility that the alternative i will be chosen is:
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The term p is a scale parameter, generally normalized to 1. The model
is described in various textbooks, such as Ben-Akiva & Lerman (1985).



2 Sampling of alternatives

When there are many alternatives in C,, as in destination choice models
and in route choice models, there is a computational burden for the estima-
tion. In this case, utilizing the independence from irrelevant alternatives
property (IIA) of the logit model, it’s possible to estimate the parameters
with a subset of alternatives. Clearly, in this case, it would be only pos-
sible to maximize a conditional likelihood function rather than the true
likelihood. A procedure for sampling the alternatives assigns to observa-
tion n a subset of alternatives D that must include the chosen alternative.
The conditional probability of alternative : being chosen, given a sample
of alternatives D, is
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where 71,,(DJ|i)P.(1) is the joint probability of drawing a chosen alternative

i and a subset of alternatives D.
The conditional probability 7, (i|D) exists if
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This is condition is called positive conditioning property, and is nec-
essary for the derivation of a consistent estimator for the multinomial
logit model (McFadden 1978), or the GEV model (Bierlaire, Bolduc &
McFadden 2006), with samples of alternatives.

The simplest approach to sample design is to draw a simple random
sample of | alternatives and to add the chosen alternative if it is not oth-
erwise included. To prevent the possibility of samples with different choice
set sizes, it is possible to draw randomly | alternatives from all the avail-
able alternatives, except for the chosen alternative, that is added afterward.
Other methods are the “Importance Sampling of Alternatives” and “Strat-
ified Importance Sampling” (Ben-Akiva & Lerman 1985).



3 “PCA Cluster Sampling (PCACS)”

Our proposal is to generate stratified sampling based on a Principal Com-
ponent Analysis (PCA) and a Cluster Analysis. The central idea of the
Principal Component Analysis is to reduce the dimensionality of a data
set consisting of a large number of interrelated variables, while retaining as
much as possible of the variation present in data set (Jolliffe 2002). This
is achieved by transforming it into a new set of variables, the principal
components (PCs), which are uncorrelated, and which are ordered so that
the first few retain most of the variation present in all of the original vari-
ables. To obtain the components we must find the eigenvalues and the
eigenvectors of the following matrix:
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where M is the metric matrix, X is the data matrix and W is the matrix
of the weights. The goal is then to maximize the following expressions:

u'MX'WXMu

with the constraint u;Muy = 1. We can consider the maximization of the
Lagrange multiplier: L = u;Au; — A;(u;Mu; — 1) = max and considering
the partial derivative we obtain the first eigenvalue and the first eigenvector.
The first component will be ¢; = XMu;. To obtain the other components
we must simply introduce some orthogonality constraints, that, i.e. for the
second component, will be u;uz =0.

With the Principal Component Analysis we obtain components that
are uncorrelated and we can proceed with the second step of the analysis.
We introduce a Cluster Analysis, a method for grouping objects of similar
kind into respective categories. There are different algorithms to obtain this
goal, we used a hierarchical tree. This algorithm begins with each object
in a class by itself. In every step the two more similar objects, according
to some distance measures, are joined together. The most straightforward
way of computing distances between objects in a multi-dimensional space
is to compute Euclidean distances, but also other measures could be used.



When the algorithm stops we can cut the tree according to some optimality
measures and we obtain a certain number of clusters.

They will have different sizes and therefore, for the sampling, we must
assign different selection probabilities in different strata, while maintain-
ing uniform selection probabilities within strata. We can proceed to the
sampling in the following way:

1. Let k be the number of clusters we obtain from PCA and Cluster
Analysis;

2. Let define by J the number of alternatives in the full choice set;
3. Let R; be the number of alternatives in every cluster wherei =1, ..., k;
4. Let ]{ be the size of the sub-set we defined, i =1, ..., k;

5. Let define with R; the number of alternatives we have to draw from
every cluster, where i =1, ..., k;

then the following equality must hold: = 1 and then: R = —I

In this way we obtain a number of alternatlves from every cluster that
is proportional to the size of it. The probability to be selected for every
alternative is the same, but in classical random sampling we do not know
what kind of alternatives we select, so it is possible to obtain all the alter-
natives with similar characteristics and so there could be some problems
with the estimation. With the Cluster Sampling instead we obtain a choice
set which reflects the full one better.

To illustrate the advantages of this technique we applied it to a desti-
nation choice model.

4 Results

Our analysis concerns a household survey conducted in 2005 in the Greater
Zurich area. The data-set includes about 700 alternatives and more than
50 observed variables (Burgle 2006). The first step was the building of a



model for the full choice set. We used a multinomial logit with only linear-
in-parameter utilities, we used BIOGEME (Bierlaire 2003) to estimate the
values and we obtained 7 significant variables. The second step of the anal-
ysis was the building of data sets of different size (12-15-20-40 alternatives)
with the random sampling and the PCACS. The sampling procedure was
repeated 5 times for the two techniques. In this way we could compute the
variance due to the sampling of alternatives. The last step of the analysis
was the estimation of the parameters on the reduced choice-sets and then
the comparisons between the two techniques of sampling. The measures
we considered for the evaluation of the differences between the two tech-
niques are the ability to recover model parameters, to replicate the choice
probability of the chosen alternative for each observation and to estimate
the overall log-likelihood function accurately (Nerella & Bhat 2004). For
each of the criteria identified above, the evaluation of proximity was based
on three properties:

1. The bias, or the difference between the mean of estimates for each
sample size of alternatives across the 5 runs and the true values;

2. The variance in the relevant parameters across the 5 runs for each
sample size of alternatives;

3. The total error, or the difference between the estimated and the true
values across all 5 runs for each sample size of alternatives.

Before computing all the mentioned performance measures we can have
some preliminary information from the data simply by considering the sig-
nificance and the signs of the parameters estimated on the different sub-sets.
We will show here the results we obtained with data sets composed of 20
alternatives, but they are similar also for the other sizes. We can see from
the first two tables that for all 5 samples obtained by the two different
techniques, the signs of the coefficients are the same as the full choice set.
This is the first thing we must look at to judge the accuracy of the new
estimations. There are anyway some differences in the values of the Robust
t-test. In fact we can note that in table 1, relative to the random sampling,



there are two samples in which a parameter, the density of children, has a
low value for the Robust t-test. For PCACS (table 2) this does not happen.

At this point we can consider the different measures we underlined pre-
viously. In table 3 there are the differences between the mean, across the
5 runs, of the parameters and the values estimated on the full choice set.
We can see that with the PCACS the sum of the differences between the
parameters is inferior to the Random Sampling, so we have a lower bias.
Table 4 summarizes the variance of the parameters across the 5 runs. The
last row shows that there is a little improvement with the PCA Cluster
Sampling. In table 5 there are the differences between the true values and
all the estimated values. We do not insert all the differences, but we can
see directly the sum of them and we can note how the PCACS shows once
again the lowest value.

The second useful indicator to compare the techniques is the ability to
replicate the choice probability of the chosen alternative for each observa-
tion. Also in this case we can compute the bias, the total error and the
variance across the 5 samples (table 6). In 7 instead there are the indica-
tors related to the ability to recover the true log-likelihood function. In
both the cases the values are better for the PCACS. Obviously, as with
any numerical exercise, the usual cautions for generalizing the results, also
apply to this paper. There is a need for more computational and empirical
research on the topic of sampling of alternatives to draw more definitive
conclusions. However, we think that when the full choice set is too big to
be used, the PCACS could be a useful technique to use to obtain good esti-
mation of the parameters, in fact we can obtain a choice set which reflects
the full one better than other techniques.
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Full choice set | Random 1 | Random 2 | Random 3 | Random 4 | Random 5

Parameters | Val. t-test | Val. | t-test | Val. | t-test | Val. | t-test | Val. | t-test | Val. | t-test
access | 0.51 6.33 | 0.76 5.84 | 0.79 5.97 | 0.71 5.32 | 0.30 4.39 | 0.82 5.78
childdensity | -0.05 -2.18 | -0.04 | -2.48 | -0.03 | -2.25 | -0.02 | -1.82 | -0.04 | -2.85|-0.01 | -0.94
distwork | -0.14 -16.85 | -0.08 | -12.6 | -0.08 | -11.9 | -0.05 | -11.2 | -0.09 | -12.8 | -0.05 | -11.0
popyoung | 0.02 10.32 | 0.01 9.4 | 0.01 9.64 | 0.01 7.88 | 0.02 | 11.37 | 0.01 4.41
rentratio | 1.23 -486 | -0.89 | -4.31 |-0.87| -4.01|-0.67| -3.32|-0.93| -455|-0.93| -3.14
tazrindex | -0.02 -4.09 | -0.02 | -5.67 | -0.02 | -5.78 | -0.02 6.48 | -0.02 | -4.47| 0.02 | -5.85
timetoplatz | 0.07 11.58 | 0.06 | 10.62 | 0.06 | 10.59 | 0.04 9.04 | 0.06 9.93 | 0.05 8.66

Table 1: Parameters estimated with the random sampling (size=20)
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Full choice set | PCA Cl. 1| PCACIL 2| PCACIL 3| PCACIL 4| PCACL 5

Parameters | Val. t-test | Val. | t-test | Val. | t-test | Val. | t-test | Val. | t-test | Val. | t-test
access | 0.51 6.33 | 0.21 3.38 | 0.31 4.38 | 0.71 5.32 | 0.30 4.39 | 0.82 5.78
childdensity | -0.05 -2.18 | -0.04 | -3.10 | -0.04 | -2.38 | -0.05 | -2.79 | -0.04 | -2.92 | -0.04 | -2.75
distwork | -0.14 16.84 | -0.08 | -13.6 | -0.09 | -12.4 | -0.09 | -11.9 | -0.07 | -13.2 | -0.09 | -11.5
popyoung | 0.02 10.32 | 0.01 9.08 | 0.02 | 10.45 | 0.01 8.41 | 0.01 8.65 | 0.01 9.12
rentratio | 1.23 -4.86 | -0.99 | -4.26 | -0.81 | -3.95|-0.93 | -4.12 | -0.98 | -4.59 | -0.93 | -4.32
tazrindex | -0.02 -4.09 | -0.01 | -3.17|-0.01 | -2.80|-0.01| -3.28|-0.01 | -3.14|-0.01 | -4.19
timetoplatz | 0.07 11.58 | 0.04 7.63 | 0.05 7.17 | 0.05 8.47 | 0.03 7.01 | 0.06 8.98

Table 2: Parameters estimated with the PCA Cluster Sampling (size=20)




True | Random Sampling | PCA Cluster Sampling

Mean Diff. abs. | Mean Diff. abs.

access | 0.518 0.680 0.162 0.292 0.226
childdensity | -0.052 | -0.033 0.019 | -0.046 0.006
distwork | -0.142 | -0.075 0.067 | -0.089 0.053
popyoung | 0.018 0.014 0.004 0.016 0.002
rentratio | -1.227 | -0.859 0.368 | -0.988 0.239
tazindezr | -0.015 | -0.015 0| -0.016 0.001
timetoplatz | 0.073 0.052 0.021 0.053 0.020
Total 0.641 0.549

Table 3: Differences between the mean of the parameters calculated for the
reduced choice sets and the true values (size=20)

Parameters | Random Sampling | PCA Cluster Sampling
Access 0.04500 0.05000
Childdensity 0.00000 0.00000
Distwork 0.00000 0.00000
Popyoung 0.00000 0.00000
Rentratio 0.01100 0.00500
Tazindex 0.00000 0.00000
Timetoplatz 0.00000 0.00000
TOTAL 0.05600 0.05500

Table 4: Variance of parameters across the 5 runs (size=20)
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Parameters | Random Sampling | PCA Cluster Sampling
Access 1.2311 1.0538
Childdensity 0.0957 0.0449
Distwork 0.3384 0.2793
Popyoung 0.0217 0.0172
Rentratio 1.8357 1.4844
Tazindez 0.0052 0.0169
Timetoplatz 0.1035 0.1299
TOTAL 3.6313 3.0264

Table 5: Total difference between true values and all the parameters com-
puted for the reduced choice-set (size=20)

Random Sampling | PCA Cluster Sampling

Bias 0.47782 0.36800

Total Error 2.91202 1.84553
Variance 0.01496 0.01384

Table 6: Ability to replicate the choice probability

Random Sampling | PCA Cluster Sampling

Bias 1460.96 1016.37

Total Error 7304.824 5081.857
Variance 141286.41 6948.96

Table 7: Ability to estimate the overall log-likelihood function
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