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Abstract

Route choice models are difficult to design and to estimate for var-
ious reasons. In this paper we focus on issues related to data. Indeed,
real data in its original format are not related to the network used by
the modeler and do therefore not correspond to path definitions. Typ-
ical examples are data collected with the Global Positioning System
(GPS) or respondents describing chosen itineraries to interviewers.
Data manipulation is then necessary in order to obtain network com-
pliant paths. We argue that such manipulations introduce bias and
errors and should be avoided. We propose a general modeling frame-
work that reconcile network-free data with a network based model
without data manipulations. The concept that bridges the gap be-
tween the data and the model is called Domain of Data Relevance
and corresponds to a physical area in the network where a given piece
of data is relevant.

We illustrate the framework on simple examples for two different
types of data (GPS data and reported trips). Moreover, we present
estimation results of Path Size Logit and Subnetwork models based
on a dataset of reported trips collected in Switzerland. The network
is to our knowledge the largest one used in the literature for route
choice analysis based on revealed preferences data.

1 Introduction

Route choice models play a crucial role in many transport applications, for
example traffic assignment and transport planning. Given a transportation
network and an origin-destination (OD) pair s = (s,,Sq) a route choice
model predicts the probability that any given path between origin s, and
destination s4 is selected to perform a trip. They are difficult to design
and to estimate for various reasons, such as the large size of the choice
set and the complex correlation structure (see the discussion by Ben-Akiva
and Bierlaire, 2003).

In the paper we focus on the issues associated with data. The concept of
path, which is the core of a route choice model, is usually too abstract for a
reliable data collection process. Real data, in their original format, do not



correspond to path definitions. A typical example is GPS data, which are
more and more available (Murakami and Wagner, 1999, Jan et al., 2000,
Schonfelder et al., 2002, Axhausen et al., 2003, Frejinger, 2004, among
many). As GPS devices do not explicitly use the transportation network,
the coordinates of data points cannot be directly used, and data process-
ing is required in order to reconstruct paths. In the literature, such data
processing involves map matching, trip end identification and assumptions
on missing data. Recently, Marchal et al. (2005) proposed a map matching
algorithm for large choice sets. They evaluate the performance in terms of
computation time and underline the difficulty of evaluating accuracy since
the “true” chosen routes are unknown (see Quddus et al., 2003, for an
overview of map matching algorithms). Du and Aultman-Hall (2007) dis-
cuss trip end identification algorithms. They manually identified trip ends
in a GPS data stream and evaluate the performance of the algorithms.

Another context is when respondents are asked to describe a path that
they have followed during a given trip. They are in general able to iden-
tify a sequence of locations that they have traversed, but have difficulties
describing a full path in detail. For instance, Ramming (2001) (see also
Bekhor et al., 2006) estimated route choice models based on data collected
in Boston. The respondents described chosen routes by naming street seg-
ments. In case of incomplete or ambiguous descriptions, the routes were
reconstructed by taking the shortest path between known street segments.

In this paper, we advocate that the data manipulation required by
the underlying network model introduces biases and errors, and should be
avoided. We propose a general modeling scheme that reconcile network-free
data (such as GPS data or partially reported itineraries) with a network
based model without such manipulations.

After a literature review in the next section, we introduce in Section 3
the concept of domain of data relevance (DDR) that is designed to be
the missing link between the data and the network model. In Section 4,
we describe the estimation of a route choice model using the network-free
data and the DDRs and in Section 5 we provide simple examples for two
different types of data. The framework is then illustrated on a real case
study in Section 6.



2 Literature Review

Mail and telephone surveys are conventional methods for collecting trip
data. Mahmassani et al. (1993) propose a two-stage data collection, where
the second stage involves more detailed trip descriptions. Abdel-Aty et al.
(1995) combine computer-aided telephone interviews and GIS capabilities
specifically for route choice data. Ramming (2001) also collects route choice
data, based on reported path segments. Vrtic et al. (2006) have performed
telephone interviews where intermediate locations of long distance trips
were reported (see Section 6).

In the past decade many studies presented in the literature compare
data obtained with conventional survey methods with GPS data. There is
a consensus that passive monitoring have several advantages over conven-
tional surveys. For instance, multiple days of trip data can be collected
automatically and are directly available in electronic format. However,
GPS data also have issues (see Wolf et al., 1999, and Zito et al., 1995, for
detailed discussions). First, constraints of the technology, such as satel-
lite clock errors, receiver noise errors, selective availability (intentional er-
rors inserted by U.S. Department of Defense) and type of receiver limits
the accuracy of the data. Second, depending on the number of available
satellites, atmospheric conditions, and local environment (high buildings,
bridges, tunnels) the GPS receiver can compute an inaccurate position or
fail to compute the position which introduces gaps in the data. Wolf et al.
(1999) state that an accuracy level of 10 meters is required in order to map
match GPS points in urban areas without ambiguity. In their tests, the
best performing receiver achieves this level for 63% of the GPS points on
average. Nielsen (2004) observed that 90% of the trips collected in the
Copenhagen region had missing data. A third issue is that the data are
stored in one stream of GPS points and data processing is required in order
to reconstruct the trips. Such data processing involves map matching, trip
end identification and assumptions on missing data (Marchal et al., 2005,
Quddus et al., 2003). Du and Aultman-Hall (2007) found that the best
performing algorithm correctly identified 94% of the trip ends. Finally, we
note that the data processing is highly dependent on the accuracy of the



geographical information system data base that is used.

Frejinger and Bierlaire (2007) estimate route choice models based on
a GPS dataset collected in the Swedish city of Borlange (see Schonfelder
et al., 2002, for more details on the data). The data processing was per-
formed by the Atlanta based company GeoStats. Nielsen (2004) study route
choice behavior based on a large GPS dataset collected in Copenhagen.

Based on the previous discussion, we conclude that network compliant
route choice data are never available. This motivates the approach proposed
in this paper, where we acknowledge this nature of the data, and model it
explicitly instead of trying to fix it through various manipulations.

Some approaches have been proposed in the literature where the link
between the concept of path and the data has been loosened, either in
order to simplify the choice context, or because the observed choices are
based on underlying, latent choices. Ben-Akiva et al. (1984) construct
latent alternatives in order to simplify the choice set definition in a route
choice model. Instead of modeling choice of routes where there are many
feasible alternatives, they model the choice of labels, such as, fastest route,
most scenic route, shortest route etc. The exact route choices are observed
and used to estimate the model. Ben-Akiva et al. (2006b) present a general
methodology for modeling choice behavior that is based on choices of plans.
These underlying choices may not be observed. Both the choice of plan and
observed choices are explicitly modeled in a multi-dimensional approach.
They apply their methodology to freeway lane changing and merging from
an on-ramp (see also Ben-Akiva et al., 2006a).

3 Domain of Data Relevance

The common reference of our modeling scheme is a finite two-dimensional
region with an appropriate coordinate system, typically longitude, lati-
tude!. In general, it is simply the region of interest such as a city, or a
country.

1Using a three-dimensional reference is possible and relatively straightforward. How-
ever, it would bring an unnecessary level of complexity to this paper.



We define an observation as a sequence of individual pieces of data
related to an itinerary, such as a sequence of GPS points, or of reported
locations. For a given piece of data, the domain of data relevance is
defined as the physical area where the piece of data is relevant. Its exact
definition depends on the context. For example, consider a GPS reporting
coordinates (x,y). Due to the intrinsic technological limitations of the
device, we can identify a 95% confidence interval, say, around the point
(x,y). This would be the DDR of this piece of data. An example of
GPS data is shown in Figure 1 where the GPS points are represented by
small circles and their corresponding DDR with dashed lines. The size of
the DDR areas vary depending on the accuracy (e.g. quality of satellite
signals) of each piece of data.

Figure 1: Example of GPS data

In the context of reported paths, notions such as “downtown”, “next
to the Hiffel Tower” or “intersection of Massachusetts Avenue and New-
bury Street” can easily be associated with a DDR. The size of the DDR
is inversely proportional to the fuzziness of the concept. It may be un-
ambiguous (such as the area corresponding to “downtown”), or ambiguous
and left to the modeler’s judgment (such as “next to the Eiffel Tower”).
An example is shown in Figure 2 where the reported locations are “home”,
“intersection Main St and Cross St”, “city center” and “mall”. The home
and intersection correspond to exact locations in the network and the ar-
eas of the associated DDRs (dashed lines) are therefore small, they contain



only one node. The two other reported locations are more fuzzy and the
areas of the associated DDRs are therefore larger, in this case the DDRs
contain two nodes.

Intersection
Main St and Cross St

Figure 2: Example of a reported trip

In summary, the DDR is a modeling element whose exact definition
is left on the analyst and depends on the data collection process and the
network topology. We now formally relate the DDR of each piece of data
with the various network elements (that is, nodes and links). We define an
indicator function §(d, e) which is 1 if network element e is related with the
DDR of data d, and 0 otherwise. In general, the definition of this indicator
function is straightforward. If e is a node representing an intersection, it
is easy to verify if it lies in the area of the DDR or not. If e is a node
representing the centroid of a zone, we simply check if the zone intersects
with the DDR area. Similarly, if e is a link representing a road segment,
we identify if it crosses the DDR area. A node can also be associated with
a DDR if it is the source or the sink node of a link crossing the DDR.

In practice, we generate for each piece of data a list of relevant network
elements, which bridges the gap between the network-free data and the
network model.



4 Model Estimation

We aim at estimating the unknown parameters (3 of the route choice model
P(p|C.(s); B) where Cn(s) is the set of paths linking OD pair s and consid-
ered by traveler n, and p is a path in C,,(s).

Let S be the set of all OD pairs in the network. For a given observation
i of traveler n, that is a sequence of pieces of data (d;,d,,...,dyx), we
first identify the set S; of relevant OD pairs, that is OD pairs s such that
the observation’s origin node is related to the DDR of first data and the
destination node is related to the last, that is

Si=1{s € S5|8(di,s0)0(dx,sa) =1}

At least one relevant OD pair must exist and the set S; must therefore be
non empty. If it is empty, the definitions of the DDRs must be revised.

We derive the probability P,,(i|S;) of reproducing observation i of trav-
eler n, given S;. It can be decomposed in the following way

W(ilS) =) PulslS) D Pulilp)Pu(plCuls); B), (1)

sES; pECH (s)
where

e P.(s|S;) is the probability that the actual OD pair is s given the set
of relevant OD pairs S;j,

e P.(ilp) is the measurement equation, giving the probability of ob-
serving i if the actual path is p, and

P.(pICn(s); ) is the route choice model.

Since several paths can correspond to the same observation, the mea-
surement equation plays a key role in this framework. It takes a value
greater than zero if observation i corresponds to path p that is composed
by links ({;,...,£p). This is the case if

e there is at least a link in the path related to each DDR, that is, for
any m=1,...,k, there exists q, 1 < q < P, such that &(d, {q) =1,
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e the sequence of reported locations is consistent with the order of the
links in the path, that is, for any m; < my, if 8(dm,,{q,) = 1 and
é(dmzv()’qz) = 1) then qd1 S qz.

We illustrate the measurement equation using the two data collection pro-
cesses mentioned above.

In the context of reported trips a simple measurement equation can be
defined since either the path goes through all reported location or not. The
measurement equation therefore takes the value 1 if this is the case and 0
otherwise.

For GPS collected data a more complex model may be necessary. For
example, the probability that the observation i is generated by the real
path p may be defined as a function of the distance between i and p. This
distance can be computed since, unlike reported trips, each piece of data
d is a coordinate in the network. We define a function A(d, {) which maps
the euclidean distance from d to the closest point on link £. The distance
between a piece of data d and a path p is D(d,p) = minea,, A(d, {) where
Aypa is the set of links that are part of path p and are located within the
DDR of data d, Apqa = {8 € &,...,8p | 8(d, ) = 1}. The global distance
D(i,p) between the observation i and the path p can be evaluated in several
ways. For example, the sum of D(d,p) for each piece of data in 1 or the
average distance. A distributional assumption on D(i,p) then defines the
measurement equation P(i|p). The evaluation of D(1,p) and its distribution
depend on the specific context and should be defined on a case to case basis.

If there is at least one observation i for which |S;| > 1 then a model for
P.(s|S;) needs to be defined. Different formulations are possible depend-
ing on the available information where the most simple one assigns equal
probabilities to all OD pairs, that is

1
Pa(slSi) = 5 Vs € Si. (2)

If additional information is available, a more sophisticated model can be
specified. For instance, high probabilities can be assigned to OD pairs that
include home and work locations.

As discussed in the previous section, the role of the DDR is to link
the network-free data to the network. A problem may occur that need
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to be addressed in order to estimate the model. Namely, the DDR of a
data d can be empty, that is 6(d,e) = 0 Ve, meaning that no network
element correspond to this piece of data. In this case, the DDR is not
properly defined and a new specification is necessary. A possible solution
is to increase the size of the DDR so that at least one link crosses the DDR.

Finally we note that the route choice model is only identifiable if at
least one of the routes in C,,(s) correspond to the observation and at least
one of the routes in C,(s) does not correspond to the observation.

Models of type (1) can be estimated with BIOGEME (Bierlaire, 2003).

5 Illustrative Examples

We illustrate the modeling framework on the two examples used previously.
We start with the reported trip shown in Figure 2. The exact origin node is
known (“home” node) but there are two possible destination nodes (8 and 9
corresponding to “mall”). The set of relevant OD pairs for this observation
i is therefore S; = {(1,8),(1,9)} (referred to as s; and s,). No additional
information is available, so we assume that the OD pairs are equally prob-
able, that is P(s1S;) = P(s2/Si) = % There are two routes connecting
first OD pair, C(s7) = {(1,2,4,5,7,8),(1,2,4,6,7,8)}, that we denote p;
and p, respectively. Note that we omit the notation for individual n since
we only have one observation here. The observation corresponds to both
routes and consequently P(ilp;) = P(ilp2) = 1. Four routes connect the
second OD pair C(s2) = {(1,2,4,5,7,9),(1,2,4,6,7,9),(1,2,3,9),(1,3,9)}
(denoted p3, ..., pe, respectively) but the observation only corresponds to
the first two, that is P(ilp3) = P(ilp4) = 1 and P(iJps) = P(ilps) = 0. For
this example, Equation 1 is therefore defined as
1

PIS) = 3 [P(PilC(s1);B) + P(palCls1); B) | +

1

3 [P(pg!C(sz); B) + P(p4lC(s2); B)}

where P(pg4lC(sn);B) (g=1,...,4 and h = 1,2) is the network based route
choice model to be estimated.
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We now turn our attention to the example on GPS data shown in
Figure 1. There is one relevant origin node but the DDR of the last
piece of data does not contain any node. We therefore consider the sink
node of the link that crosses this DDR. Hence, there is one relevant OD
pair for this observation i, S; = {(1,9)}, that we denote s. Similar to
the example on the reported trip, there are four routes in the choice
set, C(s) ={(1,2,4,5,7,9),(1,2,4,6,7,9),(1,2,3,9),(1,3,9)}, now denoted
P1,...,P4. The observation corresponds to the first two routes and there-
fore P(ilp3) = P(ilps) = 0. P(ilp1) and P(i|p2) can be defined as a function
of the distances between the observed locations and the path. In Figure 3
we show how the distance between the fourth piece of data and the paths
can be computed. The figure shows links (2,4), (4,5) and (4,6) that all
cross the DDR of d4 (see Figure 1). Since both p; and p, use link (2,4)
and A(dg4, (4,5)) = A(dy, (4,6)) > A(dy, (2,4)) the distance between d4 and
the paths p; and p; is A(dy, (2,4)). For this example the model given by
Equation 1 is

P(ils) = P(ilp1)P(p1lC(s); B) + P(ilp2)P(p2IC(s); B).

5

46

5)) T~
A(da, (4,6))

Figure 3: Example of GPS data (continued)

6 Case Study

In this section we illustrate the modeling framework on a dataset collected
in Switzerland. The data concern long-distance route choice behavior and
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Figure 4: Example of an observation

were collected via telephone interviews (Vrtic et al., 2006). The respondents
were asked to describe their last long-distance trip with the names of the
origin and destination cities as well as maximum three intermediate cities
or locations that they passed through. An example is shown in Figure 4
where a traveler went from Bellemont-sur-Lausanne to Vandoeuvres passing
through Morges, Aubonne and Nyon. 940 reported trips are available for
route choice analysis.

In this context, the DDR of each reported location is defined by the cor-
responding zip code. When linking the network-free data with the network
through the DDRs it is important to make sure that the precision level
of the observations correspond to the precision level of the network. We
therefore use a simplified transportation network (Swiss national model,
Vrtic et al., 2005). This network covers all regions in Switzerland and con-
tains 39411 unidirectional links and 14841 nodes (to be compared with the
Swiss TeleAtlas network that contains approximately 1 million unidirec-
tional links and half a million nodes). To our knowledge, this is the largest
network used for estimation of route choice models based on revealed pref-
erences data presented in the literature.
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In order to estimate a route choice model we need to specify P(s|S;)
and choice sets C,(s) Vs € S. The observations contain no information
on relevant OD pairs. Due to the computationally complex choice set
generation we do not consider all possible OD pairs for each observation
but randomly choose two OD pairs (if more than one is available) and use
the probability model given by Equation (2). For each OD pair we generate
a choice set of 45 routes using a stochastic choice set generation approach
(Bierlaire and Frejinger, 2007). After the choice set generation there are
780 observations available for model estimation. 160 observations are not
considered because either all or none of the generated routes correspond to
the observation.

We estimate two different types of route choice models P..(p|Cn(s);B),
one Path Size Logit (PSL) model (Ben-Akiva and Ramming, 1998) and
one Subnetwork model (Frejinger and Bierlaire, 2007). With the latter,
we explicitly model the correlation among paths on a Subnetwork using
an Error Component model. Here we create a subnetwork composed of all
main freeways. We estimate one covariance parameter which is assumed
proportional to the length by which the paths overlap with the subnetwork.
The transportation network is shown in Figure 5 where Subnetwork is
marked with bold lines.

Finally, we need to specify the deterministic utility functions. We use
the attributes reported in Table 1. Namely, Path Size, free-flow travel time
and road type attributes. The type of road is defined according to an exist-
ing hierarchy of the links. We define four road types; freeway (FW), can-
tonal/national (CN), main and small roads. The cantonal/national roads
connect different regions in Switzerland but have a lower capacity and speed
limit than freeways. Main roads refer to fast local roads in urban or rural
areas and small roads are the remaining ones.

Both models have the same linear-in-parameters specifications. More
precisely, a piecewise linear specification for the free-flow travel time (mea-
sured in hours) is used in order to capture travelers’ sensitivity to changes
in travel time in different ranges of the variable. After systematic testing
of different endpoints for the ranges we have defined a specific piecewise
linear approximation of the free-flow travel time for each of the four road
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Figure 5: Swiss national network

Attribute Min | Average | Max
Path Size 0.02 0.17 0.96
In(Path Size) -3.74 | -1.95 |-0.04
Proportion of free-flow time on freeway | 0.00 0.29 1.00
Proportion of free-flow time on CN 0.00 0.27 1.00
Proportion of free-flow time on main 0.00 0.23 1.00
Proportion of free-flow time on small 0.00 0.21 1.00
Free-flow travel time [minutes] 8 49.00 | 523

Table 1: Statistics on routes corresponding to observations
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types. The utility functions also include a Path Size attribute and the four
variables representing the proportion of the total travel time on each type

of road.

Free-flow travel time
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Figure 6: Piecewise linear specification - PSL model

In Figure 6 we illustrate the piecewise linear specification of the free-
flow travel time by graphically visualizing the estimates for the PSL model.
The coefficient estimates for all the explanatory variables are reported in
Table 2. The coefficients have their expected signs and are significantly
different from zero. We have provided scaled coefficient estimates in order
to facilitate the comparison of the two models. The scaling is based on the
“freeway free-flow time 0-30 min” coefficient. The magnitude of the scaled
estimate for this coefficient is hence the same for both models. The scaled
estimates have comparable magnitudes for the two models. This is also the
case for the robust standard errors and the t-test statistics are therefore
similar. We conclude that the estimation results are stable for the different
model structures.

The model fit measures and the coefficients related to the correlation
structure are reported in Table 3. The Path Size coefficient estimates are
positive which is consistent with theory (Frejinger and Bierlaire, 2007).
Indeed, this results in a negative correction of the utility for overlapping
paths.
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The covariance estimate is significantly different from zero which can be
interpreted as there is a significant correlation among paths using freeways.
Furthermore, the Subnetwork model has a significantly better model fit
than the Path Size Logit model (the likelihood ratio test statistic is 6.756
to be compared with x§ o5 ; = 3.84) which is consistent with the findings in
Frejinger and Bierlaire (2007).

7 Conclusion

Link-by-link descriptions of chosen routes are never directly available and
data manipulation is necessary in order to obtain network compliant paths
for the estimation of route choice models. We argue that data manipulation
introduces biases and errors and should be avoided. We propose a general
modeling framework that reconcile network-free data (for example partially
reported trips and GPS data) with a network based model without such
manipulations. The concept that bridges the gap between the data and the
model is called Domain of Data Relevance and corresponds to a physical
area in the network where a given piece of data is relevant.

In this framework any existing route choice model can be estimated
based on observations that are defined by sequences of individual pieces of
data (estimation is available in BIOGEME). We illustrate the framework
with simple examples for two different types of data, GPS data and re-
ported trips. Moreover, we provide estimation results of Path Size Logit
and Subnetwork models based on a real dataset of reported trips. The
network is to our knowledge the largest network used in the literature for
route choice analysis based on revealed preferences data.

We believe that this approach makes the route choice modeling results
more accurate. Moreover, it makes the estimation of the models easier
since the complex and time consuming data manipulation can be avoided.
We provide the methodology for estimating models based on GPS data.
Since no GPS dataset in its original form (sequences of GPS points) is at
our disposal, the estimation based on this type of data is left for future
research.
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Coefficient PSL Subnetwork
Freeway free-flow time 0-30 min -7.12 -7.45
Scaled Estimate -7.12 -7.12
(Rob. Std. Error) Rob. T-test (0.877) -8.12 | (0.984) -7.57
Freeway free-flow time 30min - 1 hour -1.69 -2.26
Scaled Estimate -1.69 -2.16
(Rob. Std. Error) Rob. T-test (0.875) -1.93 | (1.03) -2.19
Freeway free-flow time 1 hour + -4.98 -5.64
Scaled Estimate -4.98 -5.39
(Rob. Std. Error) Rob. T-test (0.772) -6.45 | (1.00) -5.61
CN free-flow time 0-30 min -6.03 -6.25
Scaled Estimate -6.08 -5.97
(Rob. Std. Error) Rob. T-test (0.882) -6.84 | (0.975) -6.41
CN free-flow time 30 min + -1.87 -2.16
Scaled Estimate -1.87 -2.06
(Rob. Std. Error) Rob. T-test (0.331) -5.64 | (0.384) -5.63
Main free-flow travel time 10 min + -2.03 -2.46
Scaled Estimate -2.03 -2.85
(Rob. Std. Error) Rob. T-test (0.502) -4.05 | (0.624) -3.95
Small free-flow travel time -2.16 -2.75
Scaled Estimate -2.16 -2.63
(Rob. Std. Error) Rob. T-test (0.685) -3.16 | (0.804) -3.42
Proportion of time on freeways -2.20 -2.31
Scaled Estimate -2.20 -2.21
(Rob. Std. Error) Rob. T-test (0.812) -2.71 | (0.865) -2.67
Proportion of time on CN 0 fixed 0 fixed
Proportion of time on main -4.43 -4.40
Scaled Estimate -4.48 -4.21
(Rob. Std. Error) Rob. T-test (0.752) -5.88 | (0.800) -5.51
Proportion of time on small -6.23 -6.02
Scaled Estimate -6.23 -5.75
(Rob. Std. Error) Rob. T-test (0.992) -6.28 | (1.03) -5.83

Table 2: Estimation results
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Coefficient PSL Subnetwork
In(Path Size) based on free-flow time 1.04 1.10
Scaled Estimate 1.04 1.05
(Rob. Std. Error) Rob. T-test (0.134) 7.81 | (0.141) 7.78
Covariance 0.217
Scaled Estimate 0.205
(Rob. Std. Error) Rob. T-test (0.0543) 4.00
Number of simulation draws - 1000
Number of parameters 11 12
Final log-likelihood -1164.850 -1161.472
Adjusted rho square 0.145 0.147
Sample size: 780, Null log-likelihood: -1375.851
BIOGEME (Bierlaire, 2003, Bierlaire, 2005) has been used for all model
estimations
Table 3: Estimation results (continued)
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