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AbstractRoute 
hoi
e models are diÆ
ult to design and to estimate for var-ious reasons. In this paper we fo
us on issues related to data. Indeed,real data in its original format are not related to the network used bythe modeler and do therefore not 
orrespond to path de�nitions. Typ-i
al examples are data 
olle
ted with the Global Positioning System(GPS) or respondents des
ribing 
hosen itineraries to interviewers.Data manipulation is then ne
essary in order to obtain network 
om-pliant paths. We argue that su
h manipulations introdu
e bias anderrors and should be avoided. We propose a general modeling frame-work that re
on
ile network-free data with a network based modelwithout data manipulations. The 
on
ept that bridges the gap be-tween the data and the model is 
alled Domain of Data Relevan
eand 
orresponds to a physi
al area in the network where a given pie
eof data is relevant.We illustrate the framework on simple examples for two di�erenttypes of data (GPS data and reported trips). Moreover, we presentestimation results of Path Size Logit and Subnetwork models basedon a dataset of reported trips 
olle
ted in Switzerland. The networkis to our knowledge the largest one used in the literature for route
hoi
e analysis based on revealed preferen
es data.
1 IntroductionRoute 
hoi
e models play a 
ru
ial role in many transport appli
ations, forexample traÆ
 assignment and transport planning. Given a transportationnetwork and an origin-destination (OD) pair s = (so, sd) a route 
hoi
emodel predi
ts the probability that any given path between origin so anddestination sd is sele
ted to perform a trip. They are diÆ
ult to designand to estimate for various reasons, su
h as the large size of the 
hoi
eset and the 
omplex 
orrelation stru
ture (see the dis
ussion by Ben-Akivaand Bierlaire, 2003).In the paper we fo
us on the issues asso
iated with data. The 
on
ept ofpath, whi
h is the 
ore of a route 
hoi
e model, is usually too abstra
t for areliable data 
olle
tion pro
ess. Real data, in their original format, do not2




orrespond to path de�nitions. A typi
al example is GPS data, whi
h aremore and more available (Murakami and Wagner, 1999, Jan et al., 2000,S
h�onfelder et al., 2002, Axhausen et al., 2003, Frejinger, 2004, amongmany). As GPS devi
es do not expli
itly use the transportation network,the 
oordinates of data points 
annot be dire
tly used, and data pro
ess-ing is required in order to re
onstru
t paths. In the literature, su
h datapro
essing involves map mat
hing, trip end identi�
ation and assumptionson missing data. Re
ently, Mar
hal et al. (2005) proposed a map mat
hingalgorithm for large 
hoi
e sets. They evaluate the performan
e in terms of
omputation time and underline the diÆ
ulty of evaluating a

ura
y sin
ethe \true" 
hosen routes are unknown (see Quddus et al., 2003, for anoverview of map mat
hing algorithms). Du and Aultman-Hall (2007) dis-
uss trip end identi�
ation algorithms. They manually identi�ed trip endsin a GPS data stream and evaluate the performan
e of the algorithms.Another 
ontext is when respondents are asked to des
ribe a path thatthey have followed during a given trip. They are in general able to iden-tify a sequen
e of lo
ations that they have traversed, but have diÆ
ultiesdes
ribing a full path in detail. For instan
e, Ramming (2001) (see alsoBekhor et al., 2006) estimated route 
hoi
e models based on data 
olle
tedin Boston. The respondents des
ribed 
hosen routes by naming street seg-ments. In 
ase of in
omplete or ambiguous des
riptions, the routes werere
onstru
ted by taking the shortest path between known street segments.In this paper, we advo
ate that the data manipulation required bythe underlying network model introdu
es biases and errors, and should beavoided. We propose a general modeling s
heme that re
on
ile network-freedata (su
h as GPS data or partially reported itineraries) with a networkbased model without su
h manipulations.After a literature review in the next se
tion, we introdu
e in Se
tion 3the 
on
ept of domain of data relevan
e (DDR) that is designed to bethe missing link between the data and the network model. In Se
tion 4,we des
ribe the estimation of a route 
hoi
e model using the network-freedata and the DDRs and in Se
tion 5 we provide simple examples for twodi�erent types of data. The framework is then illustrated on a real 
asestudy in Se
tion 6. 3



2 Literature ReviewMail and telephone surveys are 
onventional methods for 
olle
ting tripdata. Mahmassani et al. (1993) propose a two-stage data 
olle
tion, wherethe se
ond stage involves more detailed trip des
riptions. Abdel-Aty et al.(1995) 
ombine 
omputer-aided telephone interviews and GIS 
apabilitiesspe
i�
ally for route 
hoi
e data. Ramming (2001) also 
olle
ts route 
hoi
edata, based on reported path segments. Vrti
 et al. (2006) have performedtelephone interviews where intermediate lo
ations of long distan
e tripswere reported (see Se
tion 6).In the past de
ade many studies presented in the literature 
omparedata obtained with 
onventional survey methods with GPS data. There isa 
onsensus that passive monitoring have several advantages over 
onven-tional surveys. For instan
e, multiple days of trip data 
an be 
olle
tedautomati
ally and are dire
tly available in ele
troni
 format. However,GPS data also have issues (see Wolf et al., 1999, and Zito et al., 1995, fordetailed dis
ussions). First, 
onstraints of the te
hnology, su
h as satel-lite 
lo
k errors, re
eiver noise errors, sele
tive availability (intentional er-rors inserted by U.S. Department of Defense) and type of re
eiver limitsthe a

ura
y of the data. Se
ond, depending on the number of availablesatellites, atmospheri
 
onditions, and lo
al environment (high buildings,bridges, tunnels) the GPS re
eiver 
an 
ompute an ina

urate position orfail to 
ompute the position whi
h introdu
es gaps in the data. Wolf et al.(1999) state that an a

ura
y level of 10 meters is required in order to mapmat
h GPS points in urban areas without ambiguity. In their tests, thebest performing re
eiver a
hieves this level for 63% of the GPS points onaverage. Nielsen (2004) observed that 90% of the trips 
olle
ted in theCopenhagen region had missing data. A third issue is that the data arestored in one stream of GPS points and data pro
essing is required in orderto re
onstru
t the trips. Su
h data pro
essing involves map mat
hing, tripend identi�
ation and assumptions on missing data (Mar
hal et al., 2005,Quddus et al., 2003). Du and Aultman-Hall (2007) found that the bestperforming algorithm 
orre
tly identi�ed 94% of the trip ends. Finally, wenote that the data pro
essing is highly dependent on the a

ura
y of the4



geographi
al information system data base that is used.Frejinger and Bierlaire (2007) estimate route 
hoi
e models based ona GPS dataset 
olle
ted in the Swedish 
ity of Borl�ange (see S
h�onfelderet al., 2002, for more details on the data). The data pro
essing was per-formed by the Atlanta based 
ompany GeoStats. Nielsen (2004) study route
hoi
e behavior based on a large GPS dataset 
olle
ted in Copenhagen.Based on the previous dis
ussion, we 
on
lude that network 
ompliantroute 
hoi
e data are never available. This motivates the approa
h proposedin this paper, where we a
knowledge this nature of the data, and model itexpli
itly instead of trying to �x it through various manipulations.Some approa
hes have been proposed in the literature where the linkbetween the 
on
ept of path and the data has been loosened, either inorder to simplify the 
hoi
e 
ontext, or be
ause the observed 
hoi
es arebased on underlying, latent 
hoi
es. Ben-Akiva et al. (1984) 
onstru
tlatent alternatives in order to simplify the 
hoi
e set de�nition in a route
hoi
e model. Instead of modeling 
hoi
e of routes where there are manyfeasible alternatives, they model the 
hoi
e of labels, su
h as, fastest route,most s
eni
 route, shortest route et
. The exa
t route 
hoi
es are observedand used to estimate the model. Ben-Akiva et al. (2006b) present a generalmethodology for modeling 
hoi
e behavior that is based on 
hoi
es of plans.These underlying 
hoi
es may not be observed. Both the 
hoi
e of plan andobserved 
hoi
es are expli
itly modeled in a multi-dimensional approa
h.They apply their methodology to freeway lane 
hanging and merging froman on-ramp (see also Ben-Akiva et al., 2006a).
3 Domain of Data RelevanceThe 
ommon referen
e of our modeling s
heme is a �nite two-dimensionalregion with an appropriate 
oordinate system, typi
ally longitude, lati-tude1. In general, it is simply the region of interest su
h as a 
ity, or a
ountry.1Using a three-dimensional referen
e is possible and relatively straightforward. How-ever, it would bring an unne
essary level of 
omplexity to this paper.5



We de�ne an observation as a sequen
e of individual pie
es of datarelated to an itinerary, su
h as a sequen
e of GPS points, or of reportedlo
ations. For a given pie
e of data, the domain of data relevan
e isde�ned as the physi
al area where the pie
e of data is relevant. Its exa
tde�nition depends on the 
ontext. For example, 
onsider a GPS reporting
oordinates (x, y). Due to the intrinsi
 te
hnologi
al limitations of thedevi
e, we 
an identify a 95% 
on�den
e interval, say, around the point
(x, y). This would be the DDR of this pie
e of data. An example ofGPS data is shown in Figure 1 where the GPS points are represented bysmall 
ir
les and their 
orresponding DDR with dashed lines. The size ofthe DDR areas vary depending on the a

ura
y (e.g. quality of satellitesignals) of ea
h pie
e of data.

1
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4

5

6

7 8

9

Figure 1: Example of GPS dataIn the 
ontext of reported paths, notions su
h as \downtown", \nextto the Ei�el Tower" or \interse
tion of Massa
husetts Avenue and New-bury Street" 
an easily be asso
iated with a DDR. The size of the DDRis inversely proportional to the fuzziness of the 
on
ept. It may be un-ambiguous (su
h as the area 
orresponding to \downtown"), or ambiguousand left to the modeler's judgment (su
h as \next to the Ei�el Tower").An example is shown in Figure 2 where the reported lo
ations are \home",\interse
tion Main St and Cross St", \
ity 
enter" and \mall". The homeand interse
tion 
orrespond to exa
t lo
ations in the network and the ar-eas of the asso
iated DDRs (dashed lines) are therefore small, they 
ontain6



only one node. The two other reported lo
ations are more fuzzy and theareas of the asso
iated DDRs are therefore larger, in this 
ase the DDRs
ontain two nodes.
1Home 2

Interse
tionMain St and Cross St
3

4

5

6

City 
enter 7 8

9
Mall

Figure 2: Example of a reported tripIn summary, the DDR is a modeling element whose exa
t de�nitionis left on the analyst and depends on the data 
olle
tion pro
ess and thenetwork topology. We now formally relate the DDR of ea
h pie
e of datawith the various network elements (that is, nodes and links). We de�ne anindi
ator fun
tion δ(d, e) whi
h is 1 if network element e is related with theDDR of data d, and 0 otherwise. In general, the de�nition of this indi
atorfun
tion is straightforward. If e is a node representing an interse
tion, itis easy to verify if it lies in the area of the DDR or not. If e is a noderepresenting the 
entroid of a zone, we simply 
he
k if the zone interse
tswith the DDR area. Similarly, if e is a link representing a road segment,we identify if it 
rosses the DDR area. A node 
an also be asso
iated witha DDR if it is the sour
e or the sink node of a link 
rossing the DDR.In pra
ti
e, we generate for ea
h pie
e of data a list of relevant networkelements, whi
h bridges the gap between the network-free data and thenetwork model.
7



4 Model EstimationWe aim at estimating the unknown parameters β of the route 
hoi
e model
P(p|Cn(s); β) where Cn(s) is the set of paths linking OD pair s and 
onsid-ered by traveler n, and p is a path in Cn(s).Let S be the set of all OD pairs in the network. For a given observation
i of traveler n, that is a sequen
e of pie
es of data (d1, d2, . . . , dk), we�rst identify the set Si of relevant OD pairs, that is OD pairs s su
h thatthe observation's origin node is related to the DDR of �rst data and thedestination node is related to the last, that is

Si = {s ∈ S | δ(d1, so)δ(dk, sd) = 1}.At least one relevant OD pair must exist and the set Si must therefore benon empty. If it is empty, the de�nitions of the DDRs must be revised.We derive the probability Pn(i|Si) of reprodu
ing observation i of trav-eler n, given Si. It 
an be de
omposed in the following way
Pn(i|Si) =

∑

s∈Si

Pn(s|Si)
∑

p∈Cn(s)

Pn(i|p)Pn(p|Cn(s); β), (1)where� Pn(s|Si) is the probability that the a
tual OD pair is s given the setof relevant OD pairs Si,� Pn(i|p) is the measurement equation, giving the probability of ob-serving i if the a
tual path is p, and� Pn(p|Cn(s); β) is the route 
hoi
e model.Sin
e several paths 
an 
orrespond to the same observation, the mea-surement equation plays a key role in this framework. It takes a valuegreater than zero if observation i 
orresponds to path p that is 
omposedby links (ℓ1, . . . , ℓP). This is the 
ase if� there is at least a link in the path related to ea
h DDR, that is, forany m = 1, . . . , k, there exists q, 1 ≤ q ≤ P, su
h that δ(dm, ℓq) = 1,8



� the sequen
e of reported lo
ations is 
onsistent with the order of thelinks in the path, that is, for any m1 ≤ m2, if δ(dm1
, ℓq1

) = 1 and
δ(dm2

, ℓq2
) = 1, then q1 ≤ q2.We illustrate the measurement equation using the two data 
olle
tion pro-
esses mentioned above.In the 
ontext of reported trips a simple measurement equation 
an bede�ned sin
e either the path goes through all reported lo
ation or not. Themeasurement equation therefore takes the value 1 if this is the 
ase and 0otherwise.For GPS 
olle
ted data a more 
omplex model may be ne
essary. Forexample, the probability that the observation i is generated by the realpath p may be de�ned as a fun
tion of the distan
e between i and p. Thisdistan
e 
an be 
omputed sin
e, unlike reported trips, ea
h pie
e of data

d is a 
oordinate in the network. We de�ne a fun
tion ∆(d, ℓ) whi
h mapsthe eu
lidean distan
e from d to the 
losest point on link ℓ. The distan
ebetween a pie
e of data d and a path p is D(d, p) = minℓ∈Apd
∆(d, ℓ) where

Apd is the set of links that are part of path p and are lo
ated within theDDR of data d, Apd = {ℓ ∈ ℓ1, . . . , ℓP | δ(d, ℓ) = 1}. The global distan
e
D(i, p) between the observation i and the path p 
an be evaluated in severalways. For example, the sum of D(d, p) for ea
h pie
e of data in i or theaverage distan
e. A distributional assumption on D(i, p) then de�nes themeasurement equation P(i|p). The evaluation of D(i, p) and its distributiondepend on the spe
i�
 
ontext and should be de�ned on a 
ase to 
ase basis.If there is at least one observation i for whi
h |Si| > 1 then a model for
Pn(s|Si) needs to be de�ned. Di�erent formulations are possible depend-ing on the available information where the most simple one assigns equalprobabilities to all OD pairs, that is

Pn(s|Si) =
1

|Si|
∀s ∈ Si. (2)If additional information is available, a more sophisti
ated model 
an bespe
i�ed. For instan
e, high probabilities 
an be assigned to OD pairs thatin
lude home and work lo
ations.As dis
ussed in the previous se
tion, the role of the DDR is to linkthe network-free data to the network. A problem may o

ur that need9



to be addressed in order to estimate the model. Namely, the DDR of adata d 
an be empty, that is δ(d, e) = 0 ∀e, meaning that no networkelement 
orrespond to this pie
e of data. In this 
ase, the DDR is notproperly de�ned and a new spe
i�
ation is ne
essary. A possible solutionis to in
rease the size of the DDR so that at least one link 
rosses the DDR.Finally we note that the route 
hoi
e model is only identi�able if atleast one of the routes in Cn(s) 
orrespond to the observation and at leastone of the routes in Cn(s) does not 
orrespond to the observation.Models of type (1) 
an be estimated with BIOGEME (Bierlaire, 2003).
5 Illustrative ExamplesWe illustrate the modeling framework on the two examples used previously.We start with the reported trip shown in Figure 2. The exa
t origin node isknown (\home" node) but there are two possible destination nodes (8 and 9
orresponding to \mall"). The set of relevant OD pairs for this observation
i is therefore Si = {(1, 8), (1, 9)} (referred to as s1 and s2). No additionalinformation is available, so we assume that the OD pairs are equally prob-able, that is P(s1|Si) = P(s2|Si) = 1

2
. There are two routes 
onne
ting�rst OD pair, C(s1) = {(1, 2, 4, 5, 7, 8), (1, 2, 4, 6, 7, 8)}, that we denote p1and p2 respe
tively. Note that we omit the notation for individual n sin
ewe only have one observation here. The observation 
orresponds to bothroutes and 
onsequently P(i|p1) = P(i|p2) = 1. Four routes 
onne
t these
ond OD pair C(s2) = {(1, 2, 4, 5, 7, 9), (1, 2, 4, 6, 7, 9), (1, 2, 3, 9), (1, 3, 9)}(denoted p3, . . . , p6, respe
tively) but the observation only 
orresponds tothe �rst two, that is P(i|p3) = P(i|p4) = 1 and P(i|p5) = P(i|p6) = 0. Forthis example, Equation 1 is therefore de�ned as

P(i|Si) =
1

2

[

P(p1|C(s1); β) + P(p2|C(s1); β)
]

+

1

2

[

P(p3|C(s2); β) + P(p4|C(s2); β)
]where P(pg|C(sh); β) (g = 1, . . . , 4 and h = 1, 2) is the network based route
hoi
e model to be estimated. 10



We now turn our attention to the example on GPS data shown inFigure 1. There is one relevant origin node but the DDR of the lastpie
e of data does not 
ontain any node. We therefore 
onsider the sinknode of the link that 
rosses this DDR. Hen
e, there is one relevant ODpair for this observation i, Si = {(1, 9)}, that we denote s. Similar tothe example on the reported trip, there are four routes in the 
hoi
eset, C(s) = {(1, 2, 4, 5, 7, 9), (1, 2, 4, 6, 7, 9), (1, 2, 3, 9), (1, 3, 9)}, now denoted
p1, . . . , p4. The observation 
orresponds to the �rst two routes and there-fore P(i|p3) = P(i|p4) = 0. P(i|p1) and P(i|p2) 
an be de�ned as a fun
tionof the distan
es between the observed lo
ations and the path. In Figure 3we show how the distan
e between the fourth pie
e of data and the paths
an be 
omputed. The �gure shows links (2, 4), (4, 5) and (4, 6) that all
ross the DDR of d4 (see Figure 1). Sin
e both p1 and p2 use link (2, 4)and ∆(d4, (4, 5)) = ∆(d4, (4, 6)) > ∆(d4, (2, 4)) the distan
e between d4 andthe paths p1 and p2 is ∆(d4, (2, 4)). For this example the model given byEquation 1 is

P(i|s) = P(i|p1)P(p1|C(s); β) + P(i|p2)P(p2|C(s); β).

4

(2,
4)

(4,
5)

(4, 6)

d4

∆(d4, (2, 4))

∆(d4, (4, 5))

∆(d4, (4, 6))Figure 3: Example of GPS data (
ontinued)
6 Case StudyIn this se
tion we illustrate the modeling framework on a dataset 
olle
tedin Switzerland. The data 
on
ern long-distan
e route 
hoi
e behavior and11



Figure 4: Example of an observationwere 
olle
ted via telephone interviews (Vrti
 et al., 2006). The respondentswere asked to des
ribe their last long-distan
e trip with the names of theorigin and destination 
ities as well as maximum three intermediate 
itiesor lo
ations that they passed through. An example is shown in Figure 4where a traveler went from Bellemont-sur-Lausanne to Vandoeuvres passingthrough Morges, Aubonne and Nyon. 940 reported trips are available forroute 
hoi
e analysis.In this 
ontext, the DDR of ea
h reported lo
ation is de�ned by the 
or-responding zip 
ode. When linking the network-free data with the networkthrough the DDRs it is important to make sure that the pre
ision levelof the observations 
orrespond to the pre
ision level of the network. Wetherefore use a simpli�ed transportation network (Swiss national model,Vrti
 et al., 2005). This network 
overs all regions in Switzerland and 
on-tains 39411 unidire
tional links and 14841 nodes (to be 
ompared with theSwiss TeleAtlas network that 
ontains approximately 1 million unidire
-tional links and half a million nodes). To our knowledge, this is the largestnetwork used for estimation of route 
hoi
e models based on revealed pref-eren
es data presented in the literature.12



In order to estimate a route 
hoi
e model we need to spe
ify P(s|Si)and 
hoi
e sets Cn(s) ∀s ∈ S. The observations 
ontain no informationon relevant OD pairs. Due to the 
omputationally 
omplex 
hoi
e setgeneration we do not 
onsider all possible OD pairs for ea
h observationbut randomly 
hoose two OD pairs (if more than one is available) and usethe probability model given by Equation (2). For ea
h OD pair we generatea 
hoi
e set of 45 routes using a sto
hasti
 
hoi
e set generation approa
h(Bierlaire and Frejinger, 2007). After the 
hoi
e set generation there are
780 observations available for model estimation. 160 observations are not
onsidered be
ause either all or none of the generated routes 
orrespond tothe observation.We estimate two di�erent types of route 
hoi
e models Pn(p|Cn(s); β),one Path Size Logit (PSL) model (Ben-Akiva and Ramming, 1998) andone Subnetwork model (Frejinger and Bierlaire, 2007). With the latter,we expli
itly model the 
orrelation among paths on a Subnetwork usingan Error Component model. Here we 
reate a subnetwork 
omposed of allmain freeways. We estimate one 
ovarian
e parameter whi
h is assumedproportional to the length by whi
h the paths overlap with the subnetwork.The transportation network is shown in Figure 5 where Subnetwork ismarked with bold lines.Finally, we need to spe
ify the deterministi
 utility fun
tions. We usethe attributes reported in Table 1. Namely, Path Size, free-
ow travel timeand road type attributes. The type of road is de�ned a

ording to an exist-ing hierar
hy of the links. We de�ne four road types; freeway (FW), 
an-tonal/national (CN), main and small roads. The 
antonal/national roads
onne
t di�erent regions in Switzerland but have a lower 
apa
ity and speedlimit than freeways. Main roads refer to fast lo
al roads in urban or ruralareas and small roads are the remaining ones.Both models have the same linear-in-parameters spe
i�
ations. Morepre
isely, a pie
ewise linear spe
i�
ation for the free-
ow travel time (mea-sured in hours) is used in order to 
apture travelers' sensitivity to 
hangesin travel time in di�erent ranges of the variable. After systemati
 testingof di�erent endpoints for the ranges we have de�ned a spe
i�
 pie
ewiselinear approximation of the free-
ow travel time for ea
h of the four road13



Figure 5: Swiss national networkAttribute Min Average MaxPath Size 0.02 0.17 0.96ln(Path Size) -3.74 -1.95 -0.04Proportion of free-
ow time on freeway 0.00 0.29 1.00Proportion of free-
ow time on CN 0.00 0.27 1.00Proportion of free-
ow time on main 0.00 0.23 1.00Proportion of free-
ow time on small 0.00 0.21 1.00Free-
ow travel time [minutes℄ 8 49.00 523Table 1: Statisti
s on routes 
orresponding to observations14



types. The utility fun
tions also in
lude a Path Size attribute and the fourvariables representing the proportion of the total travel time on ea
h typeof road.
SmallMainCNFW

0 0h10 0h30 1h 1h30 2h0
-5
-10

Free-
ow travel time

Utilityoffree
-
owtravelt
ime

Figure 6: Pie
ewise linear spe
i�
ation - PSL modelIn Figure 6 we illustrate the pie
ewise linear spe
i�
ation of the free-
ow travel time by graphi
ally visualizing the estimates for the PSL model.The 
oeÆ
ient estimates for all the explanatory variables are reported inTable 2. The 
oeÆ
ients have their expe
ted signs and are signi�
antlydi�erent from zero. We have provided s
aled 
oeÆ
ient estimates in orderto fa
ilitate the 
omparison of the two models. The s
aling is based on the\freeway free-
ow time 0-30 min" 
oeÆ
ient. The magnitude of the s
aledestimate for this 
oeÆ
ient is hen
e the same for both models. The s
aledestimates have 
omparable magnitudes for the two models. This is also the
ase for the robust standard errors and the t-test statisti
s are thereforesimilar. We 
on
lude that the estimation results are stable for the di�erentmodel stru
tures.The model �t measures and the 
oeÆ
ients related to the 
orrelationstru
ture are reported in Table 3. The Path Size 
oeÆ
ient estimates arepositive whi
h is 
onsistent with theory (Frejinger and Bierlaire, 2007).Indeed, this results in a negative 
orre
tion of the utility for overlappingpaths. 15



The 
ovarian
e estimate is signi�
antly di�erent from zero whi
h 
an beinterpreted as there is a signi�
ant 
orrelation among paths using freeways.Furthermore, the Subnetwork model has a signi�
antly better model �tthan the Path Size Logit model (the likelihood ratio test statisti
 is 6.756to be 
ompared with χ2
0.05,1 = 3.84) whi
h is 
onsistent with the �ndings inFrejinger and Bierlaire (2007).

7 ConclusionLink-by-link des
riptions of 
hosen routes are never dire
tly available anddata manipulation is ne
essary in order to obtain network 
ompliant pathsfor the estimation of route 
hoi
e models. We argue that data manipulationintrodu
es biases and errors and should be avoided. We propose a generalmodeling framework that re
on
ile network-free data (for example partiallyreported trips and GPS data) with a network based model without su
hmanipulations. The 
on
ept that bridges the gap between the data and themodel is 
alled Domain of Data Relevan
e and 
orresponds to a physi
alarea in the network where a given pie
e of data is relevant.In this framework any existing route 
hoi
e model 
an be estimatedbased on observations that are de�ned by sequen
es of individual pie
es ofdata (estimation is available in BIOGEME). We illustrate the frameworkwith simple examples for two di�erent types of data, GPS data and re-ported trips. Moreover, we provide estimation results of Path Size Logitand Subnetwork models based on a real dataset of reported trips. Thenetwork is to our knowledge the largest network used in the literature forroute 
hoi
e analysis based on revealed preferen
es data.We believe that this approa
h makes the route 
hoi
e modeling resultsmore a

urate. Moreover, it makes the estimation of the models easiersin
e the 
omplex and time 
onsuming data manipulation 
an be avoided.We provide the methodology for estimating models based on GPS data.Sin
e no GPS dataset in its original form (sequen
es of GPS points) is atour disposal, the estimation based on this type of data is left for futureresear
h. 16



Coefficient PSL Subnetwork

Freeway free-flow time 0-30 min -7.12 -7.45S
aled Estimate -7.12 -7.12(Rob. Std. Error) Rob. T-test (0.877) -8.12 (0.984) -7.57
Freeway free-flow time 30min - 1 hour -1.69 -2.26S
aled Estimate -1.69 -2.16(Rob. Std. Error) Rob. T-test (0.875) -1.93 (1.03) -2.19
Freeway free-flow time 1 hour + -4.98 -5.64S
aled Estimate -4.98 -5.39(Rob. Std. Error) Rob. T-test (0.772) -6.45 (1.00) -5.61
CN free-flow time 0-30 min -6.03 -6.25S
aled Estimate -6.03 -5.97(Rob. Std. Error) Rob. T-test (0.882) -6.84 (0.975) -6.41
CN free-flow time 30 min + -1.87 -2.16S
aled Estimate -1.87 -2.06(Rob. Std. Error) Rob. T-test (0.331) -5.64 (0.384) -5.63
Main free-flow travel time 10 min + -2.03 -2.46S
aled Estimate -2.03 -2.35(Rob. Std. Error) Rob. T-test (0.502) -4.05 (0.624) -3.95
Small free-flow travel time -2.16 -2.75S
aled Estimate -2.16 -2.63(Rob. Std. Error) Rob. T-test (0.685) -3.16 (0.804) -3.42
Proportion of time on freeways -2.20 -2.31S
aled Estimate -2.20 -2.21(Rob. Std. Error) Rob. T-test (0.812) -2.71 (0.865) -2.67
Proportion of time on CN 0 fixed 0 fixed

Proportion of time on main -4.43 -4.40S
aled Estimate -4.43 -4.21(Rob. Std. Error) Rob. T-test (0.752) -5.88 (0.800) -5.51
Proportion of time on small -6.23 -6.02S
aled Estimate -6.23 -5.75(Rob. Std. Error) Rob. T-test (0.992) -6.28 (1.03) -5.83Table 2: Estimation results17



Coefficient PSL Subnetwork

ln(Path Size) based on free-flow time 1.04 1.10S
aled Estimate 1.04 1.05(Rob. Std. Error) Rob. T-test (0.134) 7.81 (0.141) 7.78
Covariance 0.217S
aled Estimate 0.205(Rob. Std. Error) Rob. T-test (0.0543) 4.00Number of simulation draws - 1000Number of parameters 11 12Final log-likelihood -1164.850 -1161.472Adjusted rho square 0.145 0.147Sample size: 780, Null log-likelihood: -1375.851BIOGEME (Bierlaire, 2003, Bierlaire, 2005) has been used for all modelestimations Table 3: Estimation results (
ontinued)
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