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AbstratWe propose and validate a model for pedestrian walking behavior, basedon disrete hoie modeling. Two main behaviors are identi�ed: unon-strained and onstrained. The onstrained patterns are aptured by aleader-follower model and by a ollision avoidane model. The spatialorrelation between the alternatives is taken into aount de�ning a rossnested logit model. The model is estimated by maximum likelihood esti-mation on a real data set of pedestrian trajetories, manually traked fromvideo sequenes. The model is validated using a bi-diretional �ow dataset, olleted in ontrolled experimental onditions at Delft university.1 IntrodutionPedestrian behavior modeling is an important topi in di�erent ontexts. Ar-hitets are interested in understanding how individuals move into buildingsto �nd out optimality riteria for spae design. Transport engineers fae theproblem of integration of transportation failities, with partiular emphasis onsafety issues for pedestrians. Reent tragi events have inreased the interest forautomati video surveillane systems, able to monitor pedestrian �ows in pub-li spaes, throwing alarms when abnormal behaviors our. Speial emphasishas been given to more spei� evauation senarios, for obvious reasons. Inthis spirit, it is important to de�ne mathematial models based on spei� (andontext-dependent) behavioral assumptions, tested by means of proper statis-tial methods. Data olletion for pedestrian dynamis is partiularly di�ultand few models presented in the literature have been alibrated and validatedon real data sets.Previous methods for pedestrian behavior modeling an be lassi�ed into twomain ategories: mirosopi and marosopi models. In the last years muhmore attention has been foused on mirosopi modeling, where eah pedestrianis modeled as an agent, individually. Examples of mirosopi models are the so-ial fores model in Helbing and Molnar (1995) and Helbing et al. (2002) wherethe authors use Newtonian mehanis with a ontinuous spae representation tomodel long-range interations, and the multi-layer utility maximization modelby Hoogendoorn et al. (2002) and Daamen (2004). Blue and Adler (2001) andShadshneider (2002) use ellular automata models, haraterized by a statidisretization of the spae where eah ell in the grid is represented by a statevariable. Another mirosopi approah is based on spae syntax theory wherepeople move through spaes following riteria of spae visibility and aessibility(see Penn and Turner, 2002) and minimizing angular paths (see Turner, 2001).Finally, Borgers and Timmermans (1986), Whynes et al. (1996) and Dellaert2



et al. (1998) fous on destination and route hoie problems on network topolo-gies. For a general literature review on pedestrian behavior modeling we referthe interested reader to Bierlaire et al. (2003).Leader-follower and ollision avoidane behaviors have been addressed hereto fae with interations between pedestrians. Existing literature has shownthe ourrene of self-organizing proesses in rowded environments. At er-tain levels of density, interations between people give rise to lane formation.In order to model these e�ets formally, we took inspiration from previous arfollowing models in transport engineering (inluding Newell, 1961, Herman andRothery, 1965, Lee, 1966, Ahmed, 1999). The main idea in these models isthat two vehiles are involved in a ar following situation when a subjet ve-hile follows a leader, normally represented by the vehile in front, reating toits ations. In general, a sensitivity-stimulus framework is adopted. Aord-ing to this framework a driver reats to stimuli from the environment, wherethe stimulus is usually the leader relative speed. Di�erent models di�er in thespei�ation of the sensitivity term. This modeling idea is extended here andadapted to the more omplex ase of pedestrian behavior. We want to stress thefat that in driver behavior modeling a distintion between aeleration behaviorand diretion hange (lane hange) behavior is almost natural (see Toledo, 2003and Toledo et al., 2003), being imposed by the transport faility itself. Thepedestrian ase is more omplex, the movements being two-dimensional on thewalking plane, where aeleration and diretion hanges are not easily separa-ble. The ollision avoidane pattern and the onstrained behaviors in generalare also inspired by studies in human sienes and psyhology, leading to theonept of personal spae (see Horowitz et al., 1964, Dosey and Meisels, 1969and Sommer, 1969). Personal spae is a protetive mehanism founded on theability of the individual to pereive signals from one's physial and soial envi-ronment. Its funtion is to reate the spaing patterns that regulate distanesbetween individuals and on whih individual behaviors are based (Webb andWeber, 2003). Helbing and Molnar (1995) in their soial fores model use theterm �territorial e�et�. Several studies in psyhology and soiology show howindividual harateristis in�uene the pereption of the spae and interpersonaldistane. Brady and Walker (1978) found for example that anxiety states arepositively orrelated with interpersonal distane. Similarly, Dosey and Meisels(1969) found that individuals establish greater distanes in high-stress ondi-tions. Hartnett et al. (1974) found that male and female individuals approahedshort individuals more losely than tall individuals. Other studies (Phillips, 1979and Sanders, 1976) indiate that the other person's body size in�uenes spae.
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2 Modeling frameworkIn this work we refer to the general framework for pedestrian behavior desribedby Hoogendoorn (2003) and Daamen (2004). Individuals make di�erent dei-sions, following a hierarhial sheme: strategial, tatial and operational.Brie�y, destinations and ativities are hosen at a strategial level; the order ofthe ativity exeution, the ativity area hoie and route hoie are performedat the tatial level, while instantaneous deisions are taken at the operationallevel. In this paper we address the problem of pedestrian walking behavior, nat-urally identi�ed by the operational level of the hierarhy just desribed. We areinterested in modeling the short range behavior in normal onditions, as a re-ation to the surrounding environment and to the presene of other individuals.With the term �normal� we refer to non-evauation and non-pani situations.The motivations and the soundness of disrete hoie methods have beenaddressed in our introdutory work (Antonini et al., 2006). The objetive ofthis paper is twofold. First, we aim to provide an extended disaggregate, fullyestimable behavioral model, alibrated on real pedestrian trajetories manuallytraked from video sequenes. Seond, we want to test the oherene, inter-pretability and generalization power of the proposed spei�ation through adetailed validation on external data. Compared with Antonini et al. (2006),we present three important ontributions: (i) we estimate the model using sig-ni�antly more data representing revealed walking behavior, oming from twodi�erent soures, (ii) the model spei�ation expliitly aptures leader-followerand ollision-avoidane patterns and (iii) the model is suessfully validated onexperimental data, not involved in the estimation proess.We illustrate in Figure 1 the operational framework. The unonstrained de-isions are independent from the presene of other pedestrians and are generatedby subjetive and/or unobserved fators. The �rst of these fators is representedby the individual's destination. It is assumed to be exogenous to the model anddeided at the strategial level. The seond fator is represented by the tendenyof people to keep their urrent diretion, minimizing their angular displaement.Finally, unonstrained aelerations (with aelerations we mean both positiveand negative speed variations) are ditated by the individual desired speed. Theimplementation of these ideas is made through the three unonstrained patternsindiated in Figure 1.We assume that behavioral onstraints are indued by the interations withthe other individuals in the sene. The ollision avoidane pattern is designedto apture the e�ets of possible ollisions on the urrent trajetory of the de-ision maker. The leader-follower pattern is designed to apture the tendenyof people to follow another individual in a rowd, in order to bene�t from the4



Pedestrian walking behavior
Unonstrained Constrained

Keep Toward Free �owdiretion destination a/de Collision Leaderavoidane followerFigure 1: Coneptual framework for pedestrian walking behaviorspae she is reating.The disrete hoie model introdued by Antonini et al. (2006) is extendedhere. The basi elements are the same and summarized below. Pedestrianmovements and interations take plae on the horizontal walking plane. Thespatial resolution depends on the urrent speed vetor of the individuals. Thegeometrial elements of the spae model are illustrated in Figure 2.

Figure 2: The basi geometrial elements of the spae strutureThe urrent position of the deision maker n is pn, her urrent speed vn ∈ IR,her urrent diretion is dn ∈ IR2 (normalized, so that ‖dn‖ = 1) and her visual5



angle is θn. The region of interest is situated in front of the pedestrian, ideallyoverlapping with her visual �eld, and is shematially represented by the shadedarea in Figure 2. An adaptive disretization is obtained assuming three speedregimes, where the individual an aelerate up to two times the speed anddeelerate up to half time the speed or an maintain the urrent speed. Thesehypothesis seem to be oherent with real pedestrian movements. Therefore, fora given time t, the next position will lie into one of the zones, as depited inFigure 3 (left). A hoie between 11 radial diretions is allowed, as illustratedin Figure 3 (right).

Figure 3: The spatial disretization is generated assuming three speed regimesand 11 radial diretions. The external numbers in the right-hand �gure representthe angular amplitudes of the radial ones, in degrees. The internal numbers (r)refer to the enumeration of diretions while s in the left-hand �gure representsthe indexes used for speed regimesA hoie set of 33 alternatives is generated where eah alternative orre-sponds to a speed regime v and a radial diretion d. They are numbered using
na = 11s + r where na is the index of the alternative, s and r are, respetively,the speed regime and the diretion indies, as reported in Figure 3. Eah alter-native is identi�ed by the physial enter of the orresponding ell in the spatialdisretization cvd, that is

cvd = pn + vtd,where t is the time step. The hoie set varies with diretion and speed there-fore the distane between an alternative's enter and other pedestrians will varywith the speed of the deision maker. As a onsequene, di�erenes in individualspeeds are naturally mapped into di�erenes in their relative interations.
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3 Behavioral patternsIndividuals walk on a 2D plane and we model two kind of behavior: hanges indiretion and hanges in speed, i.e. aelerations. This spei�ation is importantto perform walking behavior analysis, and hypotheses have to be made aboutthe unobserved fators in the model and how they are related to the observeddata (see Figure 1). Five behavioral patterns are de�ned. In a disrete hoieontext, they have to be onsidered as ompetitive terms entering the utilityfuntions of eah alternative, as reported in Equation 1. The utilities desribethe spae around the deision maker and under the rational behavior assumptionthe individual hooses that loation (alternative) with the maximum utility. Inthe following, we disuss the di�erent patterns and the assoiated assumptionsin more details.3.1 Unonstrained patternsThe unonstrained patterns are identi�ed by those behaviors that are indepen-dent from the presene of other pedestrians. We assume that three fatorsin�uene the individual behavior.� Toward destination The �rst fator is represented by the hoie of the�nal destination whih an be a spei� area where the individual wantsto perform an ativity in her shedule. To be oherent with the generalframework introdued in Setion 1, we assume that the destination hoieis performed at the strategial level in the hierarhial deision proess.Suh a higher level hoie is naturally re�eted on the short term behavioras the tendeny of individuals to hoose, for the next step, a spatial loa-tion that minimize both the angular displaement and the distane to thedestination.� Keep diretion The seond fator in�uening the unonstrained behav-ior is represented by the tendeny of people to avoid frequent hangingsin diretion. People hoose their next position in order to minimize theangular displaement from their urrent movement diretion. In additionto the behavioral motivation of this fator, it also plays a smoothing rolein the model, avoiding drasti hanges of diretion from one time periodto the next.� Free �ow aeleration In free �ow onditions the behavior of the indi-vidual is driven by her desired speed. The aeleration is then a funtion ofthe di�erene between urrent speed and desired speed. However, this fa-tor is an unobserved individual harateristi and it annot be introdued7



expliitly in the model. As a onsequene, we assume that the attra-tiveness of an individual for an aeleration is dependent on her urrentspeed value. Inreasing speed values orrespond to dereasing attrative-ness for further aelerations. A similar idea is applied to deelerations(see Antonini et al., 2006).3.2 Constrained patternsConstrained behaviors are indued by the presene of other individuals in thesene and apture the pedestrian-pedestrian interations. We identify the fol-lowing patterns:� Leader-follower We assume that the deision maker is in�uened byleaders. In our spatial representation 11 radial ones partition the spae(see Figure 3). In eah of these diretions a possible leader an be identi�edamong a set of potential leaders. A potential leader is an individual whihis inside a ertain region of interest, not so far from the deision makerand with a moving diretion lose enough to the diretion of the radialone where she is. Among the set of potential leaders for eah radialdiretion, one of them is seleted as leader for that diretion (the losestto the deision maker). One identi�ed, the leader indues an attrativeinteration on the deision maker. Similarly to ar following models, aleader aeleration orresponds to a deision maker aeleration.� Collision avoidane This pattern aptures the e�ets of possible olli-sions on the deision maker trajetory. For eah diretion in the hoieset, a ollider is identi�ed among a set of potential olliders. Anotherindividual is seleted as a potential ollider if she is inside a ertain regionof interest, not so far from the deision maker and walking against the de-ision maker herself. The ollider for a radial diretion is hosen from theset of potential olliders for that diretion as the individual whose walkingdiretion forms the larger angle with the deision maker walking dire-tion. This pattern is assoiated with repulsive interations in the obvioussense that pedestrians hange their urrent diretion to avoid ollisionswith other individuals.4 The modelFollowing the framework proposed in Figure 1 we report here the systematiutility as pereived by individual n for the alternative identi�ed by the speed8
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where all the β parameters as well as λa, λde, αLa, ρLa, γLa, δLa, αLde, ρLde,
γLde, δLde, αC, ρC, γC, δC are unknown and have to be estimated. Note that thisspei�ation is the result of an intensive modeling proess, where many di�erentspei�ations have been tested. We explain in the following the di�erent termsof the utilities.� Keep diretion This behavior is aptured by the term

βdirdirdnwhere the variable dirdn is de�ned as the angle in degrees between diretion
d and diretion dn, orresponding to the entral one, as shown in Figure4. For the βdir parameter we expet a negative sign.� Toward destination This behavior is aptured by the term

βddistddistvdn + βddirddirdnwhere the variable ddistvdn is de�ned as the distane (in meters) betweenthe destination and the enter of the alternative Cvdn, while ddirdn is de-�ned as the angle in degrees between the destination and the alternative'sdiretion d, as shown in Figure 4. We expet a negative sign for both the
βddir and βddist parameters.� Free �ow aeleration We de�ne two parameters for the free �ow ael-eration (deeleration) terms, �βa and �βde:9



Figure 4: The elements apturing the keep diretion and toward destinationbehaviors �βa = Iv,aβa(vn/vmax)λa ,�βde = Iv,deβde(vn/vmax)λdeThe attribute Iv,a is 1 if v = va, that is, if the alternative orrespondsto an aeleration and 0 otherwise. Iv,de is similarly de�ned. The twoparameters are non-linear funtions of the urrent speed of the deision-maker vn. βa is the value of the parameter assoiated with vn = vmaxand λa is the elastiity of the parameter with respet to speed. vmaxrepresents the maximum value of the observed speed module. We expetnegative signs for the βa, βde and λde parameters, while a positive signis expeted for λa.� Leader-follower The leader-follower model aptures the attrative inter-ations among pedestrians and is given by the following terms
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L .It is desribed by a sensitivity/stimulus framework. The leader for eahdiretion is hosen onsidering several potential leaders, as shown in Fig-ure 5(a). An individual k is de�ned as a potential leader based on thefollowing indiator funtion:
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1, if dl ≤ dk ≤ dr (is in the one),and 0 < Dk ≤ Dth (not too far),and 0 < |∆θk| ≤ ∆θth (walking in almost the same diretion),
0, otherwise, 10



where dl and dr represent the bounding left and right diretions of thehoie set (de�ning the region of interest) while dk is the diretion identi-fying the pedestrian k position. Dk is the distane between pedestrian kand the deision maker, ∆θk = θk −θd is the di�erene between the move-ment diretion of pedestrian k (θk) and the angle haraterizing diretion
d, i.e. the diretion identifying the radial one where individual k lies (θd).The two thresholds Dth and ∆θth are �xed at the values Dth = 5Dmax,where Dmax is the radius of the hoie set, and ∆θth = 10 degrees. Weassume an impliit leader hoie proess, exeuted by the deision makerherself and modeled hoosing as leader for eah diretion the potentialleader at the minimum distane DL = mink∈K(Dk), illustrated in Figure5(a) by the darker irles. Finally, the indiator funtions Iv,acc and Iv,decdisriminate between aelerated and deelerated alternatives, as for thefree �ow aeleration model.

(a) (b)Figure 5: Figure 5(a) illustrates how many potential leaders are onsidered foreah diretion and how only the nearest one is hosen as leader for a spei�diretion (darker irles). Figure 5(b) shows the leader's movement diretion,
θL, the diretion of the radial one where the leader lies, θd, and her distanefrom the deision maker, DL, used in the de�nitions of both the sensitivity andthe stimulus termsFor a given leader, the sensitivity is desribed bysensitivity = f(DL) = αL

gD
ρL

g

L (2)where DL represents the distane between the deision maker and theleader. The parameters αL
g and ρL

g have to be estimated and g = {acc, dec}indiates when the leader is aelerating with respet to the deision maker.Both αLa and αLde are expeted to be positive while a negative sign is ex-peted for ρLa and ρLde. 11



The deision maker reats to stimuli oming from the hosen leader. Wemodel the stimulus as a funtion of the leader's relative speed ∆vL and theleader's relative diretion ∆θL as follows:stimulus = g(∆vL, ∆θL) = ∆v
γL

g

L ∆θ
δL

g

L (3)with ∆vL = |vL−vn|, where vL and vn are the leader's speed module and thedeision maker's speed module, respetively. The variable ∆θL = θL − θd,where θL represents the leader's movement diretion and θd is the angleharaterizing diretion d, as shown in Figure 5(b). Positive signs areexpeted for both the γLa and γLde parameters, while we expet a negativesign for both the δLa and δLde. A leader aeleration indues a deisionmaker's aeleration. A substantially di�erent movement diretion in theleader redues the in�uene of the latter on the deision maker.� Collision avoidane The ollision avoidane model aptures the repulsiveinterations among pedestrians and is given by the following term
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C .The ollider for eah diretion is hosen onsidering several potential ol-liders, as shown in Figure 6(a). An individual k is de�ned as a potentialollider based on the following indiator funtion:
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1, if dl ≤ dk ≤ dr (is in the one),and 0 < Dk ≤ D ′

th (not too far),and π
2
≤ |∆θk| ≤ π (walking in the other diretion),

0, otherwise,where dl, dr and dk are the same as those de�ned for the leader-followermodel. Dk is now the distane between individual k and the enter ofthe alternative, ∆θk = θk − θdn is the di�erene between the movementdiretion of pedestrian k, θk, and the movement diretion of the deisionmaker, θdn . The value of the distane threshold is now �xed to D ′

th =

10Dmax. We use a larger value ompared to the leader-follower model,assuming the ollision avoidane behavior being a longer range interation,happening also at a lower density level. We assume an impliit olliderhoie proess, whih is deterministi and deision-maker spei�. Amongthe set of Kd potential olliders for diretion d, a ollider is hosen in eahone as that individual having ∆θC = maxk∈Kd
|∆θk|. The related indiatorfuntion is IC. Finally, the ollision avoidane term is inluded in the12



utility funtions of all the alternatives, with the exeption of the entralones whih are used as referenes. So, the indiator funtion Id,dn is equalto 1 for those alternatives that are not in the urrent diretion (d 6= dn),0 otherwise.

(a) (b)Figure 6: Figure 6(a) shows many potential olliders taken into aount foreah diretion. Figure 6(b) shows the ollider and deision maker movementdiretions, θC and θdn respetively. DC represents here the distane of theollider with the enter of the alternativeWe apply a similar sensitivity/stimulus framework, where the sensitivityfuntion is de�ned assensitivity = f(DC) = αCe−ρCDC (4)where the parameters αC and ρC, that have to be estimated, are expetedto have both a negative sign and DC is the distane between the olliderposition and the enter of the alternative, as shown in Figure 6(b). Wehoose the exponential to keep the same funtional form as that used inAntonini et al. (2006). The deision maker reats to stimuli oming fromthe ollider. We model the stimulus as a funtion of two variables:stimulus = f(∆vC, ∆θC) = ∆vγC

C ∆θδC

C (5)with ∆θC = θC − θdn , where θC is the ollider movement diretion and
θdn is the deision maker movement diretion, and ∆vC = vC + vn, where
vC is the ollider's speed module and vn is the deision maker's speedmodule. The parameters γC and δC have to be estimated and a positivesign is expeted for both of them. Individuals walking against the dei-sion maker at higher speeds and in more frontal diretions (higher ∆θC)generate stronger reations, weighted by the sensitivity funtion.13



We use the ross nested logit (CNL) spei�ation used in Antonini et al.(2006). Suh a model allows �exible orrelation strutures in the hoie set,keeping a losed form solution. The CNL being a Multivariate Extreme Valuemodel (MEV, see MFadden, 1978), the probability of hoosing alternative iwithin the hoie set C is:
P(i|C) =

yi
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µG(y1, ..., yJ)
(6)where J is the number of alternatives in C, yj = eVj with Vj the systemati partof the utility desribed by (1) and G is the following generating funtion:
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(8)We assume a orrelation struture depending on the speed and diretion andwe identify �ve nests: aelerated, onstant speed, deelerated, entral and notentral. This orrelation struture is illustrated in Figure 7. Given the lak ofany a priori information, we �x the degrees of membership to the di�erent nests(αjm) to the onstant value 0.5. The parameter µ is normalized to 1, and thenest parameters µm are estimated.

Figure 7: left: Nesting based on diretion right: Nesting based on speed
14



(a) Japanese senario (b) Swiss senarioFigure 8: Images from the two senarios used to ollet the data set5 DataThe data set used to estimate the model onsists of pedestrian trajetories man-ually traked from video sequenes. We have pooled together two di�erent datasets, olleted separately in Switzerland and Japan.The Swiss data set This part of the data set onsists of 36 pedestrian tra-jetories, manually traked from a digital video sequene. The sene has beenreorded out of the Flon metro station in Lausanne, in 2002, for a total of 1675observed positions. Eah position refers to a referene system on the walkingplane, after a alibration of the amera. For a detailed desription of this �rstdata set we refer the reader to Antonini et al. (2006).The Japanese data set This data set has been olleted in Sendai, Japan, onAugust 2000 (see Teknomo et al., 2000, Teknomo, 2002). The video sequene hasbeen reorded from the 6th �oor of the JTB parking building (around 19 metersheight), situated at a large pedestrian rossing point. Two main pedestrian �owsross the street, giving rise to a large number of interations. In this ontext,190 pedestrian trajetories have been manually traked, with a time step of 1seond, for a total number of 10200 position observations. The olleted dataontains the pedestrian identi�er, the time step and the image oordinates. Themapping between the image plane and the walking plane is approximated by a2D-a�ne transformation, whose parameters are alibrated by linear regression.The referene system on the walking plane has the origin arbitrarily plaed on15



the bottom left orner of the zebra rossing. The x axis represents the width ofthe rossing while the y axis is the rossing length.Two frames from the two video sequenes are reported in Figure 8. In Figure9 we report the frequeny of the revealed hoies as observed in the two datasets. The three peaks in the distributions arise on the entral alternatives (6,17, 28), as expeted.

(a) Japanese data set (b) Swiss data setFigure 9: Revealed hoies histogramsWe report in Figure 11 two examples of trajetories and in Figure 12(a) andFigure 12(b) the related speed-time graphs. In Figure 10 we report the speedhistogram and in Table 1 the speed statistis.Data post-proessing The original Swiss data set has been post-proessed inorder to generate the input data for the estimation proess. At eah step, theobserved hoie made by the urrent deision maker has been measured 3 stepsahead in time, i.e. 0.9 seonds. As a onsequene, the last four positions ofeah trajetory are not used. Moreover, in both the data sets those observationsorresponding to a stati pedestrian (vn = 0) and those orresponding to anobserved hoie out of the hoie set have been disarded.When the two data sets are pooled together, we obtain a total of 10783observations. Their repartition aross the nests de�ned in Figure 7 is detailedin Table 2.6 Estimation resultsWe report in Table 3 the estimation results. The parameters have been estimatedusing the Biogeme pakage (Bierlaire, 2003, biogeme.ep�.h). It is a freewarepakage for the estimation of a wide range of random utility models.16



Mean 0.668Standard Error 0.00355Median 0.580Mode 0Standard Deviation 0.358Minimum 0Maximum 3.940Table 1: Speed statistis

Figure 10: Speed histogram

Figure 11: Examples of two manually traked trajetories17



(a) (b)Figure 12: Speed-time graphs for the trajetories in Figure 11Nest # steps % of totalaeleration 1609 14.92%onstant speed 7894 73.21%deeleration 1280 11.87%entral 4257 39.48%not entral 6526 60.52%Table 2: Number of hosen steps in eah nest for the real data setWe �rst shortly omment the results for those parameters related to theunonstrained models (toward destination, keep diretion and free �ow ael-eration). This part of the model spei�ation is similar to that presented inAntonini et al. (2006). The toward destination oe�ients βddir and βddist havebeen estimated signi�antly di�erent from zero. The assumption that destina-tion distane and diretion apture two di�erent e�ets is supported by the data,being related to the 2D nature of the pedestrian movements. Their signs arenegative, as expeted, re�eting the tendeny of individuals to move diretly to-wards their �nal destination, through the shortest path. The destination beingexogenous to the model, we interpret this behavior as the short range projetionof higher level deisions, made at the tatial level, suh as (intermediate) des-tination hoie and/or ativity area hoie. The keep diretion parameter, βdir,is signi�ant and has a negative sign, as expeted. It aptures the tendeny ofpeople to minimize the angular displaement along their trajetories. Finally,3 out of 4 of the free �ow aeleration parameters, namely βa, βde and λahave been estimated signi�antly di�erent from zero. The negative signs for βaand βde indiate the tendeny of pedestrians to pereive variations in speed asa disutility, both positive and negative. A positive value for the aelerationelastiity λa indiates that the attrativeness of an aeleration redues with18



Variable Coe�ient t test 0 t test 1name estimate
βddir -0.075 -11.81
βddist -0.661 -4.06
βdir -0.044 -5.61
βa -4.06 -14.86
βde -2.9 -18.30
λa 0.746 18.00
αLa 4.91 3.27
ρLa -0.890 -3.78
γLa 0.824 9.18
αLde 3.96 6.53
ρLde -0.767 -7.18
γLde 0.431 8.25
δLde -0.0843 -1.31
αC -0.0059 -3.86
ρC -0.603 2.40
γC 0.287 5.14
µconst 1.4 11.39 3.26
µnot_central 1.04 7.05 0.29
µscale 0.591 - -210.31Sample size = 10783Number of estimated parameters = 21Init log-likelihood = -26270.8Final log-likelihood = -22652.0Likelihood ratio test = 30101.6	ρ2 = 0.399Table 3: CNL estimation results for the pooled data setinreases in speed, as expeted. We now omment on the onstrained mod-els' parameters. For the leader-follower behavior we note that in the ase ofan aelerating leader, 3 out of 4 parameters have been estimated signi�antlydi�erent from zero. The positive value for the αLa multipliative oe�ient in-diates that when a leader is present (or several potential leaders are present,so that the losest to the deision maker is onsidered), a leader's aeleration19



indues a orresponding aeleration on the deision maker. The negative signfor the distane exponential oe�ient, ρLa, indiates that the in�uene of theleader on the deision maker aeleration behavior redues when their relativedistane inreases, as expeted. The positive sign for the speed exponential oef-�ient, γLa, shows that the utility of an aeleration inreases with higher valuesof the relative leader speed, as expeted. The same interpretation is given forthe parameters orresponding to a deelerating leader. In this ase we keep inthe model the exponential oe�ient related to the diretion, δLde, with t -teststatistis equal to 1.31. Its negative sign is oherent with the leader-follower be-havior. It re�ets the fat that in those ases where the leader's relative diretionis higher, the in�uene of the leader on the deision maker is lower, resultingin a lower utility value for the deelerated alternatives. The same parameter inthe aelerating ase, δLa, is not signi�ant and it has been removed from themodel. For the estimation of the ollision avoidane parameters, we �x theexponential oe�ient related to the ollider relative diretion, δC, equal to 1for numerial onveniene. The other three free parameters have been estimatedsigni�antly di�erent from zero. The multipliative oe�ient αC is negative,as expeted. It indiates that those diretions more likely to lead to a ollisionhave a lower utility with respet to the entral (urrent) diretion. The latter istaken as the referene one for normalization purposes. The exponential oe�-ient related to the distane between the ollider and the alternative, ρC, has anegative sign. It shows that a more distant ollider has a less negative impat onthe alternative utility. Finally, the exponential oe�ient related to the relativespeed, γC, is positive, as expeted. It aptures the fat that faster olliders havea more negative impat on the utilities than slower individuals. The orrelationstruture is aptured by the ross nested spei�ation. Three nest parametershave been �xed to 1 while two are left free in the model, apturing the orre-lation between the onstant speed and the not entral alternatives. The nestparameter µnot_entral is not signi�antly di�erent from 1. However, we deidedto keep it in the model to avoid potential misspei�ation. Finally, the salefator (µscale) for the Swiss data aptures the variane ratio of the assoiatederror term between the two data sets. The sale is less than 1, so that the vari-ane of the error term for the Japanese data set is (signi�antly) lower than thevariane of the error term for the Swiss observations.We onlude this setion underlying the fat that it seems natural that indi-vidual harateristis suh as age, sex, weight, height (among others) in�uenethe spatial pereption, interpersonal distane and human-human interations.However, given the available data (trajetories) it is not possible to take intoaount suh harateristis. 20



7 Model validationThe validation proedure onsists in applying two models on two data sets. Inaddition to the model presented in Setion 4, we onsider also a simple model,where the utility of eah alternative is represented only by an alternative spei�onstant (ASC). This ASC model perfetly reprodues the observed shares inthe sample, with 31 parameters. Indeed, there are 33 alternatives, minus onewhih is never hosen, minus one onstant normalized to 0. The two data setsare the Swiss-Japanese data set desribed in Setion 5, and a data set olletedin the Netherlands, whih is desribed below.7.1 Swiss-Japanese data setWe �rst apply our model with the parameters desribed in Table 3 on the Swiss-Japanese data set, using the Biosim pakage (Bierlaire, 2003). For eah obser-vation n, we obtain a probability distribution Pn(i) over the hoie set.Figure 13 represents the histogram of the probability value Pn(i∗n) assignedby the model to the hosen alternative i∗n of eah observation n, along withthe hazard value 1/33 (where 33 is the number of alternatives). We onsiderobservations below this threshold as outliers. We observe that there are 12.7%of them.

Figure 13: Predited probabilities of the Swiss-Japanese dataWe ompare also the estimated model with the ASC model. We observe thatour model improves the loglikelihood from -25018.22 up to -22652.0, with less21



parameters (21 instead of 31). The number of outliers with the ASC model is13.7%The top part of Figure 14 reports, for eah i, ∑

n Pn(i), and the bottom partreports ∑

n yin, where yin is 1 if alternative i is seleted for observation n, 0otherwise. As expeted, the two histograms are similar, indiating no majorspei�ation error.This is on�rmed when alternatives are aggregated together, by diretions(see Table 4) and by speed regimes (see Table 5). For a group Γ of alternatives,the quantities
MΓ =

∑

n

∑

i∈Γ Pn(i),

RΓ =
∑

n

∑

i∈Γ yin,and
(MΓ − RΓ)/RΓare reported in olumns 3, 4 and 5, respetively, of these tables.The relative errors showed in Table 4 and Table 5 are low, exept for groupsof alternatives with few observations.
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Figure 14: Predited and observed shares for the Swiss-Japanese data setWe do not disuss the appliation of the ASC model on this data set as, bydesign, it reprodues the shares. Atually, we obtain relative errors in the rangeof 0.0%�0.5%, due to aumulation of rounding errors.Although the above analysis indiates good spei�ation and performane ofthe model, it is not su�ient to fully validate it. Consequently, we perform now22



Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 6, 17, 28 4572.95 4257 7.42%Left 3 − 5, 14 − 16, 25 − 27 3075.46 3245 −5.22%Right 7 − 9, 18 − 20, 29 − 31 3035.96 3197 −5.04%Extreme left 1, 2, 12, 13, 23, 24 70.75 49 44.39%Extreme right 10, 11, 21, 22, 32, 33 27.88 35 −20.34%Table 4: Predited (MΓ) and observed (RΓ) shares for alternatives grouped bydiretions with the Swiss-Japanese data set.Area Γ MΓ RΓ (MΓ − RΓ)/RΓaeleration 1 − 11 1579.06 1609 −1.86%onstant speed 12 − 22 7924.63 7894 0.39%deeleration 23 − 33 1279.30 1280 −0.05%Table 5: Predited and observed shares for alternatives grouped by speed regimewith the Swiss-Japanese data set.the same analysis on a validation data set, not involved in the estimation of themodel.7.2 Duth data setThis data set has been olleted at Delft University, in the period 2000-2001(Daamen and Hoogendoorn, 2003, Daamen, 2004). Volunteer pedestrians arealled to perform spei� walking tasks in a ontrolled experimental setup, inorder to reate spei� pedestrian motion patterns suh as one-diretional �ow,bi-diretional �ow, walking through narrow and wide bottleneks and rossing�ows. A �rst set of experimental variables (free speed, walking diretion, den-sity, bottleneks) are modi�ed during the experiments while a seond group ofontext variables are pedestrian-spei�.For the purpose of our validation proedure we use the subset of the Duthdata set orresponding to a bi-diretional �ow. This situation is the experimen-tal version of the Swiss-Japanese data set, whih orresponds to a walkway. Thesubset inludes 724 subjets for 47471 observed positions, olleted by means ofpedestrian traking tehniques on video sequenes, at a frequeny of 1Hz. Thedata format inludes a pedestrian identi�er, the time step and the x-y oor-dinates. In Figure 15 we report a typial piture illustrating the experimentalsenario. The repartition of the observations aross nests de�ned in Figure 7 isdetailed in Table 6. We note the very low number of deelerations.23



Figure 15: A representative frame from the video sequenes used for data ol-letion Nest # steps % of totalaeleration 5273 11.12%onstant speed 42147 88.78%deeleration 51 0.12%entral 22132 46.62%not entral 25339 53.38%Table 6: Number of hosen steps in eah nest for Duth dataWe apply our model with the parameters desribed in Table 3 on the Duthdata set, using the Biosim pakage. For eah observation n, we obtain a proba-bility distribution Pn(i) over the hoie set.Figure 16 represents the histogram of the probability value Pn(i∗n) assignedby the model to the hosen alternative i∗n of eah observation n, along with thehazard value 1/33 (where 33 is the number of alternatives) illustrating a purelyrandom model with equal probability. Again, we onsider observations belowthis threshold as outliers. We observe that there are 6.56% of them. This is lessthan for the data set used for parameters estimation. The shape of the urve, aswell as the low number of outliers are signs of a good performane of the model.Applying the estimated model to the Duth data set, we obtain a loglikeli-hood of -52676.78. When the ASC model is applied, that is the model repliat-24



Figure 16: Predited probabilities for the Duth dataing the shares of the Swiss-Japanese data set, the loglikelihood deteriorates to-85565.72. This learly illustrates the superior foreasting power of our modelompared to the simple one.The top part of Figure 17 reports the predited probabilities, that is, for eah
i, ∑

n Pn(i), and the bottom part the observed shares, that is ∑

n yin, where yinis 1 if alternative i is seleted for observation n, 0 otherwise. We observe somedisrepanies between the two histograms. In partiular, the model preditsmore deelerations (alternatives 22 to 33) and less aelerations (alternatives 1to 11) ompared to reality.In order to obtain a more robust validation, that is less sensitive to the spaedisretization, we aggregate alternatives together. By doing so, we derease theimpat of small errors, where prediting neighboring ells is more valid thanprediting other ells.Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 6, 17, 28 22032.21 22132 −0.45%Left 3 − 5, 14 − 16, 25 − 27 12566.31 12939 −2.88%Right 7 − 9, 18 − 20, 29 − 31 12659.29 12379 2.26%Extreme left 1, 2, 12, 13, 23, 24 93.99 14 571.35%Extreme right 10, 11, 21, 22, 32, 33 119.20 7 1602.88%Table 7: Predited (MΓ) and observed (RΓ) shares for alternatives grouped bydiretions with the Duth data set. 25
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Figure 17: Choie histogram predited by the model against the revealed hoiesin the Duth data setArea Γ MΓ RΓ (MΓ − RΓ)/RΓaeleration 1 − 11 2668.69 5273 −49.39%onstant speed 12 − 22 39292.86 42147 −6.77%deeleration 23 − 33 5509.46 51 10702.87%Table 8: Predited (MΓ) and observed (RΓ) shares for alternatives grouped byspeed regime with the Duth data set.Tables 7 and 8 show that the model predits well the diretion and theonstant speed. We on�rm the previous observation, that deelerations areover predited, and aelerations under predited.There are two explanations for this phenomenon. First, the Duth data setwas olleted in ontrolled experimental onditions, whih may have introdueda bias in pedestrian behavior, depending on the exat instrutions they have re-eived. This assumption is supported by the absene of deelerations in the dataset. Seond, the Duth pedestrians walk faster than the Japanese, as reportedin Table 9 and in Figure 18. In this ase, the model an predit a deelerationbeause of the higher speed value. A similar reasoning holds for aelerations.The speed distribution is quite di�erent for the Swiss-Japanese data set andthe Duth data set as shown in Figure 18. Indeed, the Duth distribution seemsto be Gaussian with high mean speed, whih haraterize the experimental on-ditions; while the Swiss-Japanese distribution is left-entered, relevant for a real26



situation where are more interations (higher density of population). In thisase, high speeds are rare events.Data Set Mean speed [m/s℄Duth (experimental) 1.27Japanese (real) 0.69Swiss (real) 1.46Table 9: Average pedestrian speed in the data sets
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Figure 18: Distribution of speed in the two data setsWe have applied the simple ASC model in the Duth data set. As expeted,it is less powerful for predition than the developed model (see Tables 10 and11).For the sake of ompleteness, an ASC model has been alibrated on theDuth data set, in the same way than for the Swiss-Japanese. Our model es-timated on the Swiss-Japanese data is better than the ASC model estimatedon the Duth data, when applied on the Duth data set, both for log-likelihood(-52676.78 against -77871.06) and predition (6.76 %, perentage of bad obser-vations against 11.45 % ). We have summarized the various loglikelihood valuesin Table 12, where eah olumn orresponds to a model, and eah row to a dataset.In summary, we observe that our model, estimated on the Swiss-Japanesedata, performs very well in reproduing the Duth data set in terms of diretions27



Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 6, 17, 28 18639.80 22132 −15.78%Left 3 − 5, 14 − 16, 25 − 27 14335.35 12939 10.79%Right 7 − 9, 18 − 20, 29 − 31 14101.00 12379 13.91%Extreme left 1, 2, 12, 13, 23, 24 230.38 14 1545.55%Extreme right 10, 11, 21, 22, 32, 33 164.48 7 2249.65%Table 10: Predited (MΓ) using the ASC model and observed (RΓ) shares foralternatives grouped by diretions with the Duth data set.Area Γ MΓ RΓ (MΓ − RΓ)/RΓaeleration 1 − 11 7275.62 5273 37.98%onstant speed 12 − 22 34378.45 42147 −18.43%deeleration 23 − 33 5816.93 51 11305.75%Table 11: Predited (MΓ) using the ASC model and observed (RΓ) shares foralternatives grouped by speed regime with the Duth data set.and onstant speed. The model does not perform well in foreasting aelerationsand deelerations.8 ConlusionsIn this paper we propose a disrete hoie model for pedestrian walking behavior.The short range walking behavior of individuals is modeled, identifying twomain patterns: onstrained and unonstrained. The onstraints are generatedby the interations with other individuals. We desribe interations in termsof a leader-follower and a ollision avoidane models. These models aptureself-organizing e�ets whih are harateristi of rowd behavior, suh as laneformation. Inspiration for the mathematial form of these patterns is taken fromdriver behaviors in transportation siene, and ideas suh as the ar followingmodel and lane hanging models have been reviewed and re-adapted to the moreASC model based on ASC model based onData set Our model Swiss-Japanese data Duth dataSwiss-Japanese -22652.00 -25018.22 �Duth -52676.78 -85565.72 -77871.06Table 12: Loglikelihood of eah model applied on the two data sets28



omplex pedestrian ase. The di�ulties to ollet pedestrian data as well as thelimited information onveyed by pure dynami data sets limit the possibilitiesin the model spei�ation step. Important individual e�ets annot be apturedwithout the support of soio-eonomi harateristis. Reent development ofpedestrian laboratories, where the set up of ontrolled experimental onditionsis possible, represents an important step in this diretion. We use experimentaldata in a two step validation proedure. First, the model is validated on thesame data set used for estimation in order to hek for possible spei�ationerrors. Seond, the model is run on a new data set olleted at Delft Universityunder ontrolled experimental onditions. The proposed validation proedureunderline a good stability of the model and a good generalization performane.Few observations are badly predited, mostly onentrated at the extreme of thehoie set. The estimated oe�ients are signi�ant and their sign is onsistentwith our behavioral assumptions. Di�erently from other previous models, wean quantify the in�uene of the relative kinemati harateristis of leaders andolliders on the deision maker behavior. Moreover, suh quantitative analysishas been performed using real world pedestrian data.Future developments will fous in analyzing more and improving the ael-eration and deeleration patterns. In partiular, we plan to investigate the useof an adaptive resolution of the hoie set, as well as inorporating in the modelsome physial harateristis of the pedestrians or of their ethni group, suh asaverage height and average speed.AknowledgmentsWe are very grateful to Kardi Teknomo, Serge Hoogendoorn and Winnie Daa-men, who provided us with the data sets.ReferenesAhmed, K. I. (1999). Modeling drivers' aeleration and lane hanging be-haviors., PhD thesis, Massahusetts Institute of Tehnology, Cambridge,MA.Antonini, G., Bierlaire, M. and Weber, M. (2006). Disrete hoie models ofpedestrian walking behavior, Transportation Researh Part B: Method-ologial 40(8): 667�687.Bierlaire, M. (2003). BIOGEME: a free pakage for the estimation of disretehoie models, Proeedings of the 3rd Swiss Transportation ResearhConferene, Asona, Switzerland. www.str.h.29
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