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Introduction

• Discrete choice models:

P (i|Cn) where Cn = {1, . . . , J}

• Random utility models:

Uin = Vin + εin

and

P (i|Cn) = P (Uin ≥ Ujn, j = 1, . . . , J)

• Utility is a latent concept
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Multinomial Logit Model

• Assumption: εin are i.i.d. Extreme Value
distributed.

• Independence is both across i and n

• Choice model:

P (i|Cn) =
eVin

∑
j∈Cn

eVjn
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Relaxing the independence assumption

...across alternatives




U1n

...
UJn



 =




V1n
...

VJn



+




ε1n
...

εJn





that is
Un = Vn + εn

and εn is a vector of random variables.
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Relaxing the independence assumption

• εn ∼ N(0, Σ): multinomial probit model
• No closed form for the multifold integral
• Numerical integration is computationally

infeasible

• Extensions of multinomial logit model
• Nested logit model
• Multivariate Extreme Value (MEV) models
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MEV models

Family of models proposed by McFadden (1978)
Idea: a model is generated by a function

G : R
J → R

From G, we can build

• The cumulative distribution function (CDF) of
εn

• The probability model

• The expected maximum utility

Called Generalized EV models in DCM
community
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MEV models

1. G is homogeneous of degree µ > 0, that is

G(αx) = αµG(x)

2. lim
xi→+∞

G(x1, . . . , xi, . . . , xJ) = +∞, ∀i,

3. the kth partial derivative with respect to k
distincts xi is non negative if k is odd and non
positive if k is even, i.e., for all (disctincts)
indices i1, . . . , ik ∈ {1, . . . , J}, we have

(−1)k ∂kG

∂xi1 . . . ∂xik

(x) ≤ 0, ∀x ∈ R
J
+.
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MEV models

• Density function:
F (ε1, . . . , εJ) = e−G(e−ε1 ,...,e−εJ )

• Probability: P (i|C) = eVi+ln Gi(e
V1 ,...,eVJ )

∑
j∈C eVj+ln Gj(eV1 ,...,eVJ )

with

Gi = ∂G
∂xi

. This is a closed form

• Expected maximum utility: VC = lnG(...)+γ
µ

where γ is Euler’s constant.

• Note: P (i|C) = ∂VC

∂Vi
.
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MEV models

Example: Multinomial logit:

G(eV1, . . . , eVJ ) =
J∑

i=1

eµVi

Recent methodological developments in discrete choice models – p.10/34



MEV models

Example: Nested logit

G(y) =
M∑

m=1

(
Jm∑

i=1

y
µm

i

) µ
µm

Example: Cross-Nested Logit

G(y1, . . . , yJ) =
M∑

m=1




∑

j∈C

(αjm
1/µyj)

µm





µ
µm
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Nested Logit Model
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Nested Logit Model
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Cross-Nested Logit Model
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MEV models

Advantages:

• Closed form probability model

• Provides a great deal of flexibility
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MEV models

Issues:

• Formulation not in term of correlations

Abbe, Bierlaire & Toledo (2005)

• Require heavy proofs

Daly & Bierlaire (2006)

• Homoscedasticity
• McFadden & Train (2000)

• Sampling issues
• Bierlaire, Bolduc & McFadden (2006)
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Mixture of MEV

In statistics, a mixture density is a pdf which is a
convex linear combinations of other pdf’s.
If f(ε, θ) is a pdf, and if w(θ) is a nonnegative
function such that

∫
a w(a)da = 1 then

g(ε) =

∫

a

w(a)f(ε, θ)da

is also a pdf. We say that g is a mixture of f .

If f is the pdf of a MEV model, it is a mixture of

MEV
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Mixture of MEV

Discrete mixtures are also possible. If f(ε, θ) is a
pdf, and if wi, i = 1, . . . , n are nonnegative
weights such that

∑n
i=1 wi = 1 then

g(ε) =
n∑

i=1

wif(ε, θi)

is also a pdf. We say that g is a discrete mixture
of f .
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Mixture of MEV

Common terminology:

• Mixed logit: incorrect

• Logit kernel: correct

• Hybrid model: inaccurate

Most appropriate terminology:
mixture of logit models
mixture of MEV models

If w(a) is a normal pdf, we have
normal mixture of MEV models
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Mixture of MEV

Un = Vn + εn

• εn compliant with MEV theory

• Vn contains random parameters.

Vn = βTXn where β ∼ N(β̂, Σ)

• Using the Cholesky factorization, we have

β = β̂ + Pζ where Σ = PP T

and ζ are i.i.d. standard normal variates.
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Heteroscedastic model

• Random parameter = alternative specific
constant

• Error term becomes:

εin = ξin + νin

• ξin ∼ N(ci, σ
2
i )

• µin ∼ MEV
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Panel data

• Same individual observed several times

• Utility:
Uint = Vint + ξin + νint

• Probability

Pn(i|Cn) =
∏

t

Pnt(i|Cnt)

where Cn = ∪t∈Tn
Cnt

• ξinis not distributed across observations, only
across individuals
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Mixture of MEV

• McFadden & Train(2000)
“Under mild regularity conditions, any discrete
choice model derived from random utility
maximization has choice probabilities that
can be approximated as closely as one
pleases by a Mixed MNL model.”

• Why bother with Mixture of MEV?
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Mixture of MEV

• MEV has closed form formulation

• Mixture models require simulated maximum
likelihood estimation

• Capture as much as possible of the
correlation using MEV

• Use the mixing distribution for the rest

• Issue: estimation
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BIOGEME

Motivations

• MEV family must be explored

• Complicated implementation

• No appropriate software package

• Most researchers use commercial packages:
LIMDEP, ALOGIT, HieLoW or Gauss, Matlab,
SAS

• Freeware: Kenneth Train (but based on
Gauss)
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BIOGEME

Objectives

• Maximum likelihood estimation of a wide
variety of MEV models

• Use various nonlinear optimization algorithms

• Open source

• Designed for researchers

• Flexible and easily extensible
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BIOGEME

BIerlaire’s Optimization toolbox for GEV Models
Estimation

biogeme.epfl.ch
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Testing

• Mixtures of MEV is very flexible (too flexible?)

• Choice of the distribution for the random
parameter is important

• Need for a test to check if it is appropriate

• Fosgerau & Bierlaire (2006).
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Testing: main ideas

• Random parameter: ω

• Base (postulated) distribution: f , F

• True distribution: g, G

• Unknown transformation Q, monotonic, such
that

G(ω) = Q(F (ω)),

• Densities:

g(ω) = q(F (ω))f(ω).
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Testing: main ideas

• Approximate q using polynomials.

qN(x) = 1 +
N∑

k=1

δkLk(x),

• Lk are transformed Legendre polynomials

• Define

q(x) ≈
1

K
q2
N(x),

where K =
∫ +∞

−∞ q2
N(F (ω))f(ω)dω

Recent methodological developments in discrete choice models – p.30/34



Testing: main ideas

01020
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ln(f) ∼ N(−2.52, 1.432)
g1

g2

g3
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Testing: main ideas

• Under the null hypothesis that f = g,

Pn(i|Cn) =

∫ +∞

−∞

Pn(i|β, Cn)g(β)dβ,

is equivalent to the model

Pn(i|Cn) =

∫ +∞

−∞

Pn(i|β, Cn)f(β)dβ.
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Testing: main ideas

• The two models are nested

• Likelihood ratio test can be used to test if the
models are indeed equivalent

• Test implemented in Biogeme
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Short course

Lausanne, March 25-29, 2007

Ben-Akiva, McFadden, Bierlaire, Bolduc

http://transp-or.epfl.ch/dca
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