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Introduction

• Econometrics
• Discrete choice models
• Recent development in random utility

models

• Operations Research
• Nonlinear optimization
• Global optimum for non convex functions
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Random utility models
• Choice model:

P (i|Cn) where Cn = {1, . . . , J}

• Random utility:

Uin = Vin + εin

and

P (i|Cn) = P (Uin ≥ Ujn, j = 1, . . . , J)

• Utility is a latent concept
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Multinomial Logit Model
• Assumption: εin are i.i.d. Extreme Value

distributed.

• Independence is both across i and n

• Choice model:

P (i|Cn) =
eVin

∑

j∈Cn
eVjn
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Relaxing the independence assumption
...across alternatives







U1n
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UJn






=
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VJn






+







ε1n
...

εJn







that is
Un = Vn + εn

and εn is a vector of random variables.
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Relaxing the independence assumption
• εn ∼ N(0, Σ): multinomial probit model
• No closed form for the multifold integral
• Numerical integration is computationally

infeasible

• Extensions of multinomial logit model
• Nested logit model
• Multivariate Extreme Value (MEV) models
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MEV models
Family of models proposed by McFadden (1978)
Idea: a model is generated by a function

G : R
J → R

From G, we can build

• The cumulative distribution function (CDF) of
εn

• The probability model

• The expected maximum utility

Called Generalized EV models in DCM
community
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MEV models
1. G is homogeneous of degree µ > 0, that is

G(αx) = αµG(x)

2. lim
xi→+∞

G(x1, . . . , xi, . . . , xJ) = +∞, ∀i,

3. the kth partial derivative with respect to k
distinct xi is non negative if k is odd and non
positive if k is even, i.e., for all (distinct)
indices i1, . . . , ik ∈ {1, . . . , J}, we have

(−1)k ∂kG

∂xi1 . . . ∂xik

(x) ≤ 0, ∀x ∈ R
J
+.
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MEV models
• Cumulative distribution function:

F (ε1, . . . , εJ) = e−G(e−ε1 ,...,e−εJ )

• Probability: P (i|C) = eVi+ln Gi(e
V1 ,...,eVJ )

∑

j∈C eVj+ln Gj(eV1 ,...,eVJ )
with

Gi = ∂G
∂xi

. This is a closed form

• Expected maximum utility: VC = lnG(·)+γ
µ

where γ is Euler’s constant.

• Note: P (i|C) = ∂VC

∂Vi
.
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MEV models
Example: Multinomial logit:

G(eV1, . . . , eVJ ) =
J
∑

i=1

eµVi
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MEV models
Example: Nested logit

G(y) =
M
∑

m=1

(

Jm
∑

i=1

y
µm

i

)

µ
µm

Example: Cross-Nested Logit

G(y1, . . . , yJ) =
M
∑

m=1





∑

j∈C

(αjm
1/µyj)

µm





µ
µm

Discrete choice models and heuristics for global nonlinear optimization – p.11/52



Nested Logit Model
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Nested Logit Model
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Cross-Nested Logit Model
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MEV models
Issues:

• Formulation not in term of correlations

Abbe, Bierlaire & Toledo (2005)

• Require heavy proofs

Daly & Bierlaire (2006)

• Homoscedasticity

McFadden & Train (2000)

• Sampling issues

Bierlaire, Bolduc & McFadden (2006)
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Sampling issue
• Sampling is never random in practice

• Choice-based samples are convenient in
transportation analysis

• Estimation is an issue

• Main references:
• Manski and Lerman (1977)
• Manski and McFadden (1981)
• Cosslett (1981)
• Ben-Akiva and Lerman (1985)
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Sampling issues
Main result:

• Estimator for random samples is valid of
exogenous samples

• It is both consistent and efficient

• If observations are weighted, it becomes
inefficient

Exogenous Sample Maximum Likelihood (ESML)
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Sampling issue: estimation
Conditional Maximum Likelihood (CML)
Estimator

maxθ L(θ) =
∑N

n=1 ln Pr(in|xn, s, θ)

=
N
∑

n=1

ln
R(in, xn, θ)P (in|xn, θ)

∑

j∈Cn
R(j, xn, θ)P (j|xn, θ)

where R(i, x, θ) = Pr(s|i, x, θ) is the probability

that a population member with configuration (i, x)

is sampled
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Estimation of MEV models
The main term in the CML formulation is:

R(i, x, θ)P (i|x, θ)
∑

j∈C R(j, x, θ)P (j|x, θ)

=

eVi+lnGi(·)+lnR(i,x,θ)

∑

j∈C eVj+lnGj(·)+lnR(j,x,θ)
.

where index n has been dropped
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Estimation of MEV models
• Case of MNL model: Gi = 0 when µ = 1.

R(i, x, θ)P (i|x, θ)
∑

j∈C R(j, x, θ)P (j|x, θ)
=

eVi+lnR(i,x,θ)

∑

j∈C eVj+lnR(j,x,θ)
.

• Well-known result: if ESML is used, only
constants are biased

• Indeed, Vi =
∑

k βkxk + ci

• Question: does this generalize to all MEV?

• Answer: NO
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Estimation of MEV models
• The V ’s are shifted in the main formula

eVi+lnGi(·)+lnR(i,x,θ)

∑

j∈C eVj+lnGj(·)+lnR(j,x,θ)
.

• ... but not in the Gi

Gi(·) =
∂G

∂eVi

(

eV1, . . . , eVJ
)

.

• ESML will not produce consistent estimates
on non-MNL MEV models.
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Estimation of MEV models

eVi+lnGi(·)+lnR(i,x,θ)

∑

j∈C eVj+lnGj(·)+lnR(j,x,θ)
.

• New idea: estimate ln R(i, x, θ) from data

• Cannot be done with classical software

• But easy to implement due to the MNL-like
form

• Available in BIOGEME, an open source
freeware for the estimation of random utility
models:

biogeme.epfl.ch
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Reference
Bierlaire, M., Bolduc, D., and McFadden, D. (2006). The
estimation of Generalized Extreme Value models from
choice-based samples. Technical report TRANSP-OR
060810. Transport and Mobility Laboratory, ENAC, EPFL.

transp-or.epfl.ch
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Global optimization
Motivation:

• (Conditional) Maximum Likelihood estimation
of MEV models

• More advanced models:
• continuous and discrete mixtures of MEV

models
• estimation with panel data
• latent classes
• latent variables
• discrete-continuous models
• etc...
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Global optimization
Objective: identify the global minimum of

min
x∈Rn

f(x),

where

• f : R
n → R is twice differentiable.

• No special structure is assumed on f .
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Literature
Local nonlinear optimization:

• Main focus:
• global convergence
• towards a local minimum
• with fast local convergence.

• Vast literature

• Efficient algorithms

• Softwares
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Literature
Global nonlinear optimization: exact approaches

• Real algebraic geometry (representation of
polynomials, semidefinite programming)

• Interval arithmetic

• Branch & Bound

• DC - difference of convex functions
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Literature
Global nonlinear optimization: heuristics

• Usually hybrid between derivative-free
methods and heuristics from discrete
optimization. Examples:

• Glover (1994) Tabu + scatter search

• Franze and Speciale (2001) Tabu + pattern search

• Hedar and Fukushima (2004) Sim. annealing + pattern

• Hedar and Fukushima (2006) Tabu + direct search

• Mladenovic et al. (2006) Variable Neighborhood
search (VNS)
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Our heuristic
Framework: VNS
Ingredients:

1. Local search

(SUCCESS, y∗)← LS(y1, ℓmax,L),

where
• y1 is the starting point
• ℓmax is the maximum number of iterations
• L is the set of already visited local optima
• Algorithm: trust region
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Our heuristic
1. Local search

(SUCCESS, y∗)← LS(y1, ℓmax,L),

• If L 6= ∅, LS may be interrupted
prematurely
• If L = ∅, LS runs toward convergence
• If local minimum identified,

SUCCESS=true
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Our heuristic
2. Neighborhood structure
• Neighborhoods: Nk(x), k = 1, . . . , nmax

• Nested structure: Nk(x) ⊂ Nk+1(x) ⊆ R
n,

for each k

• Neighbors generation

(z1, z2, . . . , zp) = NEIGHBORS(x, k).

• Typically, nmax = 5 and p = 5.
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The VNS framework
Initialization x∗1 local minimum of f

• Cold start: run LS once
• Warm start: run LS from randomly

generated starting points

Stopping criteria Interrupt if
1. k > nmax: the last neighborhood has been

unsuccessfully investigated
2. CPU time ≥ tmax, typ. 30 minutes (18K

seconds).
3. Number of function evaluations ≥ evalmax,

typ. 105.
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The VNS framework
Main loop Steps:

1. Generate neighbors of xk
best:

(z1, z2, . . . , zp) = NEIGHBORS(xk
best, k).

(1)

2. Apply the p local search procedures:

(SUCCESSj, y
∗
j )← LS(zj, ℓlarge,L). (2)

3. If SUCCESSj =FALSE, for j = 1, . . . , p, we
set k = k + 1 and proceed to the next
iteration.
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The VNS framework
Main loop Steps (ctd):

4. Otherwise,

L = L ∪ {y∗j}. (3)

for each j such that SUCCESSj =TRUE

5. Define xk+1
best

f(xk+1
best) ≤ f(x), for each x ∈ L. (4)

6. If xk+1
best = xk

best, no improvement. We set
k = k + 1 and proceed to the next iteration.
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The VNS framework
Main loop Steps (ctd):

7. Otherwise, we have found a new candidate
for the global optimum. The neighborhood
structure is reset, we set k = 1 and
proceed to the next iteration.

Output The output is the best solution found
during the algorithm, that is xk

best.
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Local search
• Classical trust region method with

quasi-newton update

• Key feature: premature interruption

• Three criteria: we check that
1. the algorithm does not get too close to an

already identified local minimum.
2. the gradient norm is not too small when the

value of the objective function is far from
the best.

3. a significant reduction in the objective
function is achieved.
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Neighborhoods
The key idea: analyze the curvature of f at x

• Let v1, . . . , vn be the (normalized)
eigenvectors of H

• Let λ1, . . . , λn be the eigenvalues.

• Define direction w1, . . . , w2n, where wi = vi if
i ≤ n, and wi = −vi otherwise.

• Size of the neighborhood: d1 = 1,
dk = 1.5dk−1, k = 2, . . ..
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Neighborhoods
• Neighbors:

zj = x + αdkwi, j = 1, . . . , p, (5)

where
• α is randomly drawn U [0.75, 1]

• i is a selected index

• Selection of wi:
• Prefer directions where the curvature is

larger
• Motivation: better potential to jump in the

next valley
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Neighborhoods: selection ofwi

P (wi) = P (−wi) =
e
β

|λi|

dk

2
n
∑

j=1

e
β

|λj |

dk

.

• In large neighborhoods (dk large), curvature
is less relevant and probabilities are more
balanced.

• We tried β = 0.05 and β = 0.

• The same wi can be selected more than once

• The random step α is designed to generate
different neighbors in this case
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Numerical results
• 25 problems from the literature

• Dimension from 2 to 100

• Most with several local minima

• Some with “crowded” local minima

• Measures of performance:
1. Percentage of success (i.e. identification of

the global optimum) on 100 runs
2. Average number of function evaluations for

successful runs
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Shubert function

(
5
∑

j=1

j cos((j + 1)x1 + j))(
5
∑

j=1

j cos((j + 1)x2 + j))
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Numerical results
Competition:

1. Direct Search Simulated Annealing (DSSA)
Hedar & Fukushima (2002).

2. Continuous Hybrid Algorithm (CHA)
Chelouah & Siarry (2003).

3. Simulated Annealing Heuristic Pattern Search
(SAHPS) Hedar & Fukushima (2004).

4. Directed Tabu Search (DTS) Hedar &
Fukushima (2006) .

5. General variable neighborhood search
(GVNS) Mladenovic et al. (2006)
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Numerical results: success rate
Problem VNS CHA DSSA DTS SAHPS GVNS

RC 100 100 100 100 100 100

ES 100 100 93 82 96

RT 84 100 100 100

SH 78 100 94 92 86 100

R2 100 100 100 100 100 100

Z2 100 100 100 100 100

DJ 100 100 100 100 100

H3,4 100 100 100 100 95 100

S4,5 100 85 81 75 48 100

S4,7 100 85 84 65 57

S4,10 100 85 77 52 48 100
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Numerical results: success rate
Problem VNS CHA DSSA DTS SAHPS GVNS

R5 100 100 100 85 91

Z5 100 100 100 100 100

H6,4 100 100 92 83 72 100

R10 100 83 100 85 87 100

Z10 100 100 100 100 100

HM 100 100

GR6 100 90

GR10 100 100

CV 100 100

DX 100 100

MG 100 100
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Numerical results: success rate
Problem VNS CHA DSSA DTS SAHPS GVNS

R50 100 79 100

Z50 100 100 0

R100 100 72 0

• Excellent success rate on these problems

• Best competitor: GVNS (Mladenovic et al,
2006)
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Performance Profile
→ Performance Profile proposed by Dolan and Moré (2002)

Algorithms Problems

Method A 20 10 ** 10 ** 20 10 15 25 **

Method B 10 30 70 60 70 80 60 75 ** **
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Performance Profile
→ Performance Profile proposed by Dolan and Moré (2002)

Algorithms Problems

Method A 2 1 rfail 1 rfail 1 1 1 1 rfail

Method B 1 3 1 6 1 4 6 5 rfail rfail
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Performance Profile
→ Performance Profile proposed by Dolan and Moré (2002)

Algorithms Problems

Method A 2 1 rfail 1 rfail 1 1 1 1 rfail

Method B 1 3 1 6 1 4 6 5 rfail rfail
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Numerical results: efficiency
Number of function evaluations (4 competitors)
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Numerical results: efficiency
Number of function evaluations (zoom)
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Numerical results: efficiency
Number of function evaluations (GVNS)
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Numerical results: efficiency
Number of function evaluations (zoom)
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Conclusions
• Use of state of the art methods from
• nonlinear optimization: TR + Q-Newton
• discrete optimization: VNS

• Two new ingredients:
• Premature stop of LS to spare

computational effort
• Exploits curvature for smart coverage

• Numerical results consistent with the
algorithm design
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Global optimization
• Collaboration with Michaël Thémans (EPFL)

and Nicolas Zufferey (U. Laval, Québec).

• Paper under preparation

Thank you!
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