Capturing blocking and spillback in finite capacity queuing networks

Carolina Osorio

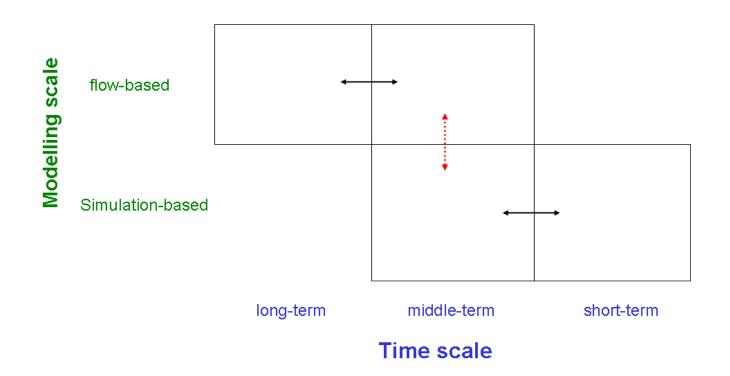
Transport and Mobility Laboratory, EPFL

May 2007

Outline

- finite capacity queuing network framework
- model description
- validation
- case study

Overall objectives

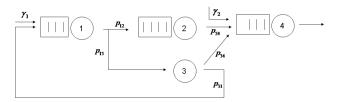


Current phase: define aggregate model

Capturing blocking and spillback in finite capacity queuing networks – p.3/38

Finite capacity networks

Aim: estimate network performance



How can we model these networks?

Approach: queueing theory.

Queueing networks

- Jackson networks
 - infinite buffer size assumption
 - violated in practice

Between-queue correlation structure

- complex to grasp
- helps explain: blocking, spillbacks, deadlocks, chained events

If these events want to be acknowledged:

finite capacity queueing networks

Finite capacity queueing networks FCQN

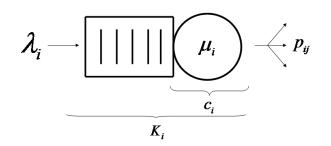
Main application fields:

- software architectures performance prediction
- telecommunications
- manufacturing systems

More uncommon applications:

- pedestrian flow through circulation systems
- prisoner flow through a network of prisons with varying security levels
- hospital patient flow

Queueing: framework



- *c_i* parallel servers
- K_i total capacity: nb serveurs + queueing slots
- λ_i : average arrival rate
- μ_i : average service rate
- p_{ij} : transition probabilities (routing)
- station (queue)

FCQN methods

We can evaluate the main network performance measures using the joint stationary distribution, π .

$$\pi = (P(N_1 = n_1, ..., N_S = n_S), (n_1, ..., n_S) \in (\mathcal{S}_1, ..., \mathcal{S}_S))$$

1. Closed form expression

- product-form dbn: (Jackson, BCMP)
- small networks: two-station single server with either tandem or closed topology

For more general topology networks:

- 2. Exact numerical evaluation
- 3. Approximation methods: decomposition methods

Exact numerical methods

$$\begin{cases}
\pi Q = 0 \\
\sum_{s \in \mathcal{S}} \pi_s = 1
\end{cases}$$

- $\pi :$ stationary dbn of the network
- Q: network transition rate matrix
- \mathcal{S} : state space

For each network state we define:

- all possible transitions to other states
- their corresponding rates

Disadvantages:

- untractable: limited to small networks
- **not flexible**: changes in the configuration or topology: redefine Q

A more flexible approach: decomposition methods.

Decomposition methods

By decomposing we can aim at analysing:

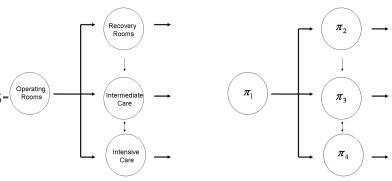
arbitrary topology and size

Method description

- 1. decompose the network into subnetworks
- 2. analyse each subnetwork independently: es-
- 3. estimate the main performance measures

Subnetwork

- size: single queues
- analysis using global balance equations.
- obtain estimates of the marginal dbns



Current objective

Existing methods mainly concern

- single server + feed-forward network
- multiple server + tandem

For multiple server + arbitrary topology:

- revise queue capacities (endogenous)
- vary network topologies (analogy with closed form dbn networks)

Requires:

- approximations to ensure integrality of endogenous capacities
- aposteriori validation (e.g. check positivity)

unsuitable for an optimization framework

Current objective

- multiple server + arbitrary topology + BAS
- preserving initial network configuration (topology + capacities)
- explicitly model blocking events

Global balance equations

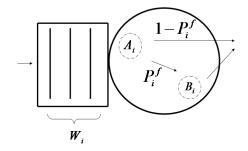
$$\pi(i)Q(i) = 0$$
$$\sum_{s \in \mathcal{S}(i)} \pi(i)_s = 1$$

 $\pi(i)$: stationary dbn of station iQ(i): transition rate matrix S(i): state space

State space

Upon arrival to a queue a job :

- 1 [queue]
- 2 is served
- 3 [blocked]
- 4 departs



State space of station i:

$$\mathcal{S}_i = \{ (A_i, B_i, W_i) \in \mathbb{N}^3, A_i + B_i \le c_i, W_i \le K_i - c_i \}$$

We want to estimate:

$$\pi(i) = (P((A_i, B_i, W_i) = (a, b, w)) \ \forall (a, b, w) \in \mathcal{S}(i))$$

Transition rates

Q(i): effective arrival rates effective service rates

stationary dbn of the subnetwork marginal stationary dbn of the network

For a given station how can we estimate the

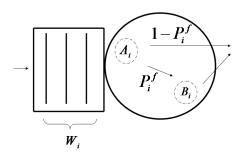
- effective arrival rates ?
- effective service rates ?

Main challenge and complexity lies in appropriatly acknowledging the correlation between the stations i.e. in approriatly revising these structural parameters.

Transition rates

Upon arrival to a queue a job :

- 1 [queue]
- 2 is served
- 3 [blocked]
- 4 departs



Grasping the between station correlation implies appropriately estimating the transition rates between these states.

Transition rates

Q(i) is a function of:

- λ_i , μ_i : average arrival and service rate
- P_i^f : average blocking probability
- $\tilde{\mu}(i, b)$: average unblocking rate given that there are b blocked jobs

Consider station *i* which is in state $(A_i, B_i, W_i) = (a, b, w)$. Then the possible transitions and their rates are:

new state	rate	condition				
l	q_{kl}^i					
(a, b, w + 1)	λ_i	$a+b == c_i \& w+1 \le K_i - c_i$				
(a+1,b,w)	λ_i	$a+b+1 \le c_i$				
(a-1,b,w)	$a\mu_i(1-P_i^f)$	w == 0				
(a,b,w-1)	$a\mu_i(1-P_i^f)$	$w \ge 1$				
(a-1,b+1,w)	$a\mu_i P_i^f$	always possible				
(a, b-1, w)	$ ilde{\mu}(i,b)$	w == 0				
(a+1, b-1, w-1)	$ ilde{\mu}(i,b)$	$w \ge 1$				

Lets estimate these parameters ...

Capturing blocking and spillback in finite capacity queuing networks - p.17/38

Average blocking probability

$$P_i^f = \sum_j p_{ij} P(N_j = K_j)$$

where $P(N_j = K_j)$ is the probability that station *j* is full.

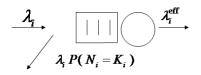
Arrival rates

- λ_i : total arrival rate (includes potentially lost arrivals)
- λ_i^{eff} : the effective arrival rate (excludes lost arrivals)
- γ_i : external arrival rate

1) Loss model:

$$\lambda_i^{\mathsf{eff}} = \lambda_i (1 - P(N_i = K_i))$$

where N_i denotes the total number of jobs at station *i* ($N_i = A_i + B_i + W_i$).



2) Flow conservation laws hold for the effective arrrival rates:

$$\lambda_i^{\text{eff}} = \gamma_i (1 - P(N_i = K_i)) + \sum_j p_{ji} \lambda_j^{\text{eff}}$$

Inter-arrival times $\sim \varepsilon(\lambda_i)$, i.i.d

Service and unblocking rates

When station *i* is in state (a, b, w):

1) service rate:

a parallel servers \Rightarrow service rate: $a\mu_i$.

2) unblocking rate:

if there are b blocked jobs at station i:

how many parallel blocked queues are there ?

aim: $a\mu_i \iff \tilde{\mu}(i,b) = \phi(i,b) \ \tilde{\mu}_i^o$

Service and unblocking rates

aim: $a\mu_i \iff \tilde{\mu}(i,b) = \phi(i,b) \ \tilde{\mu}_i^o$

- one station blocking : $\tilde{\mu}_i^o$
- d distinct destination stations : $d\tilde{\mu}_i^o$ d virtual **parallel** queues

 $\phi(i,b)$ represents: the average number of blocking stations given that there are b blocked jobs at station i

Service and unblocking rates

• $\tilde{\mu}_i^o$ approach: average "inter-unblocking times" across destination stations

$$\frac{1}{\tilde{\mu}_{i}^{o}} = \sum_{j \in \mathcal{I}^{+}} \frac{\lambda_{j}^{\text{eff}}}{\lambda_{i}^{\text{eff}} \hat{\mu}_{j} c_{j}}$$

• $\phi(i, b)$ approach: condition on the number of distinct stations that are blocking the *b* jobs.

$$\frac{1}{\tilde{\mu}(i,b)} = \sum_{d=1}^{\min(b, card(\mathcal{I}^+))} P(D(i,b) = d) \frac{1}{d \ \tilde{\mu}_i^o} = \frac{1}{\tilde{\mu}_i^o} \sum_{d=1}^{\min(b, card(\mathcal{I}^+))} \frac{1}{d} \sum_{l_i \in L} \frac{b!}{\prod_{j \in \mathcal{I}^+} l_{ij}!} \prod_{j \in \mathcal{I}^+} \tilde{p}_{ij}^{l_{ij}}$$

adding an assumption ...

$$\tilde{\mu}(i,b) = \tilde{\mu}_i^o \ \phi(i,b)$$

where $\phi(i,b)$ is now exogenous

- Service time $\sim \varepsilon(\mu_i)$, i.i.d
- Time between unblockings $\sim \varepsilon(\tilde{\mu}_i^o)$, i.i.d

Capturing blocking and spillback in finite capacity queuing networks - p.22/38

Summary

Aims were:

- decompose the network into single stations
- solve the global balance equations associated to each station:

$$\begin{aligned} \pi(i)Q(i) &= 0\\ \sum_{s \in \mathcal{S}(i)} \pi(i)_s &= 1 \end{aligned}$$

• define $\mathcal{S}(i)$

• estimate
$$Q(i) = f(\lambda_i, \mu_i, P_i^f, \tilde{\mu}(i, b))$$

• estimate the transition rates

Summary

$$\mathcal{E}(i) = \begin{cases} \pi(i)Q(i) = 0 \\ \sum_{s \in S(i)} \pi(i)_s = 1 \\ Q(i) = f(\lambda_i, \mu_i, P_i^f, \tilde{\mu}(i, b)) \\ \lambda_i^{\text{eff}} = \lambda_i (1 - P(N_i = K_i)) \\ \lambda_i^{\text{eff}} = \gamma_i (1 - P(N_i = K_i)) + \sum_j p_{ji} \lambda_j^{\text{eff}} \\ P_i^f = \sum_j p_{ij} P(N_j = K_j) \\ \tilde{\mu}(i, b) = \tilde{\mu}_i^o \phi(i, b) \\ \frac{1}{\bar{\mu}_i^o} = \sum_{j \in \mathcal{I}^+} \frac{\lambda_i^{\text{eff}}}{\lambda_i^{\text{eff}} \hat{\mu}_j c_j} \\ \frac{1}{\bar{\mu}_i} = \frac{1}{\mu_i} + P_i^f \frac{1}{\mu_i^{avg}} \\ \frac{1}{\bar{\mu}_i^{avg}} = \sum_{s \in \mathcal{F}(i)} \frac{P(B_i = b)}{P(B_i > 0)} \sum_{k=1}^b \frac{k}{b} \frac{1}{\bar{\mu}(i, k)} \\ P(N_i = K_i) = \sum_{s \in (., b, .) \in S(i)} \pi(i)_s \\ P(B_i = b) = 1 - \sum_{s = (., 0, .) \in S(i)} \pi(i)_s \end{cases}$$

- Exogenous : $\{\mu_i, \gamma_i, p_{ij}, c_i, K_i, \phi(i, b)\}$
- All other parameters are endogenous

MATLAB fsolve : route for systems of nonlinear equations.

Method validation

Validation versus:

- pre-existing decomposition methods
- simulation results on a set of small networks
- simulation results on a network of hospital rooms

Validation

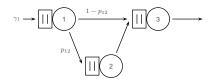
Validation versus pre-existing methods

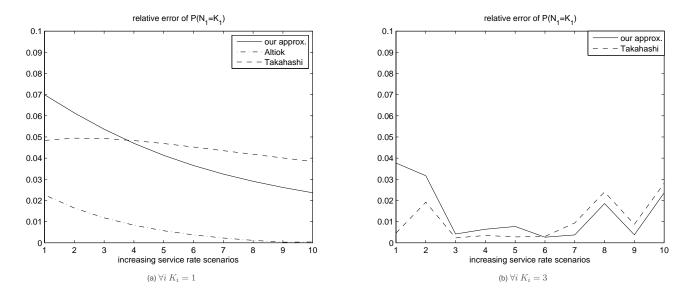
- Kerbache and MacGreggor Smith. 1988. Asymptotic behaviour of the Expansion method for open finite queuing networks. *Computers and Operations Research*
- Altiok and Perros. 1987. Approximate analysis of arbitrary configurations of open queuing networks with blocking. *Annals of Operations Research*
- Boxma and Konheim. 1981. Approximate Analysis of Exponential Queueing Systems with Blocking. *Acta Informatica*
- Takahashi *et al.* 1980. An approximation method for open restricted queuing networks. *Operations research*
- Hillier and Boling. 1967. Finite queues in series with exponential or erlang service times. A numerical approach. *Operations research*

Validation [1]

Setting: triangular topology with single-server stations ($c_j = 1$)

$\forall i \ c_i = 1, \ p_{12} = \frac{1}{2}$											
$\gamma_1 = 1, \gamma_2 = \gamma_3 = 0$											
scenario	μ_1	μ_2	μ_3								
1	1	1.1	1.2								
2	1	1.2	1.4								
3	1	1.3	1.6								
4	1	1.4	1.8								
5	1	1.5	2								
6	1	1.6	2.2								
7	1	1.7	2.4								
8	1	1.8	2.6								
9	1	1.9	2.8								
10	1	2	3								

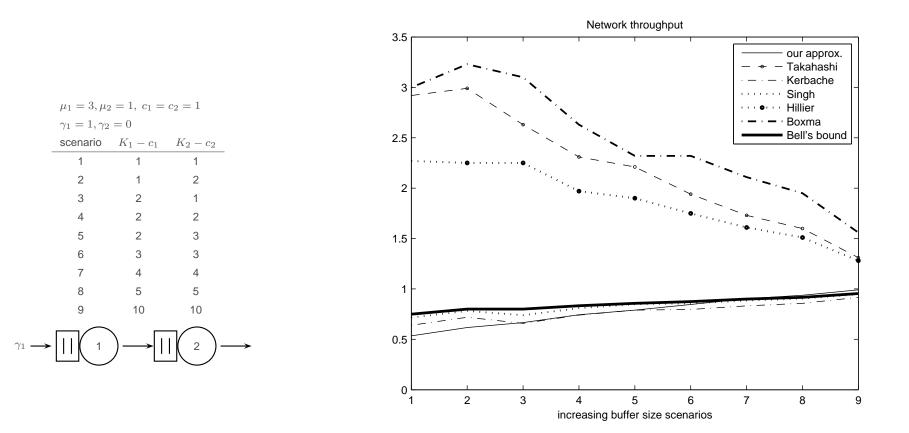




ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Validation [2]

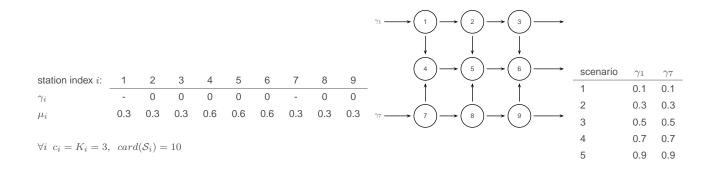
Theoretical bound on the throughput Bell (1982):

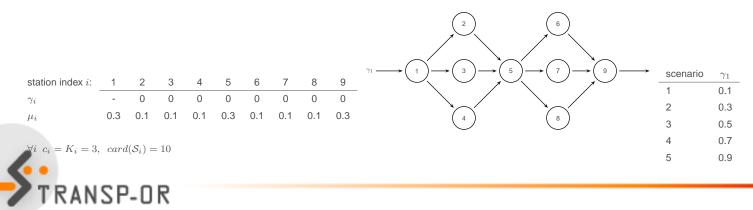


ÉCOLE POLYTECHNIQUI

Validation vs. simulation results

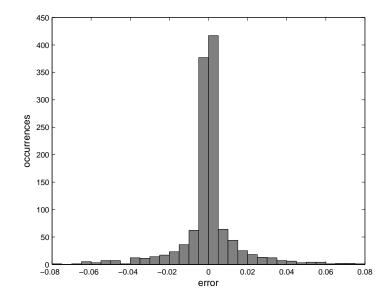
											(•	•			•)	
station index i:	1	2	3	4	5	6	7	8	9					•				٠		scenario	γ_1
	· ·		-	-		-		-	-	.				•	•				•	1	0.1
γ_i	-	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0		•	•	•		•	•	•	٠			0.1
μ_i	0.3	0.3	0.3	0.1	0.01	0.014	0.1	0.4	0.5	$(p_{ij}) =$	٠	•	•	•		•				2	0.2
											٠			•	٠					3	0.2
			10								٠		•	•				٠		5	0.3
$\forall i \ c_i = K_i = 3,$	card	$\mathcal{S}_i) =$: 10														•			4	0.4
														•			•	٠	,)	





Capturing blocking and spillback in finite capacity queuing networks – p.29/38

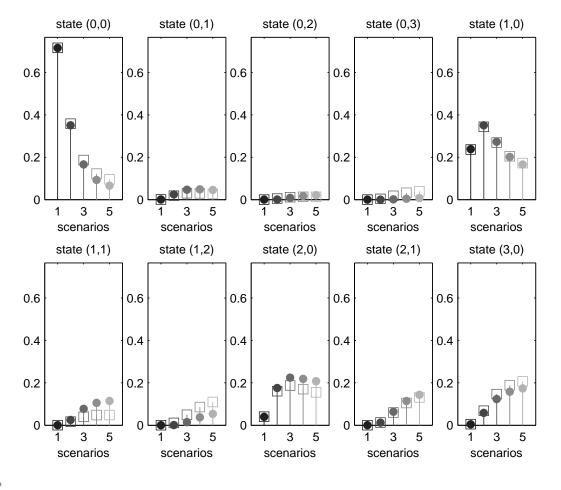
Validation [3]



Capturing blocking and spillback in finite capacity queuing networks - p.30/38

Validation [3]

Network C: $\pi(5)$



COLF POLYTICHNIQUE FÉDERALE DE LAUSANNE Capturing blocking and spillback in finite capacity queuing networks – p.31/38

Case study

Hospital bed blocking: recent demand for modeling and acknowledging this phenomenon:

- patient care and budgetary improvements (Cochran (2006), Koizumi (2005))
- flexibility responsiveness of the emergency and surgical admissions procedure (Mackay (2001)).

The existing analytic hospital network models are limited to:

- feed-forward topologies
- at most 3 units
- Koizumi (2005), Weiss (1987), Hershey (1981).

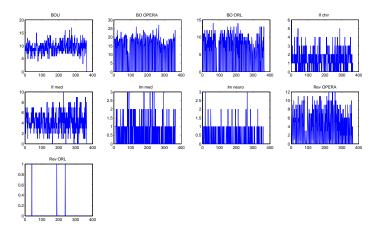
- **Network of interest**: network of operative and post-operative rooms in the HUG, Geneva University Hospital.
- Dataset
 - records of arrivals and transfers between hospital units
 - 25336 patient records
 - redunduncies in the dataset eliminated
 - used to estimate γ, μ, p_{ij}

Network model:											
Unit	BO U	BO OPERA BO ORL IF CHIR IF MED IM MED IM NEURO REV OPERA F									
c_i	4	8	5	18	18	4	4	10	6		

- beds \leftrightarrow servers
- no waiting space \leftrightarrow bufferless ($K_i = c_i$)

 γ : avg external arrival rates

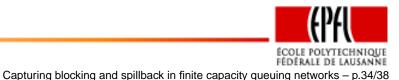
- observations:
 Oct 2nd 2004 Oct 2nd 2005
- estimator: MLE (avg nb of occurences)



 μ : avg service rate

- estimator: MLE $(\frac{1}{L\bar{O}S})$
- Assumption: departure time includes no blocking

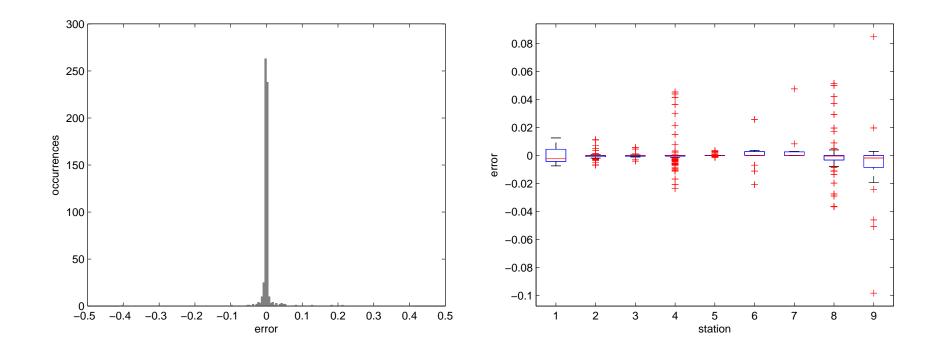
 p_{ij} : transition probabilities:



	BOU	BO OPERA	вО	ORL	IF CH	lir	IF MED	IM	MED	IM N	EURO	RE\	/ OPERA	REV ORL
c_i	4	8		5			18		4		4		10	6
γ_i	0.392	0.502	0.2	246	0.059		0.176	0.	0.025		0.013		0.155	0
μ_i	0.317	0.255	0.335		0.013		0.015	0.	0.014		0.015		0.22	0.518
				0	0	0	0.16	0.02	0	0	0.71	0		
				0	0	0	0.07	0	0	0	0.84	0		
				0	0	0	0.03	0.01	0	0	0	0.95		
				0.18	0.01	0.03	0	0.03	0.01	0.11	0.03	0		
		($(p_{ij}) =$	0.05	0.01	0.01	0.01	0	0.07	0	0	0		
				0.02	0	0	0.01	0.1	0	0	0	0		
				0.05	0	0.05	0.04	0	0	0	0.01	0		
				0	0	0	0	0	0	0.01	0	0		
			(0	0	0	0.05	0	0	0.05	0.02	0)	

• Number of unknowns/equations: 635

validation of the results



ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Estimation results

	BO U	BO OPERA	BO ORL	IF CHIR	IF MED	IM MED	IM NEURO	REV OPERA	REV ORL
c_i	4	8	5	18	18	4	4	10	6
$P(N_i = K_i)$	0.042	0.001	0.001	0.102	0.046	0.226	0.471	0.006	0.000
$P(N_i = 0)$	0.244	0.136	0.464	0.000	0.000	0.053	0.009	0.017	0.591
P_i^f	0.021	0.012	0.004	0.063	0.020	0.006	0.006	0.005	0.029
$\frac{1}{\hat{\mu}_i}$ LOS	3.2510	3.9499	3.0067	78.0939	66.8836	71.7699	66.8884	4.5497	2.1668
$P(B_i > 0)$	0.0399	0.0142	0.0055	0.1918	0.0400	0.0117	0.0105	0.0038	0.0559

Capturing blocking and spillback in finite capacity queuing networks - p.37/38

Conclusions and current aims

Conclusions:

- a decomposition method allowing the analysis of FCQN
- explicitly models the blocking phase
- preserves network topology and configuration
- validation versus both pre-existing methods and simulation estimates shows encouraging results
- application on a real case study

Aims:

• come back to general framework: integrate with DES.

