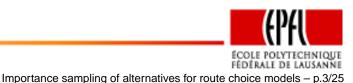


Importance sampling of alternatives for route choice models

Emma Frejinger and Michel Bierlaire

Transport and Mobility Laboratory, EPFL, transp-or.epfl.ch

Outline


- Introduction to route choice modeling
 - Modeling framework
 - Estimation
 - Issues
- Stochastic path enumeration approach
- Sampling of alternatives
- Preliminary numerical results

Given a transportation network composed of nodes, links, origin and destinations. For a given transportation mode and origin-destination pair, which is the chosen route?

Route choice modeling

- Deterministic approach: Travelers use the shortest (with regard to any arbitrary generalized cost) route among all
 - Behaviorally unrealistic
- Random utility models (discrete choice models)

Framework

- Utility maximization
- An individual n associates a utility U_{jn} with each path j in his/her choice set C_n and chooses the alternative with the highest utility

Random Utility Models

$$U_{jn} = V_{jn} + \varepsilon_{jn}$$

 V_{jn} : Deterministic part $V_{jn} = \beta^T X_{jn}$ β : vector of parameters to be estimated X_{jn} : attributes ε_{jn} : random term Multinomial Logit model

$$P(i|\mathcal{C}_n) = \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}}$$

Estimation

• Maximum likelihood estimation

$$\mathcal{L}^*(\hat{\beta}_1, ..., \hat{\beta}_K) = \max_{\beta \in \mathbb{R}} \mathcal{L}(\beta) = \sum_{n=1}^N \ln P_n(\beta)$$

BIOGEME: estimation software
 Bierlaire's Optimization Toolbox for GEV Model
 Estimation

Problem characteristics

- Universal choice set very large
- Individual specific choice set unknown
- Correlated alternatives due to overlapping paths
- Data issues

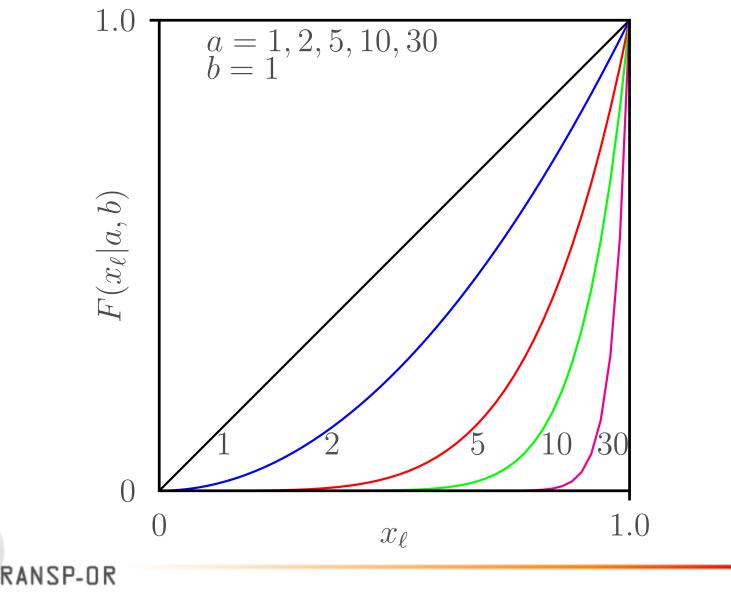
Path Enumeration

- Many heuristics are proposed in the literature
 - Deterministic and stochastic
 Examples: link elimination (Azevedo et al., 1993), labeled paths (Ben-Akiva et al., 1984), simulation (Ramming, 2001) and doubly stochastic (Bovy and Fiorenzo-Catalano, 2006)
 - These approaches assume that generated choice sets include all alternatives considered by the travelers

Importance Sampling Approach

- All paths belong to the true choice set
- Objective: define choice set allowing for unbiased estimation and prediction results
- We view stochastic path enumeration algorithms as importance sampling of alternatives
- In order to obtain unbiased results, path utilities must be corrected
- We propose a stochastic path enumeration algorithm that allows the computation of sampling correction

Stochastic Path Enumeration


- We choose to include in the choice set a link l or a sequence of links in a stochastic way based on its distance to the shortest path
- Paths can be generated using different algorithms
- Kumaraswamy distribution, cumulative distribution function $F(x_{\ell}|a, b) = 1 - (1 - x_{\ell}^{a})^{b}$ for $x_{\ell} \in [0, 1]$.

$$x_{\ell} = \frac{SP(o,d)}{SP(o,i) + C(\ell) + SP(j,d)}$$

Stochastic Path Enumeration

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Stochastic Path Enumeration

• Biased random walk algorithm

$$q(j) = \prod_{\ell \in \Gamma_j} q(\ell | \mathcal{E}_v)$$

- Γ_j : set of all links in j
- v: source node of j
- E_v : set of all outgoing links from v
- $q(\ell | \mathcal{E}_v)$ is distributed Kumaraswamy
- Issue: the set of all paths $\mathcal U$ is unbounded but we assume $\sum_{j\in\mathcal U}q(j)\approx 1$ and treat it as bounded

Sampling of Alternatives

 Multinomial Logit model: Probability of *i* conditional on the choice set C_n defined by the analyst (e.g. Ben-Akiva and Lerman, 1985)

$$P(i|\mathcal{C}_n) = \frac{q(\mathcal{C}_n|i)P(i)}{\sum_{j\in\mathcal{C}_n}q(\mathcal{C}_n|j)P(j)} = \frac{e^{V_{in}+\ln q(\mathcal{C}_n|i)}}{\sum_{j\in\mathcal{C}_n}e^{V_{jn}+\ln q(\mathcal{C}_n|j)}}$$

 $q(\mathcal{C}_n|j)$: probability of sampling \mathcal{C}_n given that j is the chosen alternative

Sampling of Alternatives

Sampling protocol: a set *C̃_n* is generated by drawing *R* paths with replacement from the universal set of paths *U* and adding the chosen path to it
 Outcome of sampling: (*k̃₁*, *k̃₂*, ..., *k̃_J*) and ∑_{*i*∈*U*}*k̃_j* = *R*

$$P(\widetilde{k}_1, \widetilde{k}_2, \dots, \widetilde{k}_J) = \frac{R!}{\prod_{j \in \mathcal{U}} \widetilde{k}_j!} \prod_{j \in \mathcal{U}} q(j)^{\widetilde{k}_j}$$

• Alternative j appears $k_j = \tilde{k}_j + \delta_{cj}$ in $\tilde{\mathcal{C}}_n$

Sampling of Alternatives

• Let
$$\mathcal{C}_n = \{j \in \mathcal{U} \mid k_j > 0\}$$

• Following Ben-Akiva (1993)

$$q(\widetilde{\mathcal{C}}_n|i) = \frac{R!}{(k_i - 1)! \prod_{\substack{j \in \mathcal{C}_n \\ j \neq i}} k_j!} q(i)^{k_i - 1} \prod_{\substack{j \in \mathcal{C}_n \\ j \neq i}} q(j)^{k_j} = K_{\mathcal{C}_n} \frac{k_i}{q(i)}$$

$$K_{\mathcal{C}_n} = \frac{R!}{\prod_{j \in \mathcal{C}_n} k_j!} \prod_{j \in \mathcal{C}_n} q(j)^{k_j}$$

$$P(i|\widetilde{\mathcal{C}}_n) = \frac{e^{V_{in} + \ln\left(\frac{k_i}{q(i)}\right)}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn} + \ln\left(\frac{k_j}{q(j)}\right)}}$$

- Estimation of models based on synthetic data generated with postulated models
 - Non-correlated paths
 - Correlated paths in a "grid-like" network
- True parameter values are compared to estimates

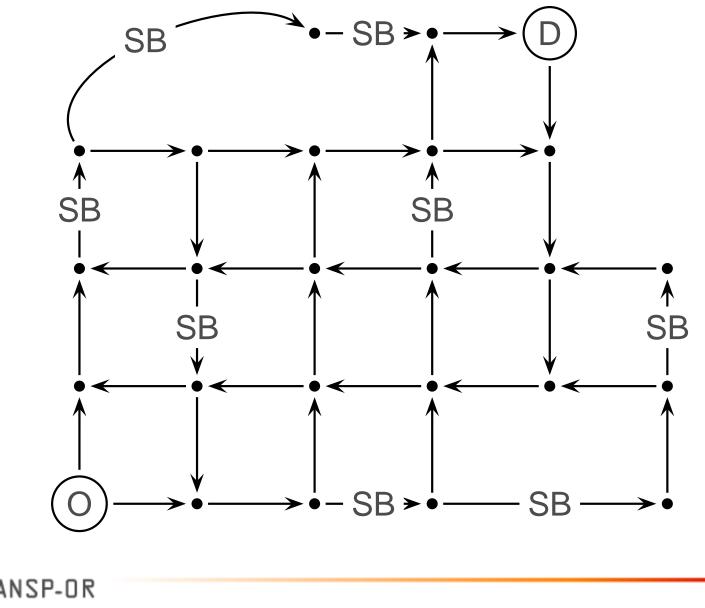
- True model: multinomial logit
 - $U_j = \beta_{\mathsf{L}} \operatorname{\mathsf{length}}_j + \beta_{\mathsf{SB}} \operatorname{\mathsf{nbspeedbumps}}_j + \varepsilon_j$

$$\beta_{\rm L} = -0.6$$
 and $\beta_{\rm SB} = -0.3$

 ε_{j} is distributed Gumbel with location parameter 0 and scale 1

- 500 observations
- Biased random walk using 40 draws with a = 2 and b = 1

Generated choice sets include at least 7, maximum 18 and on average 11.9 paths



	MNL	MNL			
Sampling correction	without	with			
\widehat{eta}_{L}	-0.203	-0.286			
Scaled estimate	-0.600	-0.600			
Robust std.	0.0193	0.019			
Robust t-test	-10.53	-15.01			
\widehat{eta}_{SB}	-0.0194	-0.143			
Scaled estimate	-0.0573	-0.300			
Robust std.	0.0662	0.0661			
Robust t-test	-0.29	-2.17			
Null log-likelihood	-1069.453	-1633.501			
Final log-likelihood	-788.42	-759.848			
Adjusted $ar{ ho}^2$	0.261	0.288			
BIOGEME has been used for all model estimations.					

Importance sampling of alternatives for route choice models – p.19/25

Importance sampling of alternatives for route choice models - p.20/25

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

- True model: probit (Burrell, 1968)
 - $U_{\ell} = \beta_{\rm L} \, {\rm length}_{\ell} + \beta_{\rm SB} \, {\rm nbspeedbumps}_{\ell} + \sigma \sqrt{L_{\ell}} \nu_{\ell}$

 $\beta_{\rm L}=-0.6$ and $\beta_{\rm SB}=-0.4$

 u_{ℓ} is distributed standard Normal Link utility variance assumed proportional to length with parameter $\sigma = 0.8$

- Path utilities are link additive
- 382 observations are generated after 500 realizations of the link utilities

• Biased random walk using 30 draws with a = 2 and b = 1

Generated choice sets include at least 7, maximum 19 and on average 13.5 paths

	MNL	MNL	PSL	PSL
Sampling correction	without	with	without	with
\widehat{eta}_{L}	-0.627	-0.978	-0.619	-0.969
Scaled estimate	-0.600	-0.600	-0.600	-0.600
Robust std.	0.0397	0.032	0.0407	0.0358
Robust t-test	-15.79	-30.57	-15.22	-27.04
\widehat{eta}_{SB}	-0.0822	-0.0801	-0.347	-0.461
Scaled estimate	-0.0787	-0.0491	-0.336	-0.285
Robust std.	0.052	0.0559	0.182	0.158
Robust t-test	-1.58	-1.43	-1.90	-2.92
\widehat{eta}_{PS}			1.17	1.74
Scaled estimate			1.13	1.08
Robust std.			0.788	0.705
Robust t-test			1.49	2.47

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

	MNL	MNL	PSL	PSL		
Sampling correction	without	with	without	with		
Null log-likelihood	-988.63	-2769.959	-988.63	-2769.959		
Final log-likelihood	-676.111	-653.396	-674.481	-649.268		
Adjusted $ar{ ho}^2$	0.314	0.337	0.315	0.340		
BIOGEME has been used for all model estimations.						

Conclusions and Future Work

- Ongoing research
- Modeling path enumeration as importance sampling of alternatives is promising however some work remain
 - Implications of $\sum_{j\in\mathcal{U}}q(j)\approx 1$
 - Empirical results on real data
 - Correction in prediction

