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Optimization problem formulation

min
x∈Rn

f(x)

where f : R
n → R

• is twice differentiable

• is nonlinear and nonconcave

• may present several (and possibly many)
local minima

• is usually expensive to evaluate
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Nonlinear optimization

• Vast literature in nonlinear optimization

• Drawback: most of the methods and sofwares can only

ensure to converge to a local minimum

• Convergence toward a global one cannot be guaranteed

• Several transportation applications require a global

minimum of the related optimization problems such as

• traffic equilibrium problems

• discrete choice models estimation

⇒ Nonlinear global optimization
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Discrete choice models

• Only the Multinomial Logit model (MNL) and the Nested Logit
model (NL) are quite easy to estimate

• The corresponding log-likelihood function is globally concave for
the MNL and concave in a subset of the parameters for the NL

• Other GEV and mixtures of GEV are more problematic as several
difficulties may arise

• The log-likelihood function and its derivatives become
expensive to compute and highly nonlinear and nonconcave

• Overspecification issues

• Non trivial constraints on parameters

• Existing softwares can only provide a local optimum of the
maximum likelihood estimation problem
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Nonlinear global optimization

Most of the deterministic approaches can be
grouped in 4 categories

• methods based on real algebraic geometry

• exact algorithms (such as Branch & Bound)

• interval analysis

• difference of convex functions programming
(DC)
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Nonlinear global optimization

The use of heuristics to address this problem in practice is intensive

• Continuous adaptations of heuristics from discrete optimization
• Simulated Annealing (Locatelli, 2000)

• Genetic Algorithms (Chelouah and Siarry, 2000)

• Tabu Search (Chelouah and Siarry, 2003)

• Hybridation of heuristics with derivative-free methods or random
searches
• Simulated Annealing hybridized with Nelder-Mead algorithm (Hedar and

Fukushima, 2002) or with approximate descent direction and pattern search
(Hedar and Fukushima, 2004)

• Tabu search hybridized with direct search methods (Hedar and Fukushima,
2006)

• Particle swarm heuristic with pattern search (Vaz and Vicente, 2007)
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New approach

• Variable Neighborhood Search (VNS) in order to
diversify and explore

• 2 essential elements in the VNS

• Local search used

• Definition of neighborhoods and neighbors

• Use at best the information on the objective function
and its derivatives obtained at best cost

• Limit the number of evaluations of f by identifying
promising areas of search and those which are not
interesting
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VNS for continuous optimization

• Select a set of neighborhoods Nk, k = 1, . . . , kmax and an initial
solution x0

∗
(local minimum)

• xc = x0

∗
and xbest

∗
= x0

∗

• k = 1

• While k ≤ kmax

• Generate p neighbors of xc in Nk

• Apply k2 iterations of the local search

• Apply the local search to the best point obtained previously in
order to get a local minimum xnew

∗

• If f(xnew
∗

) < f(xbest
∗

), xbest
∗

= xc = xnew
∗

and k = 1.
Otherwise k = k + 1.

• The solution (hopefully a global minimum) is xbest
∗
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Local search

• Trust-region method

• Iterative method for unconstrained nonlinear optimization

• Able to efficiently identify a local minimum of the problem

• Globalization technique: convergence from remote starting

points (not only in a neighborhood of a local minimum)

• Use of an approximate quadratic model of f

• ∇f approximated using finite differences

• ∇2f approximated using the SR1 secant method

(quasi-Newton)
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Promising areas of search

• The local search is efficient but cumbersome

• Prevent the algorithm from blindly applying the local search and
limit the number of evaluations of f

• Perform tests on each iterate xk generated by the local search

• Given X∗ = {x0

∗
, x1

∗
, . . . } and fmin, we define 3 conditions

• ∃ i such that ‖xk − xi
∗
‖ ≤ ε1

• ‖∇f(xk)‖ ≤ ε2 and f(xk) − fmin ≥ ε3

• f(xk) > f(xk−1) + β∇f(xk−1)
T sk−1 and f(xk) − fmin ≥ ε3

• If one of these conditions is verified, we prematurely interrupt the
local search
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Neighborhoods of the VNS

• The neighborhood Nk is defined by a distance dk

• Analysis of the eigen-structure of ∇2f(xc) ∈ R
n×n:

computation of the n eigen vectors qi and associated

eigenvalues ci (curvature)

• 2n possible directions to determine a neighbor

• Idea: Prefer directions associated with high curvature but...

• Local information, around xc

• Reduce the importance of curvature in the neighbors

selection for large neighborhoods
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Neighborhoods of the VNS

• Logit-like probability for the selection of a direction:

P (qi) = P (−qi) =
e
λ

ci
dk

2
n∑

j=1

e
λ

ci
dk

where λ is a weight factor associated with curvature

• p directions are randomly selected at each phase of the VNS
accordingly to the probability vector P

• If qi is chosen, the associated neighbor is given by:

xc + α ∗ dk ∗ qi

where α ∈ U([0.75, 1])
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New VNS

• Select a set of neighborhoods Nk, k = 1, . . . , kmax and an initial
solution x0

∗
(local minimum)

• xc = x0

∗
and xbest

∗
= x0

∗

• k = 1

• While the stopping criterion is not satisfied
• Generate p neighbors of xc in Nk

• Apply the local search from each neighbor while a promising area is detected

• If all local searches have been prematurely interrupted, k = k + 1

• Otherwise xnew
∗

is the best found local minimum. If f(xnew
∗

) < f(xbest
∗

),
xbest
∗

= xc = xnew
∗

and k = 1. Otherwise k = k + 1.

• The solution (hopefully a global minimum) is xbest
∗
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Some algorithmic details

• Initialization

• Generate m random points and apply k2 iterations
of the local search

• Apply the local search to the best point obtained

• Stopping criterion

• k > kmax (stop after kmax unsuccessful VNS phases)

• Maximum CPU time attained

• Maximum number of evaluations of f attained
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Numerical tests

• 15 classical test functions

• 25 associated optimization problems

• 100 runs for small-sized problems

• 20 runs for large-sized problems

• A run is successful if a global minimum is found

• 2 measures of performance

• Average percentage of success

• Average number of function evaluations

(across successful runs)
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Competitors

• 6 algorithms

• Our proposed VNS

• General VNS (GVNS, 2006)

• Directed Tabu Search (DTS, 2006)

• Simulated Annealing Heuristic Pattern Search (SAHPS, 2004)

• Continuous Hybrid Algorithm (CHA, 2003)

• Direct Search Simulated Annealing
(DSSA, 2002)

• Different stopping criterion for GVNS

⇒ specific comparison of VNS and GVNS

in terms of number of evaluations
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Average percentage of success

Problem VNS CHA DSSA DTS SAHPS GVNSRC 100 100 100 100 100 100ES 100 100 93 82 96RT 84 100 100 100SH 78 100 94 92 86 100
R2 100 100 100 100 100 100
Z2 100 100 100 100 100DJ 100 100 100 100 100
H3,4 100 100 100 100 95 100
S4,5 100 85 81 75 48 100
S4,7 100 85 84 65 57
S4,10 100 85 77 52 48 100
R5 100 100 100 85 91
Z5 100 100 100 100 100
H6,4 100 100 92 83 72 100

R10 100 83 100 85 87 100

Z10 100 100 100 100 100HM 100 100
GR6 100 90
GR10 100 100CV 100 100DX 100 100MG 100 100

R50 100 79 100

Z50 100 100 0

R100 100 72 0
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Average number of evaluations off

Problem VNS CHA DSSA DTS SAHPSRC 153 295 118 212 318ES 167 952 1442 223 432RT 246 132 252 346SH 366 345 457 274 450DJ 104 371 273 446 398
H3,4 249 492 572 438 517
H6,4 735 930 1737 1787 997
S4,5 583 698 993 819 1073
S4,7 596 620 932 812 1059
S4,10 590 635 992 828 1035
R2 556 459 306 254 357
Z2 251 215 186 201 276

R5 1120 3290 2685 1684 1104

Z5 837 950 914 1003 716

R10 2363 14563 16785 9037 4603

Z10 1705 4291 12501 4032 2284HM 335 225
GR6 807 1830CV 854 1592DX 2148 6941
R50 11934 55356 510505

Z50 17932 75520 177125

R100 30165 124302 3202879
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Performance profile

• 15 problems

• Number of evaluations of f
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Performance profile

• 15 problems

• Number of evaluations of f - zoom on π between 1 and 5
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Large size

• CPU time in seconds on problems of
sizes 50 and 100

Problem VNS DTS
R50 208 1080
Z50 228 1043
R100 1171 15270
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Average number of evaluations off

Problem VNS GVNSRC 99 45SH 305 623
R2 176 274
R10 1822 39062
GR10 1320 1304
H3,4 174 385
H6,4 532 423
S4,5 468 652

S4,10 481 676MG 17 73
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Performance profile

• 10 problems

• Number of evaluations of f
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Performance profile

• 10 problems

• Number of evaluations of f - zoom on π between 1 and 5
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Conclusions

• Algorithm for nonlinear global optimization relevant to discrete
choice models estimation

• New VNS for continuous optimization

• Intensive use of information on f

• Intelligent local search and neighborhoods

• Collaboration between nonlinear optimization and discrete
optimization

• Very good behavior in conducted numerical experiments

• The VNS allows to diversify and explore: good robustness

• The computational cost of the local search is compensated by
its efficiency and the identification of promising areas
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Perspectives

• Additional numerical experiments

• Other test problems

• Tests in large size

• Tests with BIOGEME to estimate discrete choice models

• Evaluate the performance for a given budget of time or
computational cost

• Algorithmic developments

• Better identification of convergence basins

• p dynamic

• Incorporate into an Adaptive Memory Method framework

• Generalization to constrained optimization
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Thank you for your
attention !
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