Airline Disruptions: Aircraft Recovery with Maintenance Constraints

Niklaus Eggenberg
Dr. Matteo Salani and Prof. Michel Bierlaire

In collaboration with *APM Technologies*Funded by *CTI Switzerland*

Dr. Matteo Salani

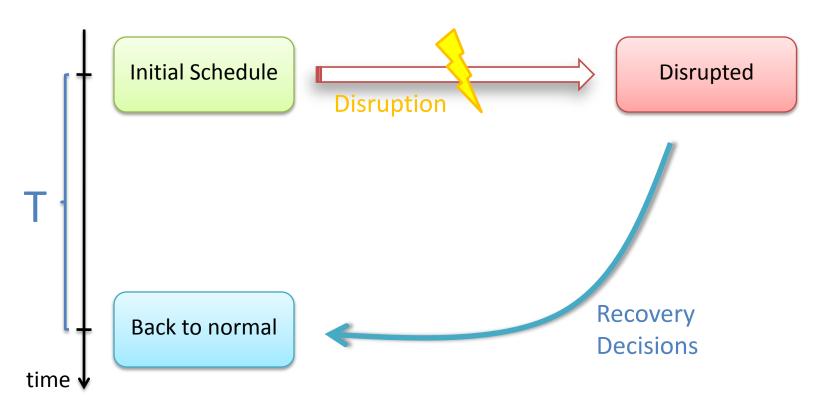
Prof. Michel Bierlaire

Index

- Airline Scheduling
- The Airplane Recovery Problem (ARP)
- The Column Generation (CG) approach
- Column Description
- Solving the pricing problem with Recovery Networks
- Implementation and results
- Future work and conclusions

Airline Scheduling Approach

- 1. Route Choice
- 2. Fleet Assignment
- 3. Tail Assignment
- 4. Crew Pairing
- 5. Crew Roistering
- 6. Passenger Routing (catering)



Disrupted Schedule and Recovery

Survey: Kohl (2004)

The Airplane Recovery Problem (ARP)

Input Output

- Planes' States
- Initial Schedule
- Maintenances
- Cancelation Costs
- Delay Cost

- T
- New schedule up to T
- Recovery cost

Multi-objective optimization:

Minimize both T and recovery costs

Strategy: for fixed T find optimal recovery plan

Give several recovery plans for different values of T (decision aid)

Definitions:

PLANES:

Initial State: position, initial time, initial resource consumption

Final State: position, expected time, expected resource consumption

Feasible Flight Set: coverable flights

Feasible Final State Set: coverable final states

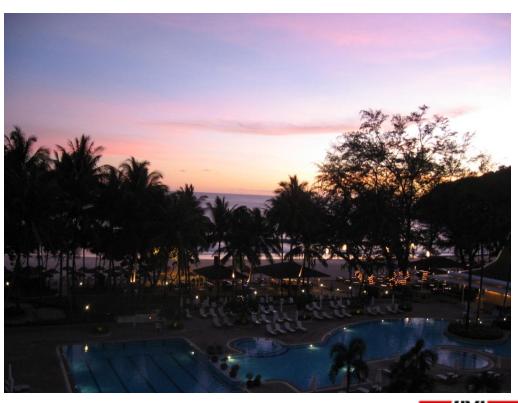
AIRPORTS:

Activity Slots: periods when take-off/landings are permitted

Maintenance Slots: periods when given plane type can perform maintenance

Definitions (2):

Flights:

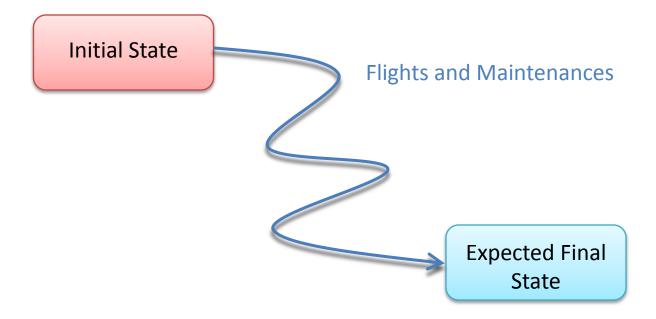

Origin and Destination

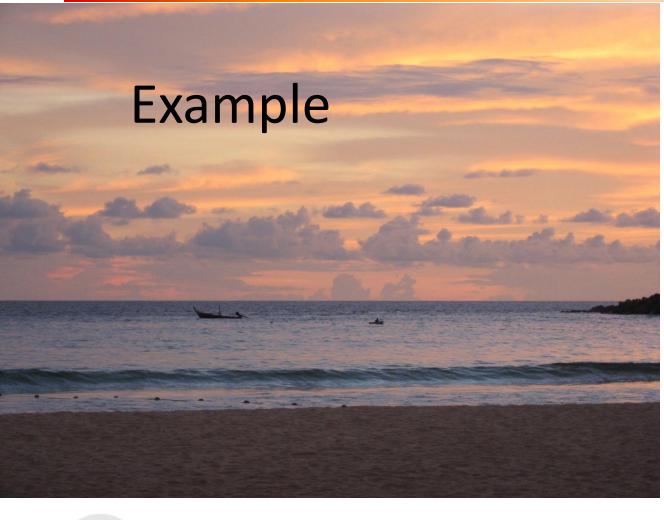
Scheduled Departure Time (SDT)

Flight Duration

Flight Cost

Cancelation Cost




Solution to the ARP:

A recovery scheme for each plane:

 f_1 GVA to AMS

 f_2 AMS to BCN

 f_3 BCN to GVA

 f_4 MIL to BUD

 f_5 BUD to MIL

 f_6 BCN to MIL

Example (2)

• flights:
$$F = \{f_1, f_2, f_3, f_4, f_5, f_6\}$$

• final states: $S = \{S^{GVA}, S^{MIL}\}$

• planes:
$$P = \{p_1, p_2\}$$

• initial states: p_1 (GVA, 0, 0)

$$p_2$$
 (MIL, 0, 0)

Column Generation Approach

Find out optimal solution by combining individual recovery schemes $r \in R'$ (master problem) on a subset $R' \subseteq R$ of all feasible recovery schemes

Generate potentially improving recovery schemes $r \in R-R'$ dynamically for each plane (pricing problem)

Master Problem: MIP formulation

 $y_f \in \{0,1\} \quad \forall f \in F$

 $z_s \in \{0,1\}$

$$\min \ z_{MP} = \sum_{r \in R} c_r x_r + \sum_{f \in F} c_f y_f + \sum_{s \in S} c_s z_s$$

$$s. c. \ \sum_{f \in F} \boldsymbol{b}_r^f x_r + y_f = 1 \qquad \forall f \in F \quad (\lambda_f)$$

$$\sum_{s=0}^{\infty} \boldsymbol{b}_r^s x_r + z_s = 1 \qquad \forall s \in S \quad (\eta_s)$$

$$\sum_{r \in R} \boldsymbol{b}_r^p x_r \leq 1 \qquad \forall p \in P \quad (\mu_p)$$
$$x_r \in \{0,1\} \quad \forall r \in R$$

 $\forall s \in S$

What is a column?

- cost
- vector

$$\mathbf{b}_r = \left(b_r^f, b_r^s, b_r^p\right)^T$$

Where

- > $b_r^f = 1$ if flight f is covered by column r
- $\rightarrow b_r^s = 1$ if final state s is covered by r
- $> b_r^p = 1$ if column r is affected to plane p

Column examples

$$\boldsymbol{b}_1 = (0,0,0,0,0,0,1,0,1,0)^T$$

$$\boldsymbol{b}_2 = (1,1,1,0,0,0,1,0,1,0)^T$$

$$\boldsymbol{b}_3 = (0,0,0,1,1,0,0,1,0,1)^T$$

The Pricing Problem

Find new columns minimizing the reduced cost \tilde{c}_r^p :

$$\min_{\mathbf{r} \in \mathbb{R}} \ \tilde{\mathbf{c}}_{\mathbf{r}}^{\mathbf{p}} = \mathbf{c}_{\mathbf{r}}^{\mathbf{p}} \ - \sum_{f \in F} \boldsymbol{b}_{r}^{f} \lambda_{f} - \sum_{s \in S} \boldsymbol{b}_{r}^{s} \eta_{s} - \ \boldsymbol{b}_{r}^{p} \mu_{p} \qquad \forall \, p \in P$$

Recovery Networks (Argüello et al. 97)

- 1. Generate a recovery network for each plane
- 2. Update arc costs according to dual variables
- Solve Resource Constrained Elementary Shortest Path (RCESPP)
- 4. Add Columns to R'
- 5. Resolve restricted LP until optimality and branch

Time – Space Network with

• source node $n_0 = [t, m, r]$

• node *n* = [*t*, *m*, *r*]

• sink s = [t, m, r]

• flight arc [n, n']

- maintenance arc [n, n']
- termination arc [n,s]

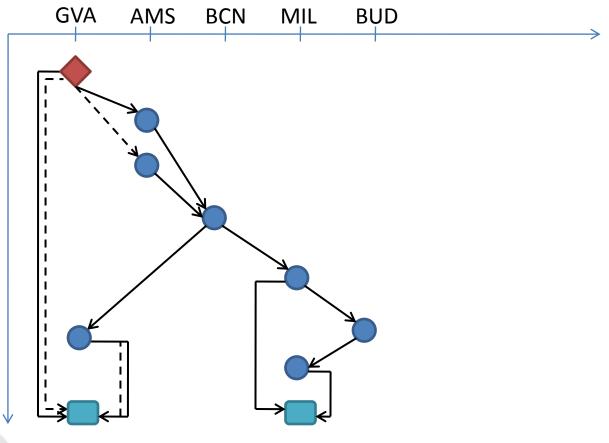
• maintenance termination arc [n,s]

Example (continued)

• flights:
$$F = \{f_1, f_2, f_3, f_4, f_5, f_6\}$$

• final states: $S = \{S^{GVA}, S^{MIL}\}$

• planes:
$$P = \{p_1, p_2\}$$


• initial states: p_1 (GVA, 0, 0) p_2 grounded for the day

only maintenances at GVA

Recovery Network of p₁

Generating Recovery Networks

- \triangleright Create Source node n_o (initial time, location, resource cons.)
- $> S = \{n_0\}$
- \triangleright While $S \neq \emptyset$:
 - Select $n \in S$, $S \leftarrow S \{n\}$
 - For all feasible flights:
 - create flight and maintenance arcs
 - \diamond create destinations node n_f and n_m
- > Clean network

Updating arc costs

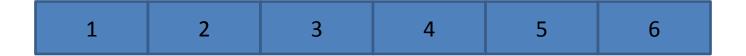
- Fight arcs: $c = c^f + c^d \lambda_f$
- ightharpoonup maintenance arcs: $c = c^f + c^d + c^M \lambda_f$
- \triangleright termination arcs: $c = -\eta_s$
- \triangleright maintenance term. arcs : $c = -\eta_s + c^M$

Solve RCESPP on networks returns column minimizing the reduced cost!

Righini & Salani (2006), which is an extension of Desrochers et al. (1988)

Some References

- Argüello et al. (1997): recovery without maintenance up to 27 planes, 162 flights, 30 airports
- Desrosiers et al. (1997): daily scheduling NOT recovery up to 91 planes, 383 flights, 33 airports; max delay of 30 minutes
- Clarke (1997): maintenances requirements but no decision on them up to 177 planes, 612 flights, 37 airports; only 0 or 30 min delay
- Kohl et al. (2004): Descartes project, good survey of state of the art no instance size mentioned for DAR
- Barnhart and Bratu (2006): passenger oriented recovery algorithm up to 302 planes, 1032 flights, 74 airports


Implementation issues

- ➤ Implemented in C++ with COIN-OR BCP framework
- Used interior point methods to solve the LP
- > Used linear time and logarithmical resource discretisation
- ➤ 2 phase pricing:
 - generation (keep also non optimal columns, heuristic pricing)
 - proving optimality (optimal column only, exact pricing)

Linear Time Discretization

Logarithmic Resource Discretization

1 2 3 4

Real Instances

- Got real schedules from Thomas Cook Airlines (APM's main customer)
- Solved original schedules up to 250 flights (algorithm validation)
- Generated disruption scenarios
 - delayed planes (initial states)
 - grounded planes (initial states)
 - > airport closures (activity slots)
 - forced maintenances (initial resource consumption)

Instance	2D_5AC	2D_5AC_1del	2D_10AC	2D_10AC_1del	2D_10AC_2del
# planes	5	5	10	10	10
# flights	38	38	75	75	75
# delayed planes	0	1	0	1	2
# cancelled flts	0	2	0	2	2
# delayed flts	0	4	0	4	5
total delay [min]	0	969	0	969	989
max delay [min]	0	370	0	370	370
cost	380(*)	21175(*)	750(*)	21545(*)	21745(*)
tree size	1	1	1	1	1
run time [s]	< 0.1	< 0.1	0.7	0.7	1.0

Instance	3D_10AC	4D_10AC	5D_5AC	5D_10AC	7D_16AC
# planes	10	10	5	10	16
# flights	113	147	93	184	242
# delayed planes	0	0	0	0	0
# cancelled flts	0	0	0	0	0
# delayed flts	0	0	0	0	11
total delay [min]	0	0	0	0	310
max delay [min]	0	0	0	0	45
cost	1130(*)	1470(*)	930(*)	1840(*)	5600
tree size	1	1	1	5	2033
run time [s]	3.0	6.5	1.0	29.1	3603

Instance	Den2del	Den2grd	Den4del	Den4grd	Den2del2grd	Den6del	Den6grd
# delayed planes	2	0	4	0	2	6	0
# grounded planes	0	2	0	4	2	0	6
# affected flights	1	4	3	8	5	5	16
# cancelled flts	0	2	0	8	4	0	16
# delayed flts	1	4	7	2	7	13	2
total delay	10	920	230	380	490	640	380
max delayed flight	10	275	85	200	200	100	200
cost	36100(*)	83200(*)	38300(*)	163800(*)	84900(*)	42400(*)	251800(*)
tree size	1	1	1	1	1	41	1
run time	0.7	0.5	0.6	0.3	0.5	1.6	0.2

Instance	Den3del3grd	Den_3x100	Den_1x300	Den_Storm1	Den_Storm2
# delayed planes	3	0	0	0	0
# grounded planes	3	0	0	0	0
# affected flights	9	11	7	3	6
# cancelled flts	6	0	4	0	0
# delayed flts	12	11	11	6	6
total delay	950	675	2560	350	1550
max delayed flight	200	90	385	140	340
cost	127500(*)	42750(*)	125600(*)	39500(*)	51500(*)
tree size	1	1	35	1	3
run time	0.4	0.3	0.8	0.5	0.5

Average results of 10 randomly generated instances

Instance	No maintenance	Dummy maintenance	Maintenance optimization
# cancelled flts	63.3	5.4	4.8
# delayed flts	4.3	3.1	1.1
# uncovered final states	2.2	0.5	0.3
total delay [min]	508	103.3	36.6
max delay [min]	222.2	35.7	31.6
$\cos t$	397214.5	36581.5	33074
optimality gap $[\%]$	0.35	0.28	1.01
${ m tree\ size}$	29.2	23	12
$\operatorname{run\ time\ [s]}$	20.3	57.9	41.8

Considering maintenances is crucial!!!

Example of instance

Instance	No maintenance	Dummy maintenance	Maintenance optimization
# cancelled flts	57	2	0
# delayed flts	9	2	2
total delay [min]	546	61	79
max delay [min]	191	34	50
cost	339195	13310(*)	5760(*)
tree size	5	1	1
run time [s]	8.8	30.5	47.0

Future Work

- Benchmark solutions against practitioners
- Allow repositioning flights and early departures
- Extend Pricing Solver for acceleration
- Include in APM solutions

Conclusions

- Developed a flexible and fast algorithm
- Solutions are very promising
- Maintenance planning is an added value

THANKS for your attention!

Any Questions?