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Route choice modeling

Given a transportation network composed of nodes, links,
origin and destinations.
For a given transportation mode and origin-destination
pair, which is the chosen route?
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Applications

• Intelligent transportation systems

• GPS navigation

• Transportation planning
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Challenges

• Alternatives are often highly correlated due to
overlapping paths

• Data collection

• Large size of the choice set
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Dealing with correlation

Frejinger, E. and Bierlaire, M. (2007). Capturing correlation with

subnetworks in route choice models, Transportation Research

Part B: Methodological 41(3):363-378.
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Existing Approaches

• Few models explicitly capturing correlation have been
used on large-scale route choice problems

• C-Logit (Cascetta et al., 1996)

• Path Size Logit (Ben-Akiva and Bierlaire, 1999)

• Link-Nested Logit (Vovsha and Bekhor, 1998)

• Logit Kernel model adapted to route choice
situation (Bekhor et al., 2002)

• Probit model (Daganzo, 1977) permits an arbitrary
covariance structure specification but cannot be
applied in a large-scale route choice context
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Existing Approaches

• Link based path-multilevel logit model (Marzano and
Papola, 2005)

• Illustrated on simple examples and not estimated
on real data
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Subnetworks

How can we explicitly capture the most
important correlation structure without

considerably increasing the model complexity?
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Subnetworks

How can we explicitly capture the most
important correlation structure without

considerably increasing the model complexity?

• Which are the behaviorally important decisions?
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Subnetworks

How can we explicitly capture the most
important correlation structure without

considerably increasing the model complexity?

• Which are the behaviorally important decisions?

• Our hypothesis: choice of specific parts of the network
(e.g. main roads, city center)

• Concept: subnetwork
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Subnetworks

• Subnetwork approach designed to be behaviorally
realistic and convenient for the analyst

• Subnetwork component is a set of links corresponding
to a part of the network which can be easily labeled

• Paths sharing a subnetwork component are assumed
to be correlated even if they are not physically
overlapping
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Subnetworks - Example
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Subnetworks - Methodology

• Factor analytic specification of an error component
model (based on model presented in Bekhor et al.,
2002)

Un = βT
Xn + FnTζn + νn

• Fn (JxQ): factor loadings matrix

• (fn)iq =
√

lniq

• T(QxQ) = diag (σ1, σ2, . . . , σQ)

• ζn (Qx1): vector of i.i.d. N(0,1) variates

• ν(Jx1): vector of i.i.d. Extreme Value distributed
variates
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Subnetworks - Example
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Empirical Results

• The approach has been tested on three datasets:
Boston (Ramming, 2001), Switzerland, and Borlänge

• Deterministic choice set generation
Link elimination

• GPS data from 24 individuals
2978 observations, 2179 origin-destination pairs

• Borlänge network
3077 nodes and 7459 links

• BIOGEME (biogeme.epfl.ch, Bierlaire, 2003) has been
used for all model estimations
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Borlänge Road Network
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Model Specifications

• Six different models: MNL, PSL, EC1, EC′
1, EC2 and

EC′
2

• EC1 and EC′
1 have a simplified correlation structure

• EC′
1 and EC′

2 do not include a Path Size attribute

• Deterministic part of the utility

Vi = βPS ln(PSi) + βEstimatedTimeEstimatedTimei+

βNbSpeedBumpsNbSpeedBumpsi + βNbLeftTurnsNbLeftTurnsi+

βAvgLinkLengthAvgLinkLengthi
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Estimation Results

• Parameter estimates for explanatory variables are
stable across the different models

• Path size parameter estimates

Parameter PSL EC1 EC2

Path Size -0.28 -0.49 -0.53

Scaled estimate -0.33 -0.53 -0.56

Rob. T-test 0 -4.05 -5.61 -5.91

• All covariance parameters estimates in the different
models are significant except the one associated with
R.50 S
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Estimation Results

Model Nb. σ Nb. Estimated Final Adjusted

Estimates Parameters L-L Rho-Square

MNL - 12 -4186.07 0.152

PSL - 13 -4174.72 0.154

EC1 (with PS) 1 14 -4142.40 0.161

EC′
1 1 13 -4165.59 0.156

EC2 (with PS) 5 18 -4136.92 0.161

EC′
2 5 17 -4162.74 0.156

1000 pseudo-random draws for Maximum Simulated Likelihood estimation

2978 observations

Null log likelihood: -4951.11

BIOGEME (biogeme.epfl.ch) has been used for all model estimations.
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Forecasting Results

• Comparison of the different models in terms of their
performance of predicting choice probabilities

• Five subsamples of the dataset

• Observations corresponding to 80% of the origin
destination pairs (randomly chosen) are used for
estimating the models

• The models are applied on the observations
corresponding to the other 20% of the origin
destination pairs

• Comparison of final log-likelihood values
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Forecasting Results

• Same specification of deterministic utility function for
all models

• Same interpretation of these models as for those
estimated on the complete dataset

• Coefficient and covariance parameter values are stable
across models
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Forecasting Results
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Conclusion - Subnetworks

• Models based on subnetworks are designed for route
choice modeling of realistic size

• Correlation on subnetwork is explicitly captured within
a factor analytic specification of an Error Component
model

• Estimation and prediction results clearly shows the
superiority of the Error Component models compared
to PSL and MNL

• The subnetwork approach is flexible and the model
complexity can be controlled by the analyst
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Network-free data
• Bierlaire, M., Frejinger, E., and Stojanovic, J. (2006). A latent route choice model in

Switzerland. Proceedings of the European Transport Conference (ETC)
September 18-20, 2006.

• Bierlaire, M., and Frejinger, E. (2007). Route choice modeling with network-free
data. Technical report TRANSP-OR 070214. Transport and Mobility Laboratory,
ENAC, EPFL.
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Data collection and processing

• Link-by-link descriptions of chosen routes necessary
for route choice modeling but never directly available

• Data processing in order to obtain network compliant
paths

• Map matching of GPS points

• Reconstruction of reported paths

• Difficult to verify and may introduce bias and errors

Three challenges in route choice modeling – p.23/61



Modeling with network-free data

• An observation i is a sequence of individual pieces of
data related to an itinerary. Examples: sequence of
GPS points or reported locations

• For each piece of data we define a Domain of Data
Relevance (DDR) that is the physical area where it is
relevant

• The DDRs bridge the gap between the network-free
data and the network model
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Example - GPS data
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Example - Reported trip
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Domain of Data Relevance

• For each piece of data d we generate a list of relevant
network elements e (links and nodes)
We define an indicator function

δ(d, e) =





1 if e is related to the DDR of d

0 otherwise
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Model estimation

• We aim at estimating the parameters β of route choice
model P (p|Cn(s); β)

• We have a set Si of relevant od pairs

• The probability of reproducing observation i of traveler
n, given Si is defined as

Pn(i|Si) =
∑

s∈Si

Pn(s|Si)
∑

p∈Cn(s)

Pn(i|p)Pn(p|Cn(s); β)
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Model estimation

• Measurement equation Pn(i|p)

• Reported trips

Pn(i|p) =





1 if i corresponds to p

0 otherwise

• GPS data
Pn(i|p) = 0 if i does not correspond to p

If i corresponds to p then Pn(i|p) is a function of the
distance between i and p
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Model estimation

• Measurement equation Pn(i|p) for GPS data

• Distance between i and a the closest point on a link ℓ

is D(d, p) = minℓ∈Apd
∆(d, ℓ)

4

(2,
4)

(4,
5)

(4, 6)

d4

∆(d4, (2, 4))

∆(d4, (4, 5))
∆(d4, (4, 6))
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Model estimation
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Pn(i|Si) =
∑

s∈Si

Pn(s|Si)
∑

p∈Cn(s)

Pn(i|p)Pn(p|Cn(s); β)

P (i|s) = P (i|p1)P (p1|C(s); β) + P (i|p2)P (p2|C(s); β)
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Empirical Results

• Simplified Swiss network (39411 links and 14841
nodes)

• RP data collection through telephone interviews

• Long distance car travel

• The chosen routes are described with the origin and
destination cities as well as 1 to 3 cities or locations
that the route pass by

• 940 observations available after data cleaning and
verification
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Empirical Results
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Empirical Results

• No information available on the exact origin destination
pairs

P (s|i) =
1

|Si|
∀s ∈ Si

• P (r|i) is modeled with a binary variable

δri =





1 if r corresponds to i

0 otherwise
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Empirical Results

• Two origin-destination pairs are randomly chosen for
each observation

• 46 routes per choice set are generated with a choice
set generation algorithm

• After choice set generation 780 observations are
available

• 160 observations were removed because either all
or none of the generated routes crossed the
observed zones
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Empirical Results

• Probability of an aggregate observation i

P (i) =
∑

s∈Si

1

|Si|
∑

r∈Cs

δriP (r|Cs)

• We estimate Path Size Logit (Ben-Akiva and Bierlaire,
1999) and Subnetwork (Frejinger and Bierlaire, 2007)
models

• BIOGEME (biogeme.epfl.ch) used for all model
estimations
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Empirical Results - Subnetwork

• Subnetwork: main motorways in Switzerland

• Correlation among routes is explicitly modeled on the
subnetwork

• Combined with a Path Size attribute

• Linear-in-parameters utility specifications
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Empirical Results - Subnetwork
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Parameter PSL Subnetwork
ln(path size) based on free-flow time 1.04 (0.134) 7.81 1.10 (0.141) 7.78

Scaled Estimate 1.04 1.04
Freeway free-flow time 0-30 min -7.12 (0.877) -8.12 -7.45 (0.984) -7.57

Scaled Estimate -7.12 -7.04
Freeway free-flow time 30min - 1 hour -1.69 (0.875) -1.93 -2.26 (1.03) -2.19

Scaled Estimate -1.69 -2.14
Freeway free-flow time 1 hour + -4.98 (0.772) -6.45 -5.64 (1.00) -5.61

Scaled Estimate -4.98 -5.33
CN free-flow time 0-30 min -6.03 (0.882) -6.84 -6.25 (0.975) -6.41

Scaled Estimate -6.03 -5.91
CN free-flow time 30 min + -1.87 (0.331) -5.64 -2.16 (0.384) -5.63

Scaled Estimate -1.87 -2.04
Main free-flow travel time 10 min + -2.03 (0.502) -4.05 -2.46 (0.624) -3.95

Scaled Estimate -2.03 -2.33
Small free-flow travel time -2.16 (0.685) -3.16 -2.75 (0.804) -3.42

Scaled Estimate -2.16 -2.60
Proportion of time on freeways -2.2 (0.812) -2.71 -2.31 (0.865) -2.67

Scaled Estimate -2.2 -2.18
Proportion of time on CN 0 fixed 0 fixed

Proportion of time on main -4.43 (0.752) -5.88 -4.40 (0.800) -5.51
Scaled Estimate -4.43 -4.16

Proportion of time on small -6.23 (0.992) -6.28 -6.02 (1.03) -5.83
Scaled Estimate -6.23 -5.69

Covariance parameter 0.217 (0.0543) 4.00
Scaled Estimate 0.205



Empirical Results

PSL Subnetwork

Covariance parameter 0.217

(Rob. Std. Error) Rob. T-test (0.0543) 4.00

Number of simulation draws - 1000

Number of parameters 11 12

Final log-likelihood -1164.850 -1161.472

Adjusted rho square 0.145 0.147

Sample size: 780, Null log-likelihood: -1375.851
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Empirical Results

• All parameters have their expected signs and are
significantly different from zero

• The values and significance level are stable across the
two models

• The subnetwork model is significantly better than the
Path Size Logit (PSL) model
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Concluding remarks

• Network-free data are more reliable

• Data processing may bias the result

• We prefer to model explicitly the relationship between
the data and the model
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Choice set generation
Frejinger, E. and Bierlaire, M. (2007). Stochastic Path Generation Algorithm for Route
Choice Models. Proceedings of the Sixth Triennial Symposium on Transportation Analysis
(TRISTAN) June 10-15, 2007.
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Introduction

• Choice sets need to be defined prior to the route
choice modeling

• Path enumeration algorithms are used for this purpose,
many heuristics have been proposed, for example:

• Deterministic approaches: link elimination (Azevedo
et al., 1993), labeled paths (Ben-Akiva et al., 1984)

• Stochastic approaches: simulation (Ramming,
2001) and doubly stochastic (Bovy and
Fiorenzo-Catalano, 2006)
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Introduction

• Underlying assumption: the actual choice set is
generated

• Empirical results suggest that this is not always true

• Our approach:

• True choice set = universal set

• Too large

• Sampling of alternatives
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Sampling of Alternatives

• Multinomial logit model (e.g. Ben-Akiva and Lerman,
1985):

P (i|Cn) =
q(Cn|i)P (i)∑

j∈Cn

q(Cn|j)P (j)
=

eVin+ln q(Cn|i)
∑

j∈Cn

eVjn+ln q(Cn|j)

Cn: set of sampled alternatives
q(Cn|j): probability of sampling Cn given that j is the
chosen alternative
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Importance Sampling of Alternatives

• Attractive paths have higher probability of being
sampled than unattractive paths

• Path utilities must be corrected in order to obtain
unbiased estimation results
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Stochastic Path Enumeration

• Flexible approach that can be combined with various
algorithms, here a biased random walk approach

• The probability of a link ℓ with source node v and sink
node w is modeled in a stochastic way based on its
distance to the shortest path

• Kumaraswamy distribution, cumulative distribution
function F (xℓ|a, b) = 1 − (1 − xℓ

a)b for xℓ ∈ [0, 1].

xℓ =
SP (v, d)

C(ℓ) + SP (w, d)
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Stochastic Path Enumeration
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Stochastic Path Enumeration

• Probability for path j to be sampled

q(j) =
∏

ℓ=(v,w)∈Γj

q((v, w)|Ev)

• Γj: ordered set of all links in j

• v: source node of j

• Ev: set of all outgoing links from v

• Issue: in theory, the set of all paths U is unbounded.
We treat it as bounded with size J .
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Sampling of Alternatives

• Following Ben-Akiva (1993)

• Sampling protocol

1. A set C̃n is generated by drawing R paths with
replacement from the universal set of paths U

2. Add chosen path to C̃n

• Outcome of sampling: (k̃1, k̃2, . . . , k̃J) and
∑J

j=1 k̃j = R

P (k̃1, k̃2, . . . , k̃J) =
R!

∏
j∈U k̃j!

∏

j∈U
q(j)

ekj

• Alternative j appears kj = k̃j + δcj in C̃n
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Sampling of Alternatives

• Let Cn = {j ∈ U | kj > 0}

q(Cn|i) = q(C̃n|i) =
R!

(ki − 1)!
∏

j∈Cn

j 6=i

kj!
q(i)ki−1

∏

j∈Cn

j 6=i

q(j)kj = KCn

ki

q(i)

KCn
= R!Q

j∈Cn
kj !

∏
j∈Cn

q(j)kj

P (i|Cn) =
e

Vin+ln( ki
q(i))

∑

j∈Cn

e
Vjn+ln

“
kj

q(j)

”
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Preliminary Numerical Results

• Estimation of models based on synthetic data
generated with postulated models

• Non-correlated paths
Postulated model same as estimated model
(multinomial logit)

• Correlated paths in a “grid-like” network
Postulated model is probit and estimated models
are multinomial logit and path size logit

• True parameter values are compared to estimates
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Preliminary Numerical Results
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Preliminary Numerical Results

• True model: multinomial logit
Uj = βL lengthj + βSB nbspeedbumpsj + εj

βL = −0.6 and βSB = −0.3

εj is distributed Extreme Value with location parameter
0 and scale 1

• 500 observations, therefore 500 choice sets are
sampled

• Biased random walk using 40 draws with a = 2 and
b = 1

Generated choice sets include at least 7, maximum 18
and on average 11.9 paths
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Preliminary Numerical Results

MNL MNL

Sampling correction without with

bβL (-0.6) -0.203 -0.286

Scaled estimate -0.600 -0.600

Robust std. 0.0193 0.019

Robust t-test -10.53 -15.01

bβSB (-0.3) -0.0194 -0.143

Scaled estimate -0.0573 -0.300

Robust std. 0.0662 0.0661

Robust t-test -0.29 -2.17

Null log-likelihood -1069.453 -1633.501

Final log-likelihood -788.42 -759.848

Adjusted ρ̄2 0.261 0.288

BIOGEME has been used for all model estimations.
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Preliminary Numerical Results
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Preliminary Numerical Results

• True model: probit (Burrell, 1968)
Uℓ = βL lengthℓ + βSB nbspeedbumpsℓ + σ

√
Lℓνℓ

βL = −0.6 and βSB = −0.4

νℓ is distributed standard Normal
Link utility variance assumed proportional to length
with parameter σ = 0.8

• Path utilities are link additive

• 382 observations are generated after 500 realizations of
the link utilities
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Preliminary Numerical Results

• Biased random walk using 30 draws with a = 2 and
b = 1 (382 choice sets)
Generated choice sets include at least 7, maximum 19
and on average 13.5 paths
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Preliminary Numerical Results

MNL MNL PSL PSL

Sampling correction without with without with

bβL (-0.6) -0.627 -0.978 -0.619 -0.969

Scaled estimate -0.600 -0.600 -0.600 -0.600

Robust std. 0.0397 0.032 0.0407 0.0358

Robust t-test -15.79 -30.57 -15.22 -27.04

bβSB (-0.4) -0.0822 -0.0801 -0.347 -0.461

Scaled estimate -0.0787 -0.0491 -0.336 -0.285

Robust std. 0.052 0.0559 0.182 0.158

Robust t-test -1.58 -1.43 -1.90 -2.92

bβPS 1.17 1.74

Scaled estimate 1.13 1.08

Robust std. 0.788 0.705

Robust t-test 1.49 2.47
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Preliminary Numerical Results

MNL MNL PSL PSL

Sampling correction without with without with

Null log-likelihood -988.63 -2769.959 -988.63 -2769.959

Final log-likelihood -676.111 -653.396 -674.481 -649.268

Adjusted ρ̄2 0.314 0.337 0.315 0.340

BIOGEME has been used for all model estimations.
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Conclusions and Future Work

• Stochastic path enumeration algorithms are viewed as
an approach for importance sampling of alternatives

• We propose an algorithm that allows for computation of
path selection probabilities and correction for sampling

• Ongoing research, further work will be dedicated, for
example, to empirical results on real data and
correction in prediction
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