Three challenges in route choice modeling

\author{
Michel Bierlaire and Emma Frejinger
 ```
transp-or.epfl.ch

``` \\ Transport and Mobility Laboratory, EPFL
}

\section*{Route choice modeling}

Given a transportation network composed of nodes, links, origin and destinations.
For a given transportation mode and origin-destination pair, which is the chosen route?

\section*{Applications}
- Intelligent transportation systems
- GPS navigation
- Transportation planning

\section*{Challenges}
- Alternatives are often highly correlated due to overlapping paths
- Data collection
- Large size of the choice set

\section*{Dealing with correlation}

Frejinger, E. and Bierlaire, M. (2007). Capturing correlation with subnetworks in route choice models, Transportation Research Part B: Methodological 41 (3):363-378.

\section*{Existing Approaches}
- Few models explicitly capturing correlation have been used on large-scale route choice problems
- C-Logit (Cascetta et al., 1996)
- Path Size Logit (Ben-Akiva and Bierlaire, 1999)
- Link-Nested Logit (Vovsha and Bekhor, 1998)
- Logit Kernel model adapted to route choice situation (Bekhor et al., 2002)
- Probit model (Daganzo, 1977) permits an arbitrary covariance structure specification but cannot be applied in a large-scale route choice context

\section*{Existing Approaches}
- Link based path-multilevel logit model (Marzano and Papola, 2005)
- Illustrated on simple examples and not estimated on real data

\section*{Subnetworks}

\section*{How can we explicitly capture the most important correlation structure without considerably increasing the model complexity?}

\section*{Subnetworks}

> How can we explicitly capture the most important correlation structure without considerably increasing the model complexity?
- Which are the behaviorally important decisions?

\section*{Subnetworks}

> How can we explicitly capture the most important correlation structure without considerably increasing the model complexity?
- Which are the behaviorally important decisions?
- Our hypothesis: choice of specific parts of the network (e.g. main roads, city center)
- Concept: subnetwork

\section*{Subnetworks}
- Subnetwork approach designed to be behaviorally realistic and convenient for the analyst
- Subnetwork component is a set of links corresponding to a part of the network which can be easily labeled
- Paths sharing a subnetwork component are assumed to be correlated even if they are not physically overlapping

\section*{Subnetworks - Example}


\section*{Subnetworks - Methodology}
- Factor analytic specification of an error component model (based on model presented in Bekhor et al., 2002)
\[
\mathbf{U}_{n}=\beta^{T} \mathbf{X}_{n}+\mathbf{F}_{n} \mathbf{T} \zeta_{n}+\nu_{n}
\]
- \(\mathbf{F}_{n(J \times Q)}\) : factor loadings matrix
- \(\left(f_{n}\right)_{i q}=\sqrt{l_{n i q}}\)
- \(\mathbf{T}_{(Q \times Q)}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{Q}\right)\)
- \(\zeta_{n(Q \times 1)}\) : vector of i.i.d. \(\mathrm{N}(0,1)\) variates
- \(\nu_{(J \times 1)}\) : vector of i.i.d. Extreme Value distributed variates

\section*{Subnetworks - Example}

\[
\begin{aligned}
& U_{1}=\beta^{T} X_{1}+\sqrt{l_{1 a}} \sigma_{a} \zeta_{a}+\sqrt{l_{1 b}} \sigma_{b} \zeta_{b}+\nu_{1} \\
& U_{2}=\beta^{T} X_{2}+\sqrt{l_{2 a}} \sigma_{a} \zeta_{a}+\nu_{2} \\
& U_{3}=\beta^{T} X_{3}+\sqrt{l_{3 b}} \sigma_{b} \zeta_{b}+\nu_{3} \\
& \mathbf{F T T}^{T} \mathbf{F}^{T}= \\
& {\left[\begin{array}{ccc}
l_{1 a} \sigma_{a}^{2}+l_{1 b} \sigma_{b}^{2} & \sqrt{l_{1 a}} \sqrt{l_{2 a}} \sigma_{a}^{2} & \sqrt{l_{1 b}} \sqrt{l_{3 b}} \sigma_{b}^{2} \\
\sqrt{l_{1 a}} \sqrt{l_{2 a}} \sigma_{a}^{2} & l_{2 a} \sigma_{a}^{2} & 0 \\
\sqrt{l_{3 b}} \sqrt{l_{1 b}} \sigma_{b}^{2} & 0 & l_{3 b} \sigma_{b}^{2}
\end{array}\right]}
\end{aligned}
\]

\section*{Empirical Results}
- The approach has been tested on three datasets: Boston (Ramming, 2001), Switzerland, and Borlänge
- Deterministic choice set generation Link elimination
- GPS data from 24 individuals 2978 observations, 2179 origin-destination pairs
- Borlänge network 3077 nodes and 7459 links
- BIOGEME (biogeme.epfl.ch, Bierlaire, 2003) has been used for all model estimations

\section*{Borlänge Road Network}


TRANSP-OR

\section*{Model Specifications}
- Six different models: MNL, PSL, \(\mathrm{EC}_{1}, \mathrm{EC}_{1}^{\prime}, \mathrm{EC}_{2}\) and \(\mathrm{EC}_{2}^{\prime}\)
- \(\mathrm{EC}_{1}\) and \(\mathrm{EC}_{1}^{\prime}\) have a simplified correlation structure
- \(\mathrm{EC}_{1}^{\prime}\) and \(\mathrm{EC}_{2}^{\prime}\) do not include a Path Size attribute
- Deterministic part of the utility
\(V_{i}=\beta_{\mathrm{PS}} \ln \left(\mathrm{PS}_{i}\right)+\beta_{\text {EstimatedTime }}\) EstimatedTime \(_{i}+\)
\(\beta_{\text {NbSpeedBumps }}\) NbSpeedBumps \(_{i}+\beta_{\text {NbLeft }}\) Nurns \(^{\text {NbLeftTurns }}{ }_{i}+\)
\(\beta_{\text {AvgLinkLength }}\) AvgLinkLength \({ }_{i}\)

\section*{Estimation Results}
- Parameter estimates for explanatory variables are stable across the different models
- Path size parameter estimates
\begin{tabular}{|l|c||c|c|}
\hline Parameter & PSL & \(\mathrm{EC}_{1}\) & \(\mathrm{EC}_{2}\) \\
\hline Path Size & -0.28 & -0.49 & -0.53 \\
Scaled estimate & -0.33 & -0.53 & -0.56 \\
Rob. T-test 0 & -4.05 & -5.61 & -5.91 \\
\hline
\end{tabular}
- All covariance parameters estimates in the different models are significant except the one associated with R. 50 S

\section*{Estimation Results}
\begin{tabular}{|l|c|c|c|c|}
\hline Model & \begin{tabular}{c} 
Nb. \(\sigma\) \\
Estimates
\end{tabular} & \begin{tabular}{c} 
Nb. Estimated \\
Parameters
\end{tabular} & \begin{tabular}{c} 
Final \\
L-L
\end{tabular} & \begin{tabular}{c} 
Adjusted \\
Rho-Square
\end{tabular} \\
\hline MNL & - & 12 & -4186.07 & 0.152 \\
\hline PSL & - & 13 & -4174.72 & 0.154 \\
\hline \(\mathrm{EC}_{1}\) (with PS) & 1 & 14 & -4142.40 & 0.161 \\
\(\mathrm{EC}_{1}^{\prime}\) & 1 & 13 & -4165.59 & 0.156 \\
\hline \(\mathrm{EC}_{2}\) (with PS) & 5 & 18 & -4136.92 & 0.161 \\
\(\mathrm{EC}_{2}^{\prime}\) & 5 & 17 & -4162.74 & 0.156 \\
\hline 1000 pseudo-random draws for Maximum Simulated Likelihood estimation \\
2978 observations \\
Null log likelihood: -4951.11 \\
BIOGEME (biogeme.epfl.ch) has been used for all model estimations. \\
\hline
\end{tabular}

\section*{Forecasting Results}
- Comparison of the different models in terms of their performance of predicting choice probabilities
- Five subsamples of the dataset
- Observations corresponding to \(80 \%\) of the origin destination pairs (randomly chosen) are used for estimating the models
- The models are applied on the observations corresponding to the other \(20 \%\) of the origin destination pairs
- Comparison of final log-likelihood values

\section*{Forecasting Results}
- Same specification of deterministic utility function for all models
- Same interpretation of these models as for those estimated on the complete dataset
- Coefficient and covariance parameter values are stable across models

\section*{Forecasting Results}


TRANSP-OR

\section*{Conclusion - Subnetworks}
- Models based on subnetworks are designed for route choice modeling of realistic size
- Correlation on subnetwork is explicitly captured within a factor analytic specification of an Error Component model
- Estimation and prediction results clearly shows the superiority of the Error Component models compared to PSL and MNL
- The subnetwork approach is flexible and the model complexity can be controlled by the analyst

\section*{Network-free data}
- Bierlaire, M., Frejinger, E., and Stojanovic, J. (2006). A latent route choice model in Switzerland. Proceedings of the European Transport Conference (ETC) September 18-20, 2006.
- Bierlaire, M., and Frejinger, E. (2007). Route choice modeling with network-free data. Technical report TRANSP-OR 070214. Transport and Mobility Laboratory, ENAC, EPFL.

\section*{Data collection and processing}
- Link-by-link descriptions of chosen routes necessary for route choice modeling but never directly available
- Data processing in order to obtain network compliant paths
- Map matching of GPS points
- Reconstruction of reported paths
- Difficult to verify and may introduce bias and errors

\section*{Modeling with network-free data}
- An observation \(i\) is a sequence of individual pieces of data related to an itinerary. Examples: sequence of GPS points or reported locations
- For each piece of data we define a Domain of Data Relevance (DDR) that is the physical area where it is relevant
- The DDRs bridge the gap between the network-free data and the network model

\section*{Example - GPS data}


\section*{Example - Reported trip}


\section*{Domain of Data Relevance}
- For each piece of data \(d\) we generate a list of relevant network elements \(e\) (links and nodes)
We define an indicator function
\[
\delta(d, e)= \begin{cases}1 & \text { if } e \text { is related to the DDR of } d \\ 0 & \text { otherwise }\end{cases}
\]

\section*{Model estimation}
- We aim at estimating the parameters \(\beta\) of route choice model \(P\left(p \mid \mathcal{C}_{n}(s) ; \beta\right)\)
- We have a set \(\mathcal{S}_{i}\) of relevant od pairs
- The probability of reproducing observation \(i\) of traveler \(n\), given \(\mathcal{S}_{i}\) is defined as
\[
P_{n}\left(i \mid \mathcal{S}_{i}\right)=\sum_{s \in \mathcal{S}_{i}} P_{n}\left(s \mid \mathcal{S}_{i}\right) \sum_{p \in \mathcal{C}_{n}(s)} P_{n}(i \mid p) P_{n}\left(p \mid \mathcal{C}_{n}(s) ; \beta\right)
\]

\section*{Model estimation}
- Measurement equation \(P_{n}(i \mid p)\)
- Reported trips
\[
P_{n}(i \mid p)= \begin{cases}1 & \text { if } i \text { corresponds to } p \\ 0 & \text { otherwise }\end{cases}
\]
- GPS data
\(P_{n}(i \mid p)=0\) if \(i\) does not correspond to \(p\)
If \(i\) corresponds to \(p\) then \(P_{n}(i \mid p)\) is a function of the distance between \(i\) and \(p\)

\section*{Model estimation}
- Measurement equation \(P_{n}(i \mid p)\) for GPS data
- Distance between \(i\) and a the closest point on a link \(\ell\) is \(D(d, p)=\min _{\ell \in A_{p d}} \Delta(d, \ell)\)


\section*{Model estimation}

\[
\begin{gathered}
P_{n}\left(i \mid \mathcal{S}_{i}\right)=\sum_{s \in \mathcal{S}_{i}} P_{n}\left(s \mid \mathcal{S}_{i}\right) \sum_{p \in \mathcal{C}_{n}(s)} P_{n}(i \mid p) P_{n}\left(p \mid \mathcal{C}_{n}(s) ; \beta\right) \\
P(i \mid s)=P\left(i \mid p_{1}\right) P\left(p_{1} \mid \mathcal{C}(s) ; \beta\right)+P\left(i \mid p_{2}\right) P\left(p_{2} \mid \mathcal{C}(s) ; \beta\right)
\end{gathered}
\]

\section*{Empirical Results}
- Simplified Swiss network (39411 links and 14841 nodes)
- RP data collection through telephone interviews
- Long distance car travel
- The chosen routes are described with the origin and destination cities as well as 1 to 3 cities or locations that the route pass by
- 940 observations available after data cleaning and verification

\section*{Empirical Results}


TRANSP-OR

\section*{Empirical Results}
- No information available on the exact origin destination pairs
\[
P(s \mid i)=\frac{1}{\left|S_{i}\right|} \forall s \in S_{i}
\]
- \(P(r \mid i)\) is modeled with a binary variable
\[
\delta_{r i}= \begin{cases}1 & \text { if } r \text { corresponds to } i \\ 0 & \text { otherwise }\end{cases}
\]

\section*{Empirical Results}
- Two origin-destination pairs are randomly chosen for each observation
- 46 routes per choice set are generated with a choice set generation algorithm
- After choice set generation 780 observations are available
- 160 observations were removed because either all or none of the generated routes crossed the observed zones

\section*{Empirical Results}
- Probability of an aggregate observation \(i\)
\[
P(i)=\sum_{s \in S_{i}} \frac{1}{\left|S_{i}\right|} \sum_{r \in C_{s}} \delta_{r i} P\left(r \mid C_{s}\right)
\]
- We estimate Path Size Logit (Ben-Akiva and Bierlaire, 1999) and Subnetwork (Frejinger and Bierlaire, 2007) models
- BIOGEME (biogeme.epfl.ch) used for all model estimations

\section*{Empirical Results - Subnetwork}
- Subnetwork: main motorways in Switzerland
- Correlation among routes is explicitly modeled on the subnetwork
- Combined with a Path Size attribute
- Linear-in-parameters utility specifications

\section*{Empirical Results - Subnetwork}


Three challenges in route choice modeling - p.38/61
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter & \multicolumn{2}{|l|}{PSL} & \multicolumn{2}{|l|}{Subnetwork} \\
\hline In(path size) based on free-flow time & 1.04 & (0.134) 7.81 & 1.10 & (0.141) 7.78 \\
\hline Scaled Estimate & 1.04 & & 1.04 & \\
\hline Freeway free-flow time 0-30 min & -7.12 & (0.877) -8.12 & -7.45 & (0.984) -7.57 \\
\hline Scaled Estimate & -7.12 & & -7.04 & \\
\hline Freeway free-flow time 30min - 1 hour & -1.69 & (0.875) -1.93 & -2.26 & (1.03) -2.19 \\
\hline Scaled Estimate & -1.69 & & -2.14 & \\
\hline Freeway free-flow time 1 hour + & -4.98 & (0.772) -6.45 & -5.64 & (1.00) -5.61 \\
\hline Scaled Estimate & -4.98 & & -5.33 & \\
\hline CN free-flow time 0-30 min & -6.03 & (0.882) -6.84 & -6.25 & (0.975) -6.41 \\
\hline Scaled Estimate & -6.03 & & -5.91 & \\
\hline CN free-flow time \(30 \mathrm{~min}+\) & -1.87 & (0.331) -5.64 & -2.16 & (0.384) -5.63 \\
\hline Scaled Estimate & -1.87 & & -2.04 & \\
\hline Main free-flow travel time 10 min + & -2.03 & (0.502) -4.05 & -2.46 & (0.624) -3.95 \\
\hline Scaled Estimate & -2.03 & & -2.33 & \\
\hline Small free-flow travel time & -2.16 & (0.685) -3.16 & -2.75 & (0.804) -3.42 \\
\hline Scaled Estimate & -2.16 & & -2.60 & \\
\hline Proportion of time on freeways & -2.2 & (0.812) -2.71 & -2.31 & (0.865) -2.67 \\
\hline Scaled Estimate & -2.2 & & -2.18 & \\
\hline Proportion of time on CN & 0 fixed & & 0 fixed & \\
\hline Proportion of time on main & -4.43 & (0.752) -5.88 & -4.40 & (0.800) -5.51 \\
\hline Scaled Estimate & -4.43 & & -4.16 & \\
\hline Proportion of time on small & -6.23 & (0.992) -6.28 & -6.02 & (1.03) -5.83 \\
\hline Scaled Estimate & -6.23 & & -5.69 & \\
\hline Covariance parameter & & & 0.217 & (0.0543) 4.00 \\
\hline Scaled Estimate & & & 0.205 & \\
\hline
\end{tabular}

\section*{Empirical Results}
\begin{tabular}{|l|c|c|}
\hline & PSL & Subnetwork \\
\hline Covariance parameter & & 0.217 \\
(Rob. Std. Error) Rob. T-test & & \((0.0543) 4.00\) \\
\hline \hline Number of simulation draws & - & 1000 \\
Number of parameters & 11 & 12 \\
Final log-likelihood & -1164.850 & -1161.472 \\
Adjusted rho square & 0.145 & 0.147 \\
\hline \multicolumn{2}{|l|}{ Sample size: 780, Null log-likelihood: -1375.851} \\
\hline
\end{tabular}

\section*{Empirical Results}
- All parameters have their expected signs and are significantly different from zero
- The values and significance level are stable across the two models
- The subnetwork model is significantly better than the Path Size Logit (PSL) model

\section*{Concluding remarks}
- Network-free data are more reliable
- Data processing may bias the result
- We prefer to model explicitly the relationship between the data and the model

\section*{Choice set generation}

Frejinger, E. and Bierlaire, M. (2007). Stochastic Path Generation Algorithm for Route Choice Models. Proceedings of the Sixth Triennial Symposium on Transportation Analysis (TRISTAN) June 10-15, 2007.

\section*{Introduction}
- Choice sets need to be defined prior to the route choice modeling
- Path enumeration algorithms are used for this purpose, many heuristics have been proposed, for example:
- Deterministic approaches: link elimination (Azevedo et al., 1993), labeled paths (Ben-Akiva et al., 1984)
- Stochastic approaches: simulation (Ramming, 2001) and doubly stochastic (Bovy and Fiorenzo-Catalano, 2006)

\section*{Introduction}
- Underlying assumption: the actual choice set is generated
- Empirical results suggest that this is not always true
- Our approach:
- True choice set = universal set
- Too large
- Sampling of alternatives

\section*{Sampling of Alternatives}
- Multinomial logit model (e.g. Ben-Akiva and Lerman, 1985):
\[
P\left(i \mid \mathcal{C}_{n}\right)=\frac{q\left(\mathcal{C}_{n} \mid i\right) P(i)}{\sum_{j \in \mathcal{C}_{n}} q\left(\mathcal{C}_{n} \mid j\right) P(j)}=\frac{e^{V_{i n}+\ln q\left(\mathcal{C}_{n} \mid i\right)}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}+\ln q\left(\mathcal{C}_{n} \mid j\right)}}
\]
\(\mathcal{C}_{n}\) : set of sampled alternatives
\(q\left(\mathcal{C}_{n} \mid j\right)\) : probability of sampling \(\mathcal{C}_{n}\) given that \(j\) is the chosen alternative

\section*{Importance Sampling of Alternatives}
- Attractive paths have higher probability of being sampled than unattractive paths
- Path utilities must be corrected in order to obtain unbiased estimation results

\section*{Stochastic Path Enumeration}
- Flexible approach that can be combined with various algorithms, here a biased random walk approach
- The probability of a link \(\ell\) with source node \(v\) and sink node \(w\) is modeled in a stochastic way based on its distance to the shortest path
- Kumaraswamy distribution, cumulative distribution function \(F\left(x_{\ell} \mid a, b\right)=1-\left(1-x_{\ell}{ }^{a}\right)^{b}\) for \(x_{\ell} \in[0,1]\).
\[
x_{\ell}=\frac{S P(v, d)}{C(\ell)+S P(w, d)}
\]

\section*{Stochastic Path Enumeration}


\section*{Stochastic Path Enumeration}
- Probability for path \(j\) to be sampled
\[
q(j)=\prod_{\ell=(v, w) \in \Gamma_{j}} q\left((v, w) \mid \mathcal{E}_{v}\right)
\]
- \(\Gamma_{j}\) : ordered set of all links in \(j\)
- \(v\) : source node of \(j\)
- \(\mathcal{E}_{v}\) : set of all outgoing links from \(v\)
- Issue: in theory, the set of all paths \(\mathcal{U}\) is unbounded. We treat it as bounded with size \(J\).

\section*{Sampling of Alternatives}
- Following Ben-Akiva (1993)
- Sampling protocol
1. A set \(\widetilde{\mathcal{C}_{n}}\) is generated by drawing \(R\) paths with replacement from the universal set of paths \(\mathcal{U}\)
2. Add chosen path to \(\widetilde{\mathcal{C}_{n}}\)
- Outcome of sampling: \(\left(\widetilde{k}_{1}, \widetilde{k}_{2}, \ldots, \widetilde{k}_{J}\right)\) and \(\sum_{j=1}^{J} \widetilde{k}_{j}=R\)
\[
P\left(\widetilde{k}_{1}, \widetilde{k}_{2}, \ldots, \widetilde{k}_{J}\right)=\frac{R!}{\prod_{j \in \mathcal{U}} \widetilde{k}_{j}!} \prod_{j \in \mathcal{U}} q(j)^{\widetilde{k}_{j}}
\]
- Alternative \(j\) appears \(k_{j}=\widetilde{k}_{j}+\delta_{c j}\) in \(\widetilde{\mathcal{C}_{n}}\)

\section*{Sampling of Alternatives}
- Let \(\mathcal{C}_{n}=\left\{j \in \mathcal{U} \mid k_{j}>0\right\}\)
\[
\begin{aligned}
q\left(\mathcal{C}_{n} \mid i\right) & =q\left(\widetilde{\mathcal{C}_{n}} \mid i\right)=\frac{R!}{\left(k_{i}-1\right)!\prod_{\substack{j \in \mathcal{C}_{n} \\
j \neq i}} k_{j}!} q(i)^{k_{i}-1} \prod_{\substack{j \in \mathcal{C}_{n} \\
j \neq i}} q(j)^{k_{j}}=K_{\mathcal{C}_{n}} \frac{k_{i}}{q(i)} \\
K_{\mathcal{C}_{n}} & =\frac{R!}{\prod_{j \in \mathcal{C}_{n} k_{j}!}} \prod_{j \in \mathcal{C}_{n}} q(j)^{k_{j}}
\end{aligned}
\]
\[
P\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}+\ln \left(\frac{k_{i}}{q(i)}\right)}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}+\ln \left(\frac{k_{j}}{q(j)}\right)}}
\]

\section*{Preliminary Numerical Results}
- Estimation of models based on synthetic data generated with postulated models
- Non-correlated paths

Postulated model same as estimated model (multinomial logit)
- Correlated paths in a "grid-like" network Postulated model is probit and estimated models are multinomial logit and path size logit
- True parameter values are compared to estimates

\section*{Preliminary Numerical Results}


\section*{Preliminary Numerical Results}
- True model: multinomial logit
\(U_{j}=\beta_{\mathrm{L}}\) length \(_{j}+\beta_{\mathrm{SB}}\) nbspeedbumps \(_{j}+\varepsilon_{j}\)
\(\beta_{\mathrm{L}}=-0.6\) and \(\beta_{\mathrm{SB}}=-0.3\)
\(\varepsilon_{j}\) is distributed Extreme Value with location parameter 0 and scale 1
- 500 observations, therefore 500 choice sets are sampled
- Biased random walk using 40 draws with \(a=2\) and \(b=1\)
Generated choice sets include at least 7, maximum 18 and on average 11.9 paths

\section*{Preliminary Numerical Results}
\begin{tabular}{|l|c|c|}
\hline Sampling correction & \begin{tabular}{c} 
MNL \\
without
\end{tabular} & \begin{tabular}{c} 
MNL \\
with
\end{tabular} \\
\hline\(\widehat{\beta}_{\mathrm{L}}\) (-0.6) & -0.203 & -0.286 \\
Scaled estimate & -0.600 & -0.600 \\
Robust std. & 0.0193 & 0.019 \\
Robust t-test & -10.53 & -15.01 \\
\hline\(\widehat{\beta}_{\text {SB }}(-0.3)\) & -0.0194 & -0.143 \\
Scaled estimate & -0.0573 & -0.300 \\
Robust std. & 0.0662 & 0.0661 \\
Robust t-test & -0.29 & -2.17 \\
\hline \hline Null log-likelihood & -1069.453 & -1633.501 \\
Final log-likelihood & -788.42 & -759.848 \\
Adjusted \(\bar{\rho}^{2}\) & 0.261 & 0.288 \\
\hline BIOGEME has been used for all model estimations. \\
\hline
\end{tabular}

\section*{Preliminary Numerical Results}


TRANSP-OR

\section*{Preliminary Numerical Results}
- True model: probit (Burrell, 1968) \(U_{\ell}=\beta_{\mathrm{L}}\) length \(_{\ell}+\beta_{\mathrm{SB}}\) nbspeedbumps \(_{\ell}+\sigma \sqrt{L_{\ell} \nu_{\ell}}\)
\(\beta_{\mathrm{L}}=-0.6\) and \(\beta_{\mathrm{SB}}=-0.4\)
\(\nu_{\ell}\) is distributed standard Normal
Link utility variance assumed proportional to length with parameter \(\sigma=0.8\)
- Path utilities are link additive
- 382 observations are generated after 500 realizations of the link utilities

\section*{Preliminary Numerical Results}
- Biased random walk using 30 draws with \(a=2\) and \(b=1\) (382 choice sets)
Generated choice sets include at least 7, maximum 19 and on average 13.5 paths

\section*{Preliminary Numerical Results}
\begin{tabular}{|l|c|c||c|c|}
\hline Sampling correction & \begin{tabular}{c} 
MNL \\
without
\end{tabular} & \begin{tabular}{c} 
MNL \\
with
\end{tabular} & \begin{tabular}{c} 
PSL \\
without
\end{tabular} & \begin{tabular}{c} 
PSL \\
with
\end{tabular} \\
\hline\(\widehat{\beta}_{\text {L }}(-0.6)\) & -0.627 & -0.978 & -0.619 & -0.969 \\
Scaled estimate & -0.600 & -0.600 & -0.600 & -0.600 \\
Robust std. & 0.0397 & 0.032 & 0.0407 & 0.0358 \\
Robust t-test & -15.79 & -30.57 & -15.22 & -27.04 \\
\hline\(\widehat{\beta}_{\text {SB }}(-0.4)\) & -0.0822 & -0.0801 & -0.347 & -0.461 \\
Scaled estimate & -0.0787 & -0.0491 & -0.336 & -0.285 \\
Robust std. & 0.052 & 0.0559 & 0.182 & 0.158 \\
Robust t-test & -1.58 & -1.43 & -1.90 & -2.92 \\
\hline\(\widehat{\beta}_{\text {PS }}\) & & & 1.17 & 1.74 \\
Scaled estimate & & & 1.13 & 1.08 \\
Robust std. & & & 0.788 & 0.705 \\
Robust t-test & & & 1.49 & 2.47 \\
\hline
\end{tabular}

\section*{Preliminary Numerical Results}
\begin{tabular}{|l|c|c||c|c|}
\hline Sampling correction & \begin{tabular}{c} 
MNL \\
without
\end{tabular} & \begin{tabular}{c} 
MNL \\
with
\end{tabular} & \begin{tabular}{c} 
PSL \\
without
\end{tabular} & \begin{tabular}{c} 
PSL \\
with
\end{tabular} \\
\hline \hline Null log-likelihood & -988.63 & -2769.959 & -988.63 & -2769.959 \\
Final log-likelihood & -676.111 & -653.396 & -674.481 & -649.268 \\
Adjusted \(\bar{\rho}^{2}\) & 0.314 & 0.337 & 0.315 & 0.340 \\
\hline BIOGEME has been used for all model estimations. \\
\hline
\end{tabular}

\section*{Conclusions and Future Work}
- Stochastic path enumeration algorithms are viewed as an approach for importance sampling of alternatives
- We propose an algorithm that allows for computation of path selection probabilities and correction for sampling
- Ongoing research, further work will be dedicated, for example, to empirical results on real data and correction in prediction```

