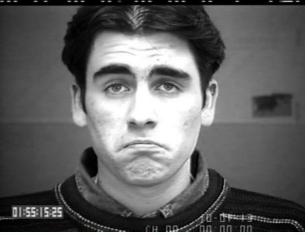
Modelling Human Perception of Facial Expressions by Discrete Choice Models

Javier CRUZ Thomas ROBIN Matteo SORCI Michel BIERLAIRE Jean-Philippe THIRAN

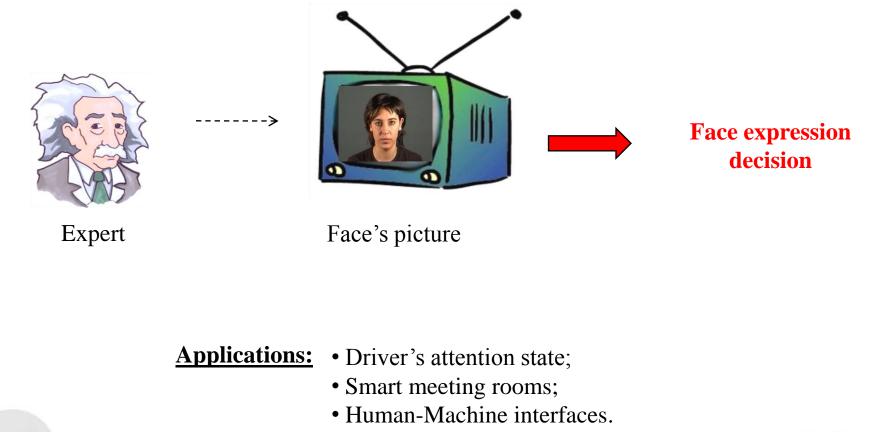
28th of August, 2007

Outline

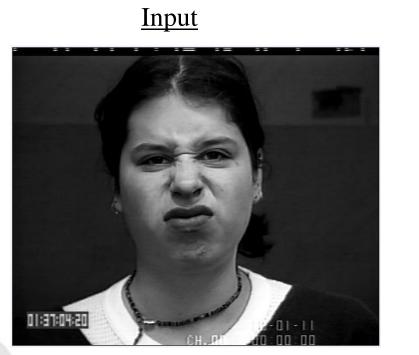
- Introduction
- Objectives
- Data
- Features extraction: Active appearance model (AAM)
- Behavioural modelling : Discrete choice model (DCM)
- Application
- Conclusions and future works

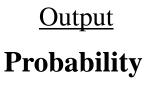


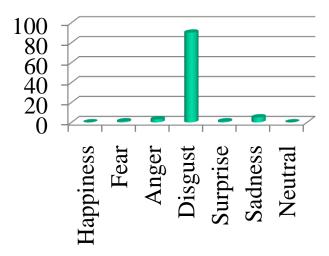
Introduction



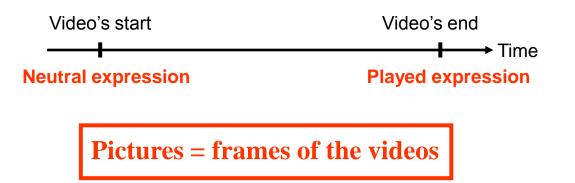
Introduction







Model the way an expert identifies the face expression on a picture.


STRANSP-OR

Data : Pictures

The Cohn-Kanade data base

- Video sequences of actors face: actors play expressions starting from the neutral one

- 1272 pictures from 11 subjects

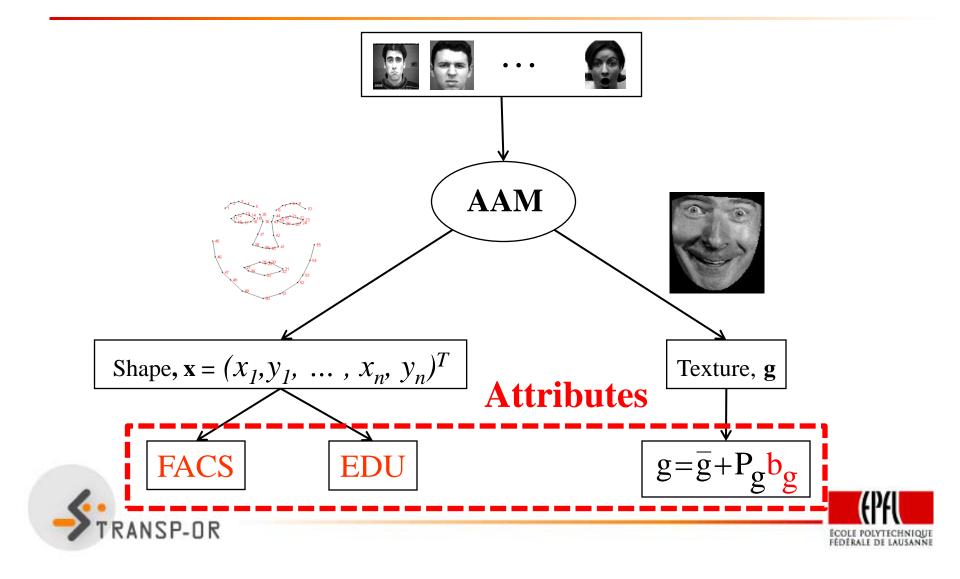
Data : Internet Survey

- People have to label randomly chosen pictures
- People report their socio-economics characteristics (age, formation, job...)
- 1718 participants for more than 39000 labeled images

http://lts5www.epfl.ch/face

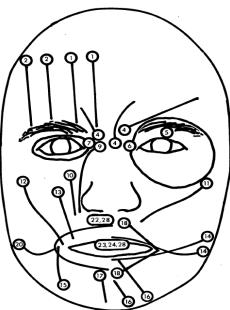
Active Appearance Models

- State of the art of image analysis algorithm
- Provide numerical features of each image



Cootes, Edwards and Taylor "Active Appearance Models" PAMI, 23, 681-685, June 2001

Active Appearance Model (AAM)

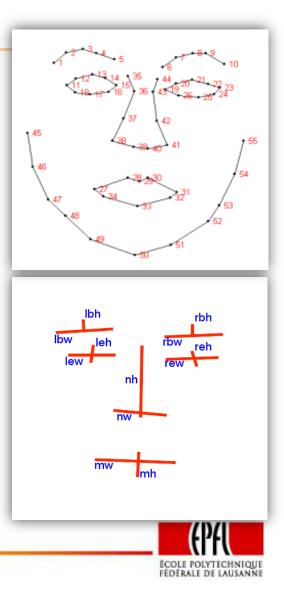


AAM Output: FACS

- In 1978 Ekman and Friesen developed the Facial Action Coding System
- Mesurement units: "Action Units" (Aus)

NSP-OR

- AUs are contractions or relaxations of one or more muscles
 - 46 AUs account for changes in facial expression
 - 12 AUs describe changes in gaze direction and head orientation


The FACS has become the leading standard for measuring facial expressions

AAM Output: EDU

• Expression Descriptive Units by Antonini, Sorci, Bierlaire and Thiran in « Discrete Choice Models for Static Facial Expression Recognition »

EDU1	$rac{lew+rew}{leh+reh}$	EDU8	$rac{leh+reh}{lbh+rbh}$
EDU2	$\frac{lbw}{lbh}$	EDU9	$\frac{lew}{nw}$
EDU3	$\frac{rbw}{rbh}$	EDU10	$\frac{nw}{mw}$
EDU4	$\frac{mw}{mh}$	EDU11	EDU2 / EDU4
EDU5	$\frac{nh}{nw}$	EDU12	EDU3 / EDU4
EDU6	$\frac{lew}{mw}$	EDU13	EDU2 / EDU10
EDU7	$rac{leh}{mh}$	EDU14	EDU3 / EDU10

 $g = \overline{g} + P_g b_g$

AAM Output: Texture

Behavioural Modelling

Discrete Choice Model (DCM)

- Econometrics models with discrete response
- Capture the behaviour of individuals in choice situations, when the set of available alternatives is finite and discrete (choice set)
- Random utility models

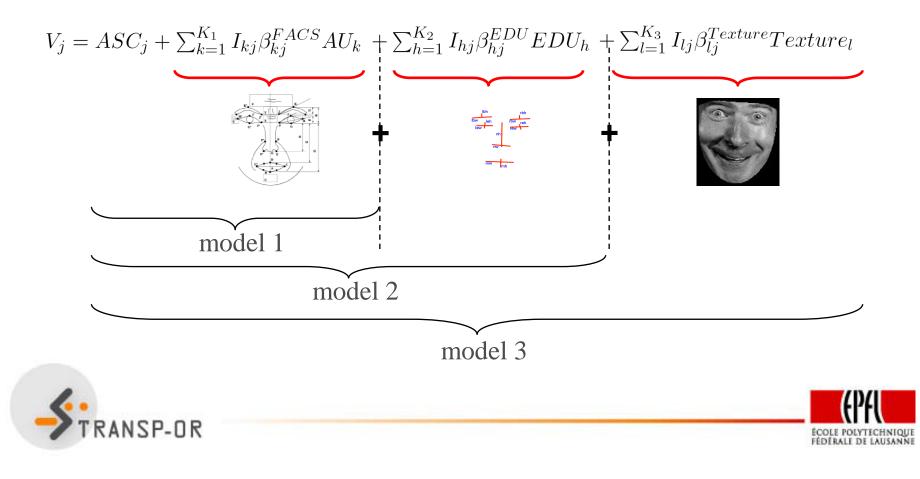
Appropriate to model the image labeling process

Behavioural Modelling: DCM

- Multinomial Logit model
- 9 Alternatives (choice set):
 - Happiness
 Surprise
 - 3. Fear
 - 4. Disgust
 - 5. Sadness

6. Anger
 7. Neutral

- 8. Other
- 9. I don't know
- Expression of the probability for the individual n to choose the expression j :


$$P_{nj} = \frac{e^{V_{ni}}}{\sum_{j} e^{V_{nj}}}$$

Behavioural Modelling: DCM

• Expression of the utility perceived by the individual n for the expression j :

Behavioural Modelling: model estimation

• Estimation by maximum of Likelihood (in practice use of the loglikelihood)

$$L = \sum_{n=1}^{N} \left(\sum_{j=1}^{9} y_n log(P_{nj}) \right)$$

- Estimation made using the free Biogeme package (biogeme.epfl.ch)
- Model 1: "FACS" (Primary AU + Secondary AU + Transient Features)
 - 93 parameters , LL = 57121
- Model 2: "FACS + EDU"
 - 120 parameters , **LL** = **55027**
- Model 3: "FACS + EDU + TEXTURE COEFFICIENTS"
 - 145 parameters , LL = -54657

Behavioural Modelling: model parameters

0

Name

ASC A

ASC D

ASC DK

Value

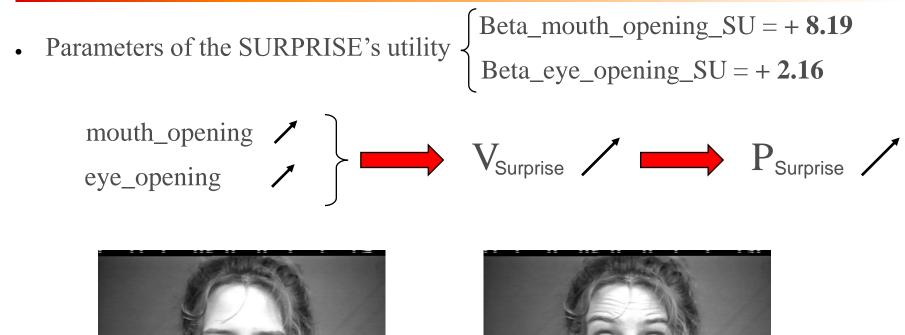
-2.81

0.307-2.29

1.01

ASC	ASC_F	-1.91		Ь 1
TIDC	ASC_H	23.5		b 1
	ASC_N	0		b^{-1}
	ASC_O	-4.94		b 1
	ASC_SA	-15.7		b 1
	ASC_SU	1 1 9		b 1
	BETA_T1_O	-10.4		b 1
	BETA_T1_SA	5.63		b 1
	BETA_T2_A	14.3		b 1
	BETA_T2_D	9.34		<u>ь</u>
	BETA_T2_F	15.5		b 1
	BETA_T2_H	22.8		<u>ь</u>
	BETA_T2_O	-5.66	TDI	<u>ь</u>
	BETA_T2_SA	12.5	EDU	b 1
	BETA_T2_SU	15.2		
	BETA_T3_A	42.2		b_1
	BETA_T3_H	38.4		b_1
Texture	BETA_T3_O	-8.5		b_1
ICATO	BETA_T3_SU	7.77		b_1
	BETA_T4_A	-24.6		b_1
	BETA_T4_D	32.3		b_1
	BETA_T4_F	55.3		b_1
	BETA_T4_H	32.6		b_1
	BETA_T4_O	22.9		b_]
	BETA_T4_SA	26.7		b_1
	BETA_T4_SU	27		b_1
	BETA_T5_A	-13.3		b_1
	BETA_T5_D	-15.2		b_1
	BETA_T5_F	-29.6		b_1
	BETA_T5_H	-67.3		b_1

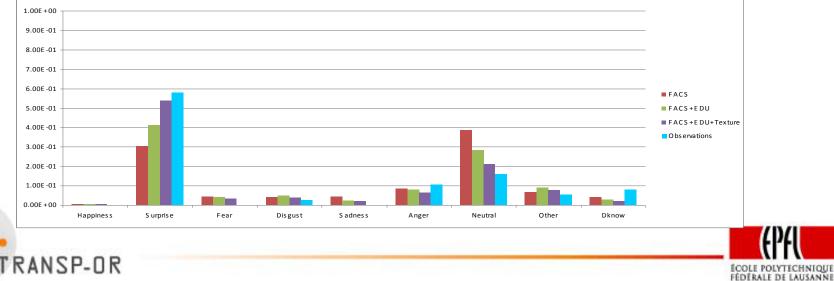
TRANSP-OR


b_EDU_10_O	15.5	
b_EDU_10_SA	15.5	
b_EDU_10_SU	-3.63	
b_EDU_5_D_F	-1.94	
b_EDU_5_H	2.69	
b_EDU_5_SA	-1.3	
$b_EDU_6_D$	-20	
b_EDU_6_H	-16.3	
$b_EDU_6_O$	-25.9	
b_EDU_6_SA	-26.1	
b_EDU_7_A_F	2.42	
b_EDU_7_D	1.51	
b_EDU_7_H	2.82	
b_EDU_7_O	2.18	
b_EDU_7_SA	2.23	
b_EDU_8_A_F	-1.95	
b_EDU_8_D	-4.02	FACS
b EDU 8 H	-6.72	
b_EDU_8_O	0.76	
b_EDU_8_SA	8.5	
b_EDU_8_SU	-5.76	
$b_EDU_9_D$	12.5	
$b_EDU_9_F$	-2.46	
b_EDU_9_H	-5.22	
$b_EDU_9_O$	11.8	
b_EDU_9_SA	15.3	
$b_RAP_brow_A_SU$	-5.34	
b_RAP_brow_D	-9.29	
b_RAP_brow_F	-11.1	
b_RAP_brow_SA	13	
b_RAP_eye_A	-3.84	
b_RAP_eye_F	9.81	
b_RAP_eye_H	-18.6	

b RAP eye O	-8.79
b RAP eye SA	-15
b_RAP_eye_SU	2.16
b RAP mouth A	-11.2
b RAP mouth F	9.16
b RAP mouth H	7.4
b RAP mouth O	4.23
b_RAP_mouth_SA	-5.16
b RAP mouth SU	8.19
b brow dist A	-19.9
b brow dist F	-15.7
b brow dist SA	50.7
b broweve 12 A	-16.9
b broweye 12 O	36.6
b_broweye_l2_SA	-16.1
b broweye 12 SU	35.1
b broweye 13 A	-21.5
b_broweye_r2_A	90.9
b broweye r2 D	-52.6
b_broweye_r2_SA	-98.7
b browwr D	11.6
b browwr O	4.38
b_eye_angle_below_r_F	2.3
b_eye_angle_l_A	1.32
b_eye_angle_l_F	4.85
	2.09
	1.74
	-3.25
	-3.25
	3.77
	-4.18
	-4.18
	-2.02
	-0.728
	-2.92
	-2.92
	-10.3 55.9
	-57.7
	-57-7 24.5
	24.5 34.8
	-4.88
b_eye_mouth_dist_r2_O	-4.00

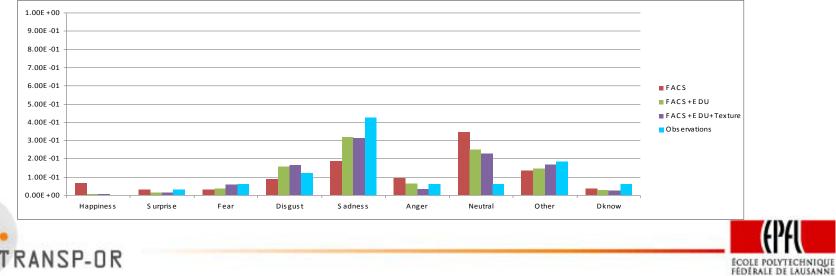
b_eye_mouth_dist_r_F	-38.8
b_eye_mouth_dist_r_H	-66.7
b_eye_mouth_dist_r_SA	27.5
b_eye_nose_dist_l_A	83.1
b_eye_nose_dist_l_D	89.2
b_eye_nose_dist_l_F	39.2
b_eye_nose_dist_l_O	77.4
b_eye_nose_dist_l_SA	93.8
b_eye_nose_dist_r_A	-44.5
b_eye_nose_dist_r_D	-129
b_eye_nose_dist_r_F	-63.7
b_eye_nose_dist_r_O	-74.5
b_eye_nose_dist_r_SA	-106
b_fore_F	0.683
b_fore_O	0.126
b_fore_SU	0.525
b_leye_h_F	-123
b_leye_h_H	130
b_leye_h_SU	-30.5
b_mouth_h_A	96.2
b_mouth_h_D	23.9
b_mouth_h_SA	59.3
b_mouth_nose_dist2_A	5.13
b_mouth_nose_dist2_SA	-20.2
b_mouth_nose_dist_D	-14
b_mouth_nose_dist_H	50.1
b_mouth_w_F	23.5
b_mouth_w_H	36.8
b_mouth_w_SA	-40
b_naslab_D	0.565
b_naswr_D	16.6
b_naswr_O	5.62
b_reye_h_H	183
b_reye_h_SU	45

Behavioural Modelling: model parameters

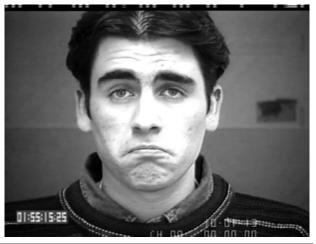


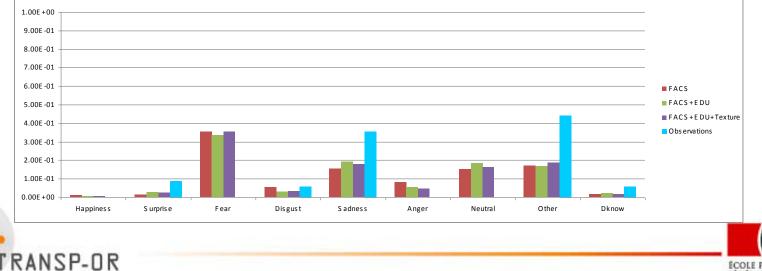
Application

38 observations



Application


33 observations



Application

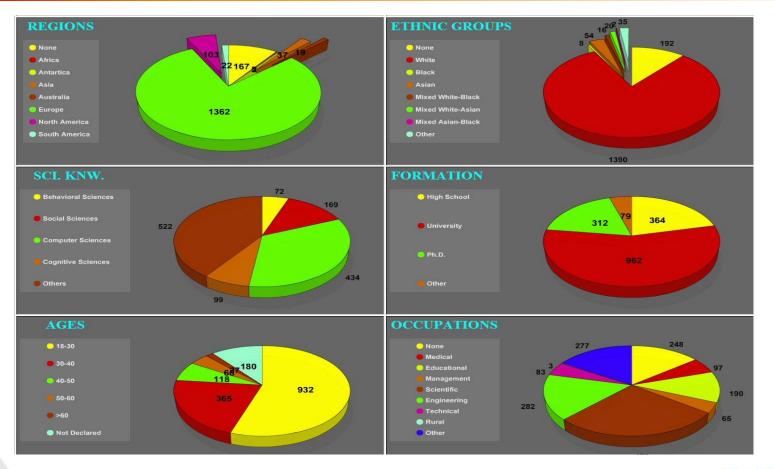
34 observations

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Conclusions and Future works

Conclusions

- Complex face-based model
- Good prediction performance
- Future works
 - Appropriate test to compare histograms
 - Validation
 - Segmentation
 - Comparison with others methods
 - Other models structure
 - Dynamic version



Thank you for your attention

Data : Internet Survey

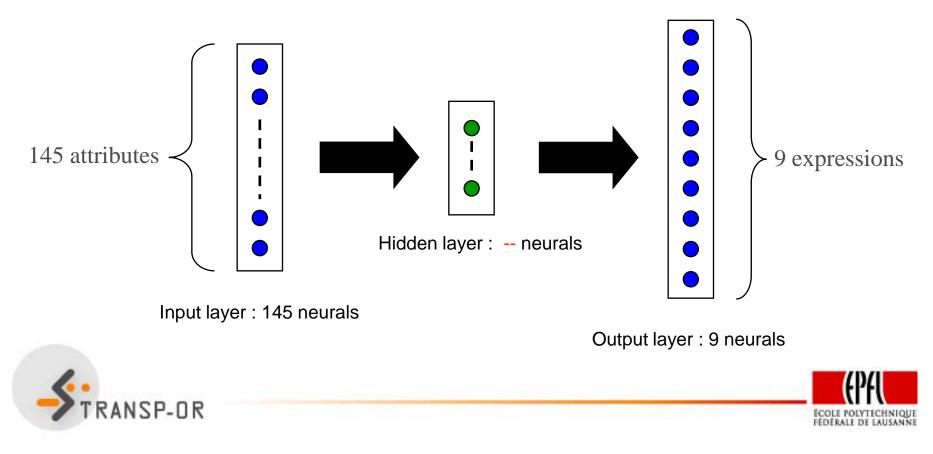
Behavioural Modelling: Segmentation

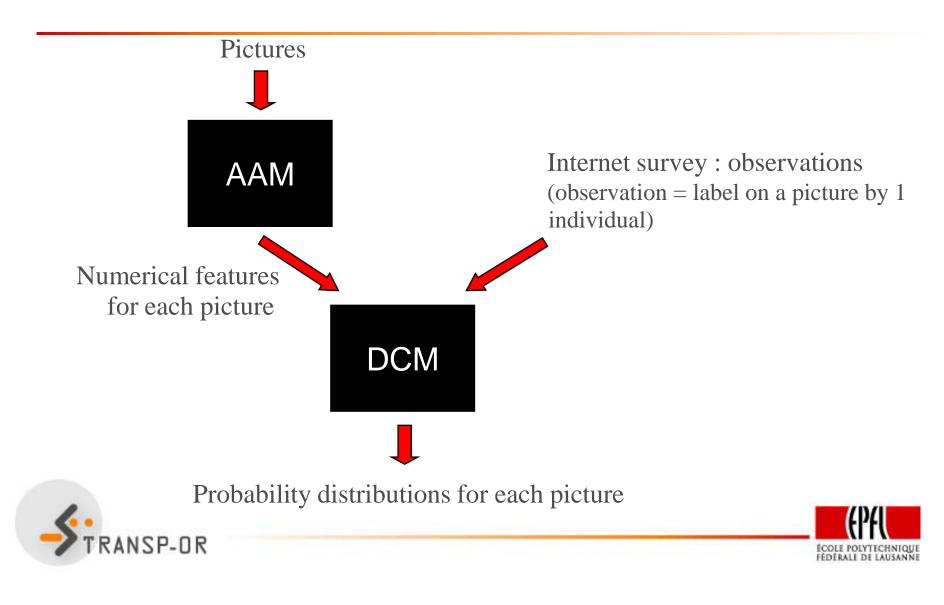
- Aim : Capture behaviour's heteroginity in the population
- Method :
 - Take a socio-economic attribute and divide the data set along the class:

ex : Gender : Male / Female

- Estimate the developped model on the seperated data set
- Test the differences:

ex : parameters values, log-likelihood




Comparison with other methods

Famous machine learning method : Neural Networks (NN)

• Architecture of the network :

Model Overview

