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Introduction

• Random utility models:

P (i|C) = Pr(Ui ≥ Uj ∀j ∈ C)

= Pr(µVi + εi ≥ µVj + εj ∀j ∈ C)

• εi i.i.d. across individuals, so the scale is normalized.

• As a consequence, the scale is confounded with the
parameters of Vi.

• The scale is directly linked with the variance of Ui

Workshop on Discrete Choice Models - EPFL - August 2007 – p.2/35



Introduction

• The scale may vary from one individual to the next

• The scale may vary from one choice context to the next
• SP/RP data

• Linear-in-parameter: Vi = µβ′xi

• Even if β is fixed, µβ is distributed
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Introduction

Proposed solutions:

• Deterministically identify groups and estimate different scale
parameters (introduces non linearities)

• Assume a distribution for µ: Bhat (1997); Swait and Adamowicz
(2001); De Shazo and Fermo (2002); Caussade et al. (2005);
Koppelman and Sethi (2005); Train and Weeks (2005)

Workshop on Discrete Choice Models - EPFL - August 2007 – p.4/35



Multiplicative error

Our proposal:

• RUM with multiplicative error

Ui = µViεi.

where
• µ is an independent individual specific scale parameter,
• Vi < 0 is the systematic part of the utility function, and
• εi > 0 is a random variable, independent of Vi and µ.
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Multiplicative error

• εi are i.i.d. across individuals

• Potential heteroscedasticity is captured by the individual
specific scale µ.

• Sign restriction on Vi: natural if, for instance, generalized cost
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Choice probability

The scale disappears

P (i|C) = Pr(Ui ≥ Uj , j ∈ C)

= Pr(µViεi ≥ µVjεj , j ∈ C)

= Pr(Viεi ≥ Vjεj , j ∈ C),

Taking logs

P (i|C) = Pr(Viεi ≥ Vjεj , j ∈ C)

= Pr(−Viεi ≤ −Vjεj , j ∈ C)

= Pr(ln(−Vi) + ln(εi) ≤ ln(−Vj) + ln(εj), j ∈ C)

= Pr(− ln(−Vi) − ln(εi) ≥ − ln(−Vj) − ln(εj), j ∈ C).

Workshop on Discrete Choice Models - EPFL - August 2007 – p.7/35



Choice probability

We define
− ln(εi) = (ci + ξi)/λ,

where

• ci is the intercept,

• λ is the scale, constant across the population, as a
consequence of the i.i.d. assumption on εi

• ξi are random variables with a fixed mean and scale
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Choice probability

• P (i|C) =

Pr(−λ ln(−Vi) + ci + ξi ≥ −λ ln(−Vj) + cj + ξj , j ∈ C),

which is now a classical RUM with additive error.

• Important: contrarily to µ, the scale λ is constant across the
population

• Vi must be normalized for the model to be identified. Indeed, for
any α > 0,

−λ ln(−αVi) + ci = −λ ln(−Vi) − λ ln(α) + ci
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Choice probability

• When Vi is linear-in-parameters, it is sufficient to fix one
parameter to either 1 or -1.

• e.g. normalize the cost coefficient to 1. Others become
willingness-to-pay indicators.
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Choice probability: MNL

P (i|C) =
e−λ ln(−Vi)+ci∑

j∈C
e−λ ln(−Vj)+cj

=
eci(−Vi)

−λ∑
j∈C

ecj (−Vj)−λ
,

where

• ecj are constants to be estimated
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Properties: distribution

If ξi is extreme value distributed, the CDF of εi is a generalization of
an exponential distribution

Fεi
(x) = 1 − e−xλeci

.
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Properties: elasticities

Define
V̄i = −λ ln(−Vi) + ci,

Then

ei =
∂P (i)

∂V̄i

∂V̄i

∂Vi

∂Vi

∂xik

xik

P (i)
= −

λ

Vi

∂P (i)

∂V̄i

∂Vi

∂xik

xik

P (i)

where ∂P (i)/∂V̄i is derived from the corresponding additive model.
For MNL:

∂P (i)

∂V̄i

= P (i)(1 − P (i)),

and

ei = −
λ

Vi

(1 − P (i))
∂Vi

∂xik

xik.
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Properties

In the paper (see transp-or.epfl.ch)

• Trade-offs: the same

• Expected Maximum Utility: derivation for MEV models

• Compensating variation when −Vi is a generalized cost

−

∫ b

a

P (i)dVi.

• not as simple as the logsum
• integral with no closed form
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Discussion

• Fairly general specification

• Free to make assumptions about ξi

• Parameters inside Vi can be random

• We may obtain MNL, GEV and mixtures of GEV models.

• ci may depend on covariates, such that it is also possible to
incorporate both observed and unobserved heterogeneity both
inside and outside the log (examples in the paper).
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Discussion

• If random parameters are involved, one must ensure that
P (Vi ≥ 0) = 0.

• How? The sign of a parameter can be restricted using, e.g., an
exponential.

• For deterministic parameters: bounds constraints

• Maximum likelihood estimation is complicated in the general
case.

• Taking logs provides an equivalent specification with additive
independent error terms
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Discussion

• Classical softwares can be used

• However, even when the V s are linear in the parameters, the
equivalent additive specification is nonlinear.

• OK with Biogeme
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Case study: value of time in Denmark

• Danish value-of-time study

• SP data

• involves several attributes in addition to travel time and cost
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Case study: value of time in Denmark

Model 1: Additive specification

Vi = λ( − cost +β1 ae +β2 changes

+ β3 headway +β4 inVehTime +β5 waiting ),

Model 1: Multiplicative specification

Vi = −λ log( cost −β1 ae −β2 changes

− β3 headway −β4 inVehTime −β5 waiting) .
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Model 1: additive

Robust

Variable Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ae -2.00 0.211 -9.46 0.00

2 changes -36.1 6.89 -5.23 0.00

3 headway -0.656 0.0754 -8.71 0.00

4 in-veh. time -1.55 0.159 -9.76 0.00

5 waiting time -1.68 0.770 -2.18 0.03

6 λ 0.0141 0.00144 9.82 0.00

Number of observations = 3455

L(0) = −2394.824

L(β̂) = −1970.846

−2[L(0) − L(β̂)] = 847.954

ρ2 = 0.177

ρ̄2 = 0.175
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Model 1: multiplicative

Robust

Variable Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ae -0.672 0.0605 -11.11 0.00

2 changes -5.22 1.54 -3.40 0.00

3 headway -0.224 0.0213 -10.53 0.00

4 in-veh. time -0.782 0.0706 -11.07 0.00

5 waiting time -1.06 0.206 -5.14 0.00

6 λ 5.37 0.236 22.74 0.00

Number of observations = 3455

L(0) = −2394.824

L(β̂) = −1799.086

−2[L(0) − L(β̂)] = 1191.476

ρ2 = 0.249

ρ̄2 = 0.246
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Model 1: result

• Same number of parameters

• Significant improvement of the fit: 171.76, from -1970.846 to
-1799.086
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Model 2: taste heterogeneity

• Additive specification:

Vi = λ(−cost − eβ5+β6ξYi)

where

• Yi =

inVehTime+eβ1 ae+eβ2 changes+eβ3 headway+eβ4 waiting,

• ξ ∼ N(0, 1)

• Multiplicative specification

Vi = −λ log(cost + eβ5+β6ξYi),
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Model 2: additive

Robust

Variable Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ae 0.0639 0.357 0.18 0.86

2 changes 2.88 0.373 7.73 0.00

3 headway -0.999 0.193 -5.17 0.00

4 waiting time -0.274 0.433 -0.63 0.53

5 scale (mean) 0.331 0.178 1.86 0.06

6 scale (stderr) 0.934 0.130 7.19 0.00

7 λ 0.0187 0.00301 6.20 0.00

Number of observations = 3455

Number of individuals = 523

Number of draws for SMLE = 1000

L(0) = −2394.824

L(β̂) = −1925.467
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Model 2: multiplicative

Robust

Variable Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ae 0.0424 0.0946 0.45 0.65

2 changes 2.24 0.239 9.38 0.00

3 headway -1.03 0.0983 -10.48 0.00

4 waiting time 0.355 0.207 1.72 0.09

5 scale (mean) -0.252 0.106 -2.38 0.02

6 scale (stderr) 1.49 0.123 12.04 0.00

7 λ 7.04 0.370 19.02 0.00

Number of observations = 3455

Number of individuals = 523

Number of draws for SMLE = 1000

L(0) = −2394.824

L(β̂) = −1700.060
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Model 2: result

• Same number of parameters

• Significant improvement of the fit: 225.764, from -1925.824 to
-1700.060
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Observed and unobs. heterogeneity

• Additive specification

Vi = λ(−cost − eWiYi)

where
• Yi is defined as before
• Wi =

β5 highInc + β6 log(inc) + β7 lowInc
+β8 missingInc + β9 + β10ξ

• ξ ∼ N(0, 1).
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Observed and unobs. heterogeneity

• Multiplicative specification:

Vi = −λ log(cost + eWiYi).

Results:

• Again large improvement of the fit with the same number of
parameters

• Additive: -1914.180

• Multiplicative: -1675.412

• Difference: 238.777

Workshop on Discrete Choice Models - EPFL - August 2007 – p.28/35



Summary: train data set

Number of observations 3455
Number of individuals 523

Model Additive Multiplicative Difference
1 -1970.85 -1799.09 171.76
2 -1925.824 -1700.06 225.764
3 -1914.12 -1674.67 239.45
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Summary: bus data set

Number of observations: 7751
Number of individuals: 1148

Model Additive Multiplicative Difference
1 -4255.55 -3958.35 297.2
2 -4134.56 -3817.49 317.07
3 -4124.21 -3804.9 319.31
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Summary: car data set

Number of observations: 8589
Number of individuals: 1585

Model Additive Multiplicative Difference
1 -5070.42 -4304.01 766.41
2 -4667.05 -3808.22 858.83
3 -4620.56 -3761.57 858.99
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Swiss value of time (SP)

• No improvement with fixed parameters

• Small improvement for random parameters

Additive Multiplicative Diff.
Fixed param. -1668.070 -1676.032 -7.96

Random param. -1595.092 -1568.607 26.49
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Swissmetro (SP)

• Nested logit

• 16 variants of the model
• Alternative Specific Socio-economic Characteristics

(ASSEC)
• Error component (EC)
• Segmented travel time coefficient (STTC)
• Random coefficient (RC): the coefficients for travel time and

headway are distributed, with a lognormal distribution.
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RC EC STTC ASSEC Additive Multiplicative Difference

1 0 0 0 0 -5188.6 -4988.6 200.0

2 0 0 0 1 -4839.5 -4796.6 42.9

3 0 0 1 0 -4761.8 -4745.8 16.0

4 0 1 0 0 -3851.6 -3599.8 251.8

5 1 0 0 0 -3627.2 -3614.4 12.8

6 0 0 1 1 -4700.1 -4715.5 -15.4

7 0 1 0 1 -3688.5 -3532.6 155.9

8 0 1 1 0 -3574.8 -3872.1 -297.3

9 1 0 0 1 -3543.0 -3532.4 10.6

10 1 0 1 0 -3513.3 -3528.8 -15.5

11 1 1 0 0 -3617.4 -3590.0 27.3

12 0 1 1 1 -3545.4 -3508.1 37.2

13 1 0 1 1 -3497.2 -3519.6 -22.5

14 1 1 0 1 -3515.1 -3514.0 1.1

15 1 1 1 0 -3488.2 -3514.5 -26.2

16 1 1 1 1 -3465.9 -3497.2 -31.3



Concluding remarks

• Error term does not have to be additive

• With multiplicative errors, an equivalent additive formulation can
be derived by taking logs

• Multiplicative is not systematically superior

• In our experiments, it outperforms additive spec. in the majority
of the cases

• In quite a few cases, the improvement is very large, sometimes
even larger than the improvement gained from allowing for
unobserved heterogeneity.
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Concluding remarks

• Model with multiplicative error terms should be part of the
toolbox of discrete choice analysts

Thank you!
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