#### Circumventing the problem of the scale: discrete choice models with multiplicative error terms

Mogens Fosgerau and Michel Bierlaire

Technical University of Denmark

Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne





## Introduction

• Random utility models:

$$P(i|\mathcal{C}) = \Pr(U_i \ge U_j \; \forall j \in \mathcal{C})$$
  
= 
$$\Pr(\mu V_i + \varepsilon_i \ge \mu V_j + \varepsilon_j \; \forall j \in \mathcal{C})$$

- $\varepsilon_i$  i.i.d. across individuals, so the scale is normalized.
- As a consequence, the scale is confounded with the parameters of  $V_i$ .
- The scale is directly linked with the variance of  $U_i$





## Introduction

- The scale may vary from one individual to the next
- The scale may vary from one choice context to the next
  SP/RP data
- Linear-in-parameter:  $V_i = \mu \beta' x_i$
- Even if  $\beta$  is fixed,  $\mu\beta$  is distributed





## Introduction

Proposed solutions:

- Deterministically identify groups and estimate different scale parameters (introduces non linearities)
- Assume a distribution for μ: Bhat (1997); Swait and Adamowicz (2001); De Shazo and Fermo (2002); Caussade et al. (2005); Koppelman and Sethi (2005); Train and Weeks (2005)





# **Multiplicative error**

Our proposal:

• RUM with multiplicative error

$$U_i = \mu V_i \varepsilon_i.$$

where

- $\mu$  is an independent individual specific scale parameter,
- $V_i < 0$  is the systematic part of the utility function, and
- $\varepsilon_i > 0$  is a random variable, independent of  $V_i$  and  $\mu$ .





# **Multiplicative error**

- $\varepsilon_i$  are i.i.d. across individuals
- Potential heteroscedasticity is captured by the individual specific scale  $\mu$ .
- Sign restriction on  $V_i$ : natural if, for instance, generalized cost





#### The scale disappears

$$P(i|\mathcal{C}) = \Pr(U_i \ge U_j, j \in \mathcal{C})$$
  
= 
$$\Pr(\mu V_i \varepsilon_i \ge \mu V_j \varepsilon_j, j \in \mathcal{C})$$
  
= 
$$\Pr(V_i \varepsilon_i \ge V_j \varepsilon_j, j \in \mathcal{C}),$$

#### Taking logs

$$P(i|\mathcal{C}) = \Pr(V_i \varepsilon_i \ge V_j \varepsilon_j, j \in \mathcal{C})$$
  
=  $\Pr(-V_i \varepsilon_i \le -V_j \varepsilon_j, j \in \mathcal{C})$   
=  $\Pr(\ln(-V_i) + \ln(\varepsilon_i) \le \ln(-V_j) + \ln(\varepsilon_j), j \in \mathcal{C})$   
=  $\Pr(-\ln(-V_i) - \ln(\varepsilon_i) \ge -\ln(-V_j) - \ln(\varepsilon_j), j \in \mathcal{C}).$ 





We define

$$-\ln(\varepsilon_i) = (c_i + \xi_i)/\lambda,$$

where

- $c_i$  is the intercept,
- $\lambda$  is the scale, constant across the population, as a consequence of the i.i.d. assumption on  $\varepsilon_i$
- $\xi_i$  are random variables with a fixed mean and scale





• 
$$P(i|\mathcal{C}) =$$

$$\Pr(-\lambda \ln(-V_i) + c_i + \xi_i \ge -\lambda \ln(-V_j) + c_j + \xi_j, j \in \mathcal{C}),$$

which is now a classical RUM with additive error.

- Important: contrarily to  $\mu$ , the scale  $\lambda$  is constant across the population
- $V_i$  must be normalized for the model to be identified. Indeed, for any  $\alpha > 0$ ,

$$-\lambda \ln(-\alpha V_i) + c_i = -\lambda \ln(-V_i) - \lambda \ln(\alpha) + c_i$$





- When  $V_i$  is linear-in-parameters, it is sufficient to fix one parameter to either 1 or -1.
- e.g. normalize the cost coefficient to 1. Others become willingness-to-pay indicators.





## **Choice probability: MNL**

$$P(i|\mathcal{C}) = \frac{e^{-\lambda \ln(-V_i) + c_i}}{\sum_{j \in \mathcal{C}} e^{-\lambda \ln(-V_j) + c_j}} = \frac{e^{c_i} (-V_i)^{-\lambda}}{\sum_{j \in \mathcal{C}} e^{c_j} (-V_j)^{-\lambda}},$$

where

•  $e^{c_j}$  are constants to be estimated





If  $\xi_i$  is extreme value distributed, the CDF of  $\varepsilon_i$  is a generalization of an exponential distribution

$$F_{\varepsilon_i}(x) = 1 - e^{-x^\lambda e^{c_i}}.$$





## **Properties: elasticities**

Define

$$\bar{V}_i = -\lambda \ln(-V_i) + c_i,$$

Then

$$e_{i} = \frac{\partial P(i)}{\partial \bar{V}_{i}} \frac{\partial \bar{V}_{i}}{\partial V_{i}} \frac{\partial V_{i}}{\partial x_{ik}} \frac{x_{ik}}{P(i)} = -\frac{\lambda}{V_{i}} \frac{\partial P(i)}{\partial \bar{V}_{i}} \frac{\partial V_{i}}{\partial x_{ik}} \frac{x_{ik}}{P(i)}$$

where  $\partial P(i)/\partial \bar{V}_i$  is derived from the corresponding additive model. For MNL:

$$\frac{\partial P(i)}{\partial \bar{V}_i} = P(i)(1 - P(i)),$$

and

$$e_i = -\frac{\lambda}{V_i} (1 - P(i)) \frac{\partial V_i}{\partial x_{ik}} x_{ik}.$$





In the paper (see transp-or.epfl.ch)

- Trade-offs: the same
- Expected Maximum Utility: derivation for MEV models
- Compensating variation when  $-V_i$  is a generalized cost

$$-\int_{a}^{b}P(i)dV_{i}$$

- not as simple as the logsum
- integral with no closed form





### Discussion

- Fairly general specification
- Free to make assumptions about  $\xi_i$
- Parameters inside  $V_i$  can be random
- We may obtain MNL, GEV and mixtures of GEV models.
- c<sub>i</sub> may depend on covariates, such that it is also possible to incorporate both observed and unobserved heterogeneity both inside and outside the log (examples in the paper).





### Discussion

- If random parameters are involved, one must ensure that  $P(V_i \ge 0) = 0$ .
- How? The sign of a parameter can be restricted using, e.g., an exponential.
- For deterministic parameters: bounds constraints
- Maximum likelihood estimation is complicated in the general case.
- Taking logs provides an equivalent specification with additive independent error terms





#### Discussion

- Classical softwares can be used
- However, even when the Vs are linear in the parameters, the equivalent additive specification is nonlinear.
- OK with Biogeme





## **Case study: value of time in Denmark**

- Danish value-of-time study
- SP data
- involves several attributes in addition to travel time and cost





Model 1: Additive specification

$$V_i = \lambda( - \cos t + \beta_1 ae + \beta_2 changes + \beta_3 headway + \beta_4 inVehTime + \beta_5 waiting ),$$

Model 1: Multiplicative specification

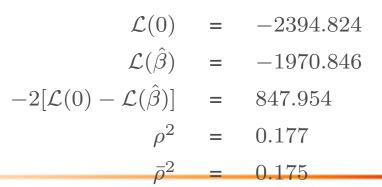
 $V_i = -\lambda \log( \cos t -\beta_1 \operatorname{ae} -\beta_2 \operatorname{changes} -\beta_3 \operatorname{headway} -\beta_4 \operatorname{inVehTime} -\beta_5 \operatorname{waiting})$ 





|   |          |              |          | Robust     |        |                 |
|---|----------|--------------|----------|------------|--------|-----------------|
|   | Variable |              | Coeff.   | Asympt.    |        |                 |
|   | number   | Description  | estimate | std. error | t-stat | <i>p</i> -value |
| - | 1        | ae           | -2.00    | 0.211      | -9.46  | 0.00            |
|   | 2        | changes      | -36.1    | 6.89       | -5.23  | 0.00            |
|   | 3        | headway      | -0.656   | 0.0754     | -8.71  | 0.00            |
|   | 4        | in-veh. time | -1.55    | 0.159      | -9.76  | 0.00            |
|   | 5        | waiting time | -1.68    | 0.770      | -2.18  | 0.03            |
| _ | 6        | λ            | 0.0141   | 0.00144    | 9.82   | 0.00            |
| - |          |              |          |            |        |                 |

Number of observations = 3455

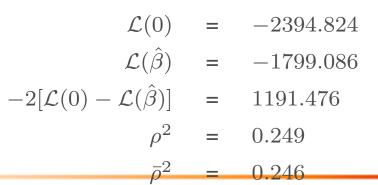




ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

|          |              |          | Robust     |        |                 |
|----------|--------------|----------|------------|--------|-----------------|
| Variable |              | Coeff.   | Asympt.    |        |                 |
| number   | Description  | estimate | std. error | t-stat | <i>p</i> -value |
| 1        | ae           | -0.672   | 0.0605     | -11.11 | 0.00            |
| 2        | changes      | -5.22    | 1.54       | -3.40  | 0.00            |
| 3        | headway      | -0.224   | 0.0213     | -10.53 | 0.00            |
| 4        | in-veh. time | -0.782   | 0.0706     | -11.07 | 0.00            |
| 5        | waiting time | -1.06    | 0.206      | -5.14  | 0.00            |
| 6        | λ            | 5.37     | 0.236      | 22.74  | 0.00            |

Number of observations = 3455







## Model 1: result

- Same number of parameters
- Significant improvement of the fit: 171.76, from -1970.846 to -1799.086





# **Model 2: taste heterogeneity**

• Additive specification:

$$V_i = \lambda(-\mathsf{cost} - e^{\beta_5 + \beta_6 \xi} Y_i)$$

where

•  $Y_i =$ 

inVehTime $+e^{\beta_1}$  ae $+e^{\beta_2}$  changes $+e^{\beta_3}$  headway $+e^{\beta_4}$  waiting

- $\xi \sim N(0,1)$
- Multiplicative specification

$$V_i = -\lambda \log(\operatorname{cost} + e^{\beta_5 + \beta_6 \xi} Y_i),$$





|        |              |                |                          | Robust         |           |                      |
|--------|--------------|----------------|--------------------------|----------------|-----------|----------------------|
| Variab | ole          |                | Coeff.                   | Asympt.        |           |                      |
| numb   | er           | Description    | estimate                 | std. error     | t-stat    | <i>p</i> -value      |
|        | 1            | ae             | 0.0639                   | 0.357          | 0.18      | 0.86                 |
|        | 2            | changes        | 2.88                     | 0.373          | 7.73      | 0.00                 |
|        | 3            | headway        | -0.999                   | 0.193          | -5.17     | 0.00                 |
|        | 4            | waiting time   | -0.274                   | 0.433          | -0.63     | 0.53                 |
|        | 5            | scale (mean)   | 0.331                    | 0.178          | 1.86      | 0.06                 |
|        | 6            | scale (stderr) | 0.934                    | 0.130          | 7.19      | 0.00                 |
|        | 7            | λ              | 0.0187                   | 0.00301        | 6.20      | 0.00                 |
|        |              |                | Num                      | ber of obser   | vations = | = 3455               |
|        |              |                | Num                      | ber of individ | duals = 5 | 23                   |
|        |              |                | Num                      | ber of draws   | for SML   | E = 1000             |
|        |              |                | $\mathcal{L}(0)$         | ) = -23        | 394.824   |                      |
|        | TRANSP-OR    |                | $\mathcal{L}(\hat{eta})$ | ) = -19        | 925.467   |                      |
| TRAILS | I KANSI - UK |                |                          | $^{2}$ = 0.19  | 3 Worksho | p on Discrete Choice |



|   |          |                |                   | Robust              |                |                      |
|---|----------|----------------|-------------------|---------------------|----------------|----------------------|
|   | Variable |                | Coeff.            | Asympt.             |                |                      |
|   | number   | Description    | estimate          | std. error          | t-stat         | <i>p</i> -value      |
| _ | 1        | ae             | 0.0424            | 0.0946              | 0.45           | 0.65                 |
|   | 2        | changes        | 2.24              | 0.239               | 9.38           | 0.00                 |
|   | 3        | headway        | -1.03             | 0.0983              | -10.48         | 0.00                 |
|   | 4        | waiting time   | 0.355             | 0.207               | 1.72           | 0.09                 |
|   | 5        | scale (mean)   | -0.252            | 0.106               | -2.38          | 0.02                 |
|   | 6        | scale (stderr) | 1.49              | 0.123               | 12.04          | 0.00                 |
| - | 7        | λ              | 7.04              | 0.370               | 19.02          | 0.00                 |
| - |          |                | Nu                | mber of obse        | ervations =    | - 3455               |
|   |          |                | Nu                | mber of indiv       | riduals = 5    | 23                   |
|   |          |                | Nu                | mber of draw        | s for SML      | E = 1000             |
|   |          |                | $\mathcal{L}(0)$  | (0) = -2            | 2394.824       |                      |
| 5 | TRANSP-0 | IR             | $\mathcal{L}(\mu$ | $\hat{\beta}) = -1$ | 1700.060       |                      |
|   | FRANSI-L |                | Ā                 | $\bar{p}^2 = 0.2$   | 287 Workshop c | on Discrete Choice N |
|   |          |                |                   |                     |                |                      |



## Model 2: result

- Same number of parameters
- Significant improvement of the fit: 225.764, from -1925.824 to -1700.060





# **Observed and unobs. heterogeneity**

• Additive specification

$$V_i = \lambda(-\mathsf{cost} - e^{W_i}Y_i)$$

where

• *Y<sub>i</sub>* is defined as before

• 
$$W_i =$$

 $\beta_5 \text{ highInc} + \beta_6 \log(\text{inc}) + \beta_7 \log(\text{Inc}) + \beta_8 \min(\beta_9 + \beta_{10}\xi)$ 

• 
$$\xi \sim N(0,1)$$
.





## **Observed and unobs. heterogeneity**

• Multiplicative specification:

$$V_i = -\lambda \log(\operatorname{cost} + e^{W_i} Y_i).$$

Results:

- Again large improvement of the fit with the same number of parameters
- Additive: -1914.180
- Multiplicative: -1675.412
- Difference: 238.777





# Summary: train data set

|       | 3455      |            |
|-------|-----------|------------|
|       | 523       |            |
| Model | Additive  | Difference |
| 1     | -1970.85  | 171.76     |
| 2     | -1925.824 | 225.764    |
| 3     | -1914.12  | 239.45     |





## Summary: bus data set

|       | 7751     |            |
|-------|----------|------------|
|       | 1148     |            |
| Model | Additive | Difference |
| 1     | -4255.55 | 297.2      |
| 2     | -4134.56 | 317.07     |
| 3     | -4124.21 | 319.31     |





Workshop on Discrete Choice Models - EPFL - August 2007 – p.30/35

|       | 8589     |            |
|-------|----------|------------|
|       | 1585     |            |
| Model | Additive | Difference |
| 1     | -5070.42 | 766.41     |
| 2     | -4667.05 | 858.83     |
| 3     | -4620.56 | 858.99     |





# **Swiss value of time (SP)**

- No improvement with fixed parameters
- Small improvement for random parameters

|               | Additive  | Multiplicative | Diff. |
|---------------|-----------|----------------|-------|
| Fixed param.  | -1668.070 | -1676.032      | -7.96 |
| Random param. | -1595.092 | -1568.607      | 26.49 |

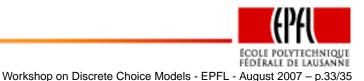




# **Swissmetro (SP)**

- Nested logit
- 16 variants of the model
  - Alternative Specific Socio-economic Characteristics (ASSEC)
  - Error component (EC)
  - Segmented travel time coefficient (STTC)
  - Random coefficient (RC): the coefficients for travel time and headway are distributed, with a lognormal distribution.





|    | RC | EC | STTC | ASSEC | Additive | Multiplicative | Difference |
|----|----|----|------|-------|----------|----------------|------------|
| 1  | 0  | 0  | 0    | 0     | -5188.6  | -4988.6        | 200.0      |
| 2  | 0  | 0  | 0    | 1     | -4839.5  | -4796.6        | 42.9       |
| 3  | 0  | 0  | 1    | 0     | -4761.8  | -4745.8        | 16.0       |
| 4  | 0  | 1  | 0    | 0     | -3851.6  | -3599.8        | 251.8      |
| 5  | 1  | 0  | 0    | 0     | -3627.2  | -3614.4        | 12.8       |
| 6  | 0  | 0  | 1    | 1     | -4700.1  | -4715.5        | -15.4      |
| 7  | 0  | 1  | 0    | 1     | -3688.5  | -3532.6        | 155.9      |
| 8  | 0  | 1  | 1    | 0     | -3574.8  | -3872.1        | -297.3     |
| 9  | 1  | 0  | 0    | 1     | -3543.0  | -3532.4        | 10.6       |
| 10 | 1  | 0  | 1    | 0     | -3513.3  | -3528.8        | -15.5      |
| 11 | 1  | 1  | 0    | 0     | -3617.4  | -3590.0        | 27.3       |
| 12 | 0  | 1  | 1    | 1     | -3545.4  | -3508.1        | 37.2       |
| 13 | 1  | 0  | 1    | 1     | -3497.2  | -3519.6        | -22.5      |
| 14 | 1  | 1  | 0    | 1     | -3515.1  | -3514.0        | 1.1        |
| 15 | 1  | 1  | 1    | 0     | -3488.2  | -3514.5        | -26.2      |
| 16 | 1  | 1  | 1    | 1     | -3465.9  | -3497.2        | -31.3      |

# **Concluding remarks**

- Error term does not have to be additive
- With multiplicative errors, an equivalent additive formulation can be derived by taking logs
- Multiplicative is not systematically superior
- In our experiments, it outperforms additive spec. in the majority of the cases
- In quite a few cases, the improvement is very large, sometimes even larger than the improvement gained from allowing for unobserved heterogeneity.





# **Concluding remarks**

• Model with multiplicative error terms should be part of the toolbox of discrete choice analysts

Thank you!



