Optimization at Container Terminals

Status, Trends and Perspectives

Ilaria Vacca, Michel Bierlaire, Matteo Salani

Transport and Mobility Laboratory
École Polytechnique Fédérale de Lausanne

7th Swiss Transport Research Conference
September 14, 2007
Outline

- Introduction
- Planning levels
- Terminal operations
- Yard optimization
- Issues in yard management
- Transshipment: a new approach
- Conclusions
Introduction

- Growth of container sea-freight transportation.

- Competition among terminals in terms of:
 - Service (ship’s turnaround time);
 - Productivity (TEUs per year).

- Issues: traffic, congestion and capacity limits.

- OR techniques can improve the efficiency of terminal operations.
Planning Levels at Container Terminals

- **Strategic Level**
 Long-term decisions regarding:
 - Resources (terminal’s equipment, infrastructure, layout etc.);
 - Strategic alliances with shipping companies and other terminals.

- **Tactical Level**
 Mid-term and short-term decisions regarding:
 - Size of the equipment fleet;
 - Storage policies for containers;
 - Berth and yard templates.

- **Operational Level**
 Daily and real-time decisions regarding all the terminal operations.
Terminal Overview
Terminal Operations

- **Ship-to-Shore**
 Berth Allocation; Quay Cranes Scheduling; Ship Loading Plan.
- **Transfer**
 Quay-Yard; Yard-Yard; Yard-Gate.
- **Storage**
 Yard Management (Block and Bay Allocation); Yard Crane Deployment
- **Delivery and Receipt**
 Gate management; Interface with trains and trucks.

In addition to the traditional flow: transshipment containers.

Vis and de Koster (2003); Steenken et al. (2004); Henesey (2006).
Yard Overview

The yard serves as a buffer for loading, unloading and transshipping containers.

The yard is separated into blocks. The position of the container inside a block is identified by bay, row and tier.
Yard Optimization

- **Storage policies** for groups of containers at block and bay level, in order to:
 - balance the workload among blocks;
 - minimize the total distance covered to shift containers from quay to yard.

 de Castilho and Daganzo (1993); Kim et al. (2000); Kim and Park (2003); Zhang et al. (2003); Kim and Hong (2006); Kang et al. (2006); Lee et al. (2006).

- **Re-marshalling of containers** according to the ship loading plan, in order to:
 - speed-up loading operations and thus minimize ship’s turnaround time.

 Kim and Bae (1998); Lee and Hsu (2007).

- **Yard cranes deployment** (allocation of cranes among blocks, routing and scheduling of operations), in order to:
 - minimize the completion time of jobs.

 Kim and Kim (1997); Linn et al. (2003); Zhang et al. (2002); Kim et al. (2003); Ng and Mak (2005); Ng (2005); Kim et al. (2006); Jung and Kim (2006).
Issues in Yard Management

The yard is usually the bottleneck of the terminal.

Traffic, congestion and capacity issues originate from here.

Main issue: the “schedule” of the outgoing flow is unknown to the terminal.

- Import/export terminals: yard management is strictly connected to gate operations (trucks).

- Transshipment terminals: yard management is strictly connected to mother vessels and feeders.
Gate Issues

An import/export terminal: port of Antwerp, Belgium.

Issues:

- unknown dwell time;
- congestion and queues.

Possible solutions:

- Vehicle Booking System (VBS): Southampton, 2005;
- Pricing policies (soft time windows; dwell time).
Transshipment: An Overview

A transshipment terminal: port of Gioia Tauro, Italy.

- Containers are exchanged between mother vessels and feeders.
- Market players: the terminal interacts with big shipping companies and feeders.
- Peculiarities of the transshipment flow:
 - Arrival and departure positions and times can be known in advance;
 - Concurrency of loading and unloading operations.
- Definition of new transshipment-related problems:
 - Service Allocation Problem (*Cordeau et al.*, 2007);
 - Group Allocation Problem (*Moccia and Astorino*, 2007);
 - Short Sea Shipping: Barge Rotation Planning (*Douma et al.*, 2007).
Transshipment: A New Approach

We introduce:

- Interactions of the terminal with the other market players:
 - Negotiation between terminal and feeders on the arrival time.
- Integration of berth and yard planning:
 - Simultaneous assignment of berths and blocks in the yard to the feeders.

Research plan on 2 levels:

1. Optimization
 We assume that the terminal can decide the schedule of feeders.

2. Negotiation
 We aim to support the terminal in its negotiation with ad-hoc pricing policies.
Transshipment: A New Approach

Optimization framework:

1. Berth & Block Allocation Problem (BBAP):
 - Minimize the total distance quay-yard;
 - Balance workload among yard blocks.

2. Scheduling of feeders:
 - Minimize congestion in yard blocks.

- We search for a global optimal solution minimizing the objectives.
- Congestion is minimized given the optimal BBAP.
- A branching strategy explores Pareto-optimal solutions of BBAP.
Conclusions

- Focus on yard management and its interactions with:
 - gate operations;
 - transshipment flow.

- A new approach in the optimization of transshipment operations:
 - combined assignment of berths and blocks to feeders;
 - scheduling of feeders.

- Pricing policies to support the terminal in the negotiation with feeders.

