

Modeling the human dimension of transport

Michel Bierlaire
Transport and Mobility Laboratory

In a nutshell...

Infrastructures
 \& Vehicles

In a nutshell...

Supply

Demand

Travel demand

Most people don't travel for the sake of it Travel demand = derived demand Results of many choices:
Choice of activity
Choice of destination
Choice of departure time Choice of transportation mode Choice of access point (parking, bus stop) Choice of itinerary Etc...

Choice...

< It is our choices that show what we truly are, far more than our abilities »

Prof. Albus Dumbledore
< Liberty, taking the word in its concrete sense, consists in the ability to choose »
« for his development of theory and methods for analyzing discrete choice"

Nobel Committee to Daniel McFadden, 2000

Route choice for car drivers

RIGHT

Toutes Directions

Toutes Directions

Route choice for car drivers

Assumption \#1: drivers prefer the fastest route
Warning:
Their presence affects the other drivers More cars = increased travel time So...

Travel time influences route choice Route choice influences travel time

A simple example

A simple example

A simple example

$x: 10^{3}$ veh/h
 t : time

A simple example

A simple example

A simple example

A simple example

A new infrastructure is built Before, travel time $=83$ minutes After, travel time $=92$ minutes

Increasing the physical capacity of the network does not necessarily increase the mobility

Braess’ paradox

Polluters pay principle

Concept of marginal travel time $\mathrm{t}=50+\mathrm{x} \quad$ Marginal ttime $=1$
$\mathrm{t}=10+\mathrm{x} \quad$ Marginal ttime $=1$
$\mathrm{t}=10 \mathrm{x} \quad$ Marginal ttime $=10$
Drivers are tolled proportionally to the nuisance they produce 1 min marginal travel time $=1 €$ Assumption \#2: drivers prefer the cheapest route

Back to the simple example

$x: 10^{3} \mathrm{veh} / \mathrm{h}$
$\mathrm{t}:$ time

Left-top:
$11 €$
Bottom-right: 11€
New path: $21 €$
Equilibrium

Behavioral assumption?

Do people minimize time?
Do people minimize cost?
Each assumption gives different results Behavior is more complex...

Time is money

Path 1: 11€-83 minutes
Path 2: 11€-83 minutes
Path 3: 21€-70 minutes
Would you be willing to pay $10 €$ to save 13 minutes?
Assumption \#3: drivers consider both time and cost But how do we identify the best path then?

Value of time

We can measure the willingness to pay for travel time savings

Axhausen, K., Hess, S., Koenig, A., Abay, G., Bates, J., and Bierlaire, M. (to appear). Income and distance elasticities of values of travel time savings: new Swiss results, Transport Policy

Trip purpose

WTP at sample mean	Business	Commuting	Leisure	Shopping
PT travel time (CHF/hour)	49.57	27.81	21.84	17.73
Car travel time (CHF/hour)	50.23	30.64	29.2	24.32
Headway red.(CHF/hour)	14.88	11.18	13.38	8.48
Interchange red. (CHF/Change)	7.85	4.89	7.32	3.52

Value of time

Assume it is $15 € / \mathrm{h}$, that is about $0.25 € / \mathrm{min}$ We can convert everything into cost or time Path 1\&2: $83 \mathrm{~min}=20.75 €+11 €=31.75 €$ Path 3: $70 \mathrm{~min}=17.50 €+21 €=38.50 €$

More behavioral aspects

Value of time varies with
Type of choice (mode or route)
Trip purpose
Income
Distance traveled
And maybe more...
Moreover, there's more than time and cost explaining route choice Need for more advanced behavioral models

Examples

Long distance route choice in Switzerland

Travel time
Type of road (cantonal, national, freeway)
Bierlaire, M., and Frejinger, E. (to appear). Route choice modeling with network-free data, Transportation Research Part C: Emerging Technologies
Urban route choice in Sweden
Travel time
Number of left turns
Number of speed bumps
Number of intersections
Frejinger, E., and Bierlaire, M. (2007). Capturing correlation with subnetworks in route choice models, Transportation Research Part B: Methodological 41(3):363-378.

Behavior is complex, so are the models

$$
\begin{gathered}
P\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}+\ln q\left(\mathcal{C}_{n} \mid i\right)}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}+\ln q\left(\mathcal{C}_{n} \mid j\right)}} \\
q\left(\mathcal{C}_{n} \mid i\right)=q\left(\widetilde{\mathcal{C}}_{n} \mid i\right)=\frac{R!}{\left(k_{i n}-1\right)!\prod_{\substack{j \in \mathcal{C}_{n} \\
j \neq i}} k_{j n}!} q(i)^{k_{i n}-1} \prod_{\substack{j \in \mathcal{C}_{n} \\
j \neq i}} q(j)^{k_{j n}} \\
P\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}+\ln \left(\frac{k_{i n}}{q(i)}\right)}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}+\ln \left(\frac{k_{j n}}{q(j)}\right)}}
\end{gathered}
$$

The human dimension of transport

Huge topic...
In this lecture:
Focus on travel demand
Focus on travel choices
Focus on route choice
But there is much more in our research activities

transp-or.epfl.ch

Pedestrian models

G. Antonini, J-Ph Thiran, M. Weber, J. Cruz, Th. Robin, I. Spassov, B. Merminod

Pedestrian simulation

G. Antonini, J-Ph Thiran, M. Weber, J. Cruz, Th. Robin, I. Spassov, B. Merminod

TRANSP-OR

Multi-camera: mobile and fixed

A. Alahi, M. Kunt

Image analysis: facial expressions

Signal Processing Institute, EPFL

TRANSP-OR

Transport Planning

Robert-Grandpierre et Rapp SA

 Service de la mobilité du canton de Vaud Transports Lausannois

Route Choice

ASTRA
IVT- ETHZ USI-Lugano
©

ECOLE POLYTECHNIQUE
FEDIRALE DE LAUSANNE
E. Frejinger, J. Stojanovic

Airline Scheduling

CTI: The Innovation Promotion Agency APM Technologies, Geneva

M. Salani, N. Eggenberg

Container terminals

Port of Antwerp, Belgium Port of Gioia Tauro, Italy Port of Beirut, Lebanon

M. Salani, I. Vacca

TRANSP-OR

Land use and transportation

Stratec, SA, Belgium
University of Washington, Seattle

Congestion models

Swiss National Science Foundation Hôpitaux Universitaires de Genève

FNTNF

Hôpitaux Universitaires de Genève

C. Osorio
 EODIRALE DE LAUSANNE

Thank you!

