A short discussion about travel demand models

Michel Bierlaire
Transport and Mobility Laboratory
Ecole Polytechnique Fédérale de Lausanne

Travel demand

Most people don't travel for the sake of it Travel demand = derived demand Results of many choices:
Choice of activity
Choice of destination
Choice of departure time Choice of transportation mode Choice of access point (parking, bus stop) Choice of itinerary Etc...

Route choice for car drivers

RIGHT

Toutes Directions

Toutes Directions

Route choice for car drivers

Assumption \#1: drivers prefer the fastest route
Warning:
Their presence affects the other drivers More cars = increased travel time So...

Travel time influences route choice Route choice influences travel time

A simple example

A simple example

A simple example

$x: 10^{3}$ veh/h
 t : time

A simple example

A simple example

A simple example

A simple example

A new infrastructure is built Before, travel time $=83$ minutes After, travel time $=92$ minutes

Increasing the physical capacity of the network does not necessarily increase the mobility

Braess’ paradox

Polluters pay principle

Concept of marginal travel time $\mathrm{t}=50+\mathrm{x} \quad$ Marginal ttime $=1$
$\mathrm{t}=10+\mathrm{x} \quad$ Marginal ttime $=1$
$\mathrm{t}=10 \mathrm{x} \quad$ Marginal ttime $=10$
Drivers are tolled proportionally to the nuisance they produce 1 min marginal travel time $=1 €$ Assumption \#2: drivers prefer the cheapest route

Back to the simple example

$x: 10^{3} \mathrm{veh} / \mathrm{h}$
$\mathrm{t}:$ time

Left-top:
$11 €$
Bottom-right: 11€
New path: $21 €$
Equilibrium

Behavioral assumption?

Do people minimize time?
Do people minimize cost?
Each assumption gives different results Behavior is more complex...

Time is money

Path 1: 11€-83 minutes
Path 2: 11€-83 minutes
Path 3: 21€-70 minutes
Would you be willing to pay $10 €$ to save 13 minutes?
Assumption \#3: drivers consider both time and cost But how do we identify the best path then?

Random utility models

Idea : drivers combine cost and time into a number called "utility"
The selected route is the one with the largest utility.
Example with two routes:

$$
\begin{aligned}
& U_{1}=-\beta t_{1}-\gamma c_{1} \\
& U_{2}=-\beta t_{2}-\gamma c_{2}
\end{aligned}
$$

$\beta, \gamma>0$

Random utility models

$$
\begin{aligned}
& U_{1}=-\beta t_{1}-\gamma c_{1} \\
& U_{2}=-\beta t_{2}-\gamma c_{2} \\
& \mathbf{U}_{1}>\mathbf{U}_{2} \text { if }-\beta t_{1}-\gamma c_{1} \geq-\beta t_{2}-\gamma c_{2} \\
&-\frac{\beta}{\gamma} t_{1}-c_{1} \geq-\frac{\beta}{\gamma} t_{2}-c_{2} \\
& c_{1}-c_{2} \leq-\frac{\beta}{\gamma}\left(t_{1}-t_{2}\right)
\end{aligned}
$$

Random utility models

Dominated cases:

$\mathrm{c}_{1}>\mathrm{c}_{2}$ and $\mathrm{t}_{1}>\mathrm{t}_{2}: 2$ is dominating 1
$\mathrm{c}_{2}>\mathrm{c}_{1}$ and $\mathrm{t}_{2}>\mathrm{t}_{1}: 1$ is dominating 2
What about the trade-offs for non-dominated cases?

Random utility models

Random utility models

(P)fll

Random utility models

Need for a random term Now, probability must be used

$$
\begin{aligned}
U_{1} & =-\beta t_{1}-\gamma c_{1}+\varepsilon_{1} \\
U_{2} & =-\beta t_{2}-\gamma c_{2}+\varepsilon_{2}
\end{aligned}
$$

$P(1)=P\left(U_{1}>U_{2}\right)$
Most famous model : the multinomial logit model

Multinomial logit model

$$
U_{i n}=V_{i n}+\varepsilon_{i n}=\beta_{1} x_{i n 1}+\beta_{2} x_{i n 2}+\ldots+\varepsilon_{i n}
$$ where x include time, cost, number of speed bumps, number of left turns, type of routes, etc.

$$
\begin{gathered}
P_{n}\left(i \mid \mathcal{C}_{n}\right)=\operatorname{Pr}\left(U_{i n} \geq U_{j n} \forall j \in \mathcal{C}_{n}\right) \\
P_{n}\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}}
\end{gathered}
$$

Value of time in Switzerland

We can measure the willingness to pay for travel time savings

Axhausen, K., Hess, S., Koenig, A., Abay, G., Bates, J., and Bierlaire, M. (to appear). Income and distance elasticities of values of travel time savings: new Swiss results, Transport Policy

Trip purpose

WTP at sample mean	Business	Commuting	Leisure	Shopping
PT travel time (CHF/hour)	49.57	27.81	21.84	17.73
Car travel time (CHF/hour)	50.23	30.64	29.2	24.32
Headway red.(CHF/hour)	14.88	11.18	13.38	8.48
Interchange red. (CHF/Change)	7.85	4.89	7.32	3.52

Value of time in Switzerland

WTP at sample mean	Business	Commuting	Leisure	Shopping
PT Travel time $(£ / \mathrm{h})$	30.2	17.0	13.3	10.8
Car travel time $(€ / \mathrm{h})$	30.6	18.7	17.8	14.8
Headway red. $(\boldsymbol{£} / \mathrm{h})$	9.1	6.8	8.2	5.2
Interchange red. $(\boldsymbol{£} /$ change $)$	4.8	3.0	4.5	2.1

Optimal pricing

Price = z, Population = N
Choice model:
P(choosing the train ; z)
Number of people choosing the train:
$N P$ (choosing the train ; z)
Revenues:
$R(z)=N P(c h o o s i n g$ the train $\mid z) z$
Optimal pricing:

$\operatorname{Max}_{z} \mathrm{R}(\mathrm{z})$

Recent developments in route choice

Route choice modeling difficult because Large number of alternatives High structural correlation due to the physical overlap of paths Difficulty to collect data (reports, GPS)
Solutions we have proposed Sampling of alternatives Concept of subnetworks Measurement equations

Summary

Travel demand is complex Simple assumptions are useful but not sufficient
Need to analyze the situation as a whole (beware of the Braess paradox)
Observing and measuring behavior is critical (ex: willingness to pay)
Random utility models are at the core of disaggregate demand modeling Hot topic: route choice models

