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Abstract

Generalized Extreme Value models provide an interesting theoreti-

cal framework to develop closed form random utility models. Recently,

several members of this family have been proposed in the literature.

These models, although different, exhibit several similarities. Each of

them must be proven to belong to the GEV family, and is difficult to

esitmate. In this paper, we propose the Network GEV model, a new

modeling approach providing an intuitive way to generate a wide class

of concrete Generalized Extreme Value (GEV) models. Using this ap-

proach, the analyst needs only to design a network structure capturing

the underrlying correlation structure of the considered application. If

the network complies with some simple conditions, we prove that the

associated Network GEV model is indeed a GEV model and, there-

fore, complies with random utility theory. The Multinomial Logit,

the Nested Logit and the Cross-Nested Logit models are members of

the Network GEV models class. The recent GenL model, combining

choice set generation and choice model, is also a Network GEV model.
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1 Introduction

Discrete choice models play a major role in many fields involving a human

dimension, including econometry, marketing research and transportation de-

mand analysis. Their nice and strong theoretical properties, and their flexi-

bility to capture various situations, provide a vast topic of interest for both

researchers and practitioners, that has (by far) not been totally exploited

yet. The theory on Generalized Extreme Value (GEV) models has been in-

troduced by McFadden (1978). It provides a tremendous potential, as it

defines a whole family of models, consistent with random utility theory. It

appears that only a few members of this family have been exploited so far, the

Multinomial Logit model and the Nested Logit model being the most popular

(Ben-Akiva and Lerman, 1985). Recent research on the Cross-Nested logit

model (Small, 1987, Vovsha, 1997, Vovsha and Bekhor, 1998, Ben-Akiva and

Bierlaire, 1999, Papola, 2000, Bierlaire, 2001a, Wen and Koppelman, 2001,

Swait, 2001) has slightly extended the number of GEV models used in prac-

tice.

The most general GEV model published thus far is probably the Recursive

Nested Extreme Value (RNEV) model, proposed by Daly (2001). It is an

elegant generalization of the Cross-Nested logit model, where multiple layers

of nests are allowed. RNEL is designed to be easily estimated, as it requires

moderate extensions to nested logit estimation packages like ALOGIT (Daly,

1987) or HieLoW (Bierlaire, 1995, Bierlaire and Vandevyvere, 1995).

In this paper, we propose a new modeling approach, providing an intuitive

way of generating a wide class of concrete GEV models. The idea is an

extension of the use of trees to represent Nested Logit models (Ben-Akiva
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and Lerman, 1985, Daly, 1987). Here, we base the model definition on a

network representation. The advantages of this approach are the following.

• We formally prove that any model based on a network representation

complying with some simple properties is indeed a GEV model. There-

fore, consistency with random utility theory is guaranteed.

• A network representation allows to intuitively capture complex correla-

tion structures of actual modeling situations. This feature, intensively

exploited with trees for the Nested Logit models in the literature, can

now be extended to a wide class of GEV models.

• The recursive definition of the model, based on the network structure,

greatly simplifies its formulation.

The main objective of the paper is to provide a general theorical result,

such that the development of new GEV models will be easier in the future.

Indeed, in addition to the intuitive approach due to the network structure,

any instance of the Network GEV model is proven to be a GEV model and

therefore, no more theoretical justification is required for such models.

The Network GEV model is defined in Section 3, where we prove that it

is indeed a GEV model. The proof is based on technical lemmas developed

in Appendix A. In Section 4, we provide a couple of concrete examples of

Network GEV models, and discuss some practical issues.
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2 The GEV model

The Generalized Extreme Value (GEV) model has been derived from the

random utility model by McFadden (1978). This general model consists of a

large family of models that include the Multinomial Logit, the Nested Logit

and the Cross-Nested Logit models. The probability of choosing alternative

i within the choice set C of a given choice maker is

P (i|C) =
yi
∂G
∂yi

(y1, . . . , yJ)

µG(y1, . . . , yJ)
(1)

where J is the number of available alternatives, yi = eVi , Vi is the deter-

ministic part of the utility function associated to alternative i, and G is a

non-negative differentiable function defined on RJ+ with the following prop-

erties:

1. G is homogeneous of degree µ > 0, that is G(αy) = αµG(y),

2. limyi→+∞G(y1, . . . , yi, . . . , yJ) = +∞, for each i = 1, . . . , J ,

3. the kth partial derivative with respect to k distinct yi is non-negative

if k is odd and non-positive if k is even that is, for any distinct indices

i1, . . . , ik ∈ {1, . . . , J}, we have

(−1)k
∂kG

∂xi1 . . . ∂xik
(x) ≤ 0, ∀x ∈ RJ+. (2)

Note that the homogeneity of G and Euler’s theorem give

P (i|C) =
eVi+lnGi(...)∑J
j=1 e

Vj+lnGj(...)
, (3)

where Gi = ∂G
∂yi

.
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3 The Network GEV model

Let (V,E) be a directed graph, where V is the set of vertices and E the

set of edges. Each edge (i, j) is associated with a non-negative parameter

α(i,j) ≥ 0, so that the directed graph is a network. The network has the

following properties:

1. It does not contain any circuit.

2. It has one special node with no predecessor, called the root, and denoted

by v0.

3. It has J special nodes with no successor, called the alternatives, and

denoted by v1, . . . , vJ .

4. For each node vi in the network, there exists at least a path (vi0 , vi1),

(vi1 , vi2), . . ., (viP−1
, viP ) connecting v0 = vi0 and vi = viP such that

P∏
k=1

α(ik−1,ik) > 0, (4)

that is all parameters on the path are non-zero.

We associate with each node vi of the network

• a set Ii ⊆ {1, . . . , J} of Ji relevant alternatives,

• a homogeneous function Gi : RJi −→ R, and

• an homogeneity parameter µi.

We define Ii = {i} for the nodes representing the alternatives, that is for

i = 1, . . . , J , and Ii =
⋃
j∈succ(i) Ij for all others. Note that we can deduce
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from network property 4 that I0 = {1, . . . , J}. The homogeneous functions

are defined as follows.

Gi : R −→ R : Gi(xi) = xµii i = 1, . . . , J, (5)

and

Gi : RJi −→ R : Gi(x) =
∑

j∈succ(i)

α(i,j)G
j(x)

µi
µj . (6)

If µi ≤ µj for each edge (i, j) such that α(i,j) 6= 0, the function G0 associ-

ated with the root node, and entirely defined by the network structure, is a

GEV generating function. Indeed, G1, . . . , GJ defined by (5) trivially verify

the GEV conditions. The Gi functions (6) associated with all other nodes,

including the root, also verify the GEV conditions, as proven by Theorem 1.

Theorem 1 If Gi : RJ −→ R, i = 1, . . . , p are GEV generating functions

with homogeneity factor µi, than the function G : RJ −→ R, defined by

G(x) =

p∑
i=1

αiG
i(x)

µ
µi (7)

is also a GEV generating function with homogeneity factor µ if the following

conditions are verified:

1. αi ≥ 0, i = 1, . . . , p,

2.
∑p

i=1 αi > 0

3. µ > 0,

4. µi > 0, i = 1, . . . , p,

5. µ ≤ µi, i = 1, . . . , p.
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Proof.

1.G is obviously non negative, if x ∈ RJ+.

2.G is homogeneous of degree µ. Indeed,

G(βx) =
∑p

i=1 αiG
i(βx)

µ
µi

=
∑p

i=1 αi(β
µiGi(x))

µ
µi (as Gi is homogeneous of degree µi),

=
∑p

i=1 αiβ
µGi(x)

µ
µi

= βµ
∑p

i=1 αiG
i(x)

µ
µi

= βµG(x).

(8)

3. We have

limxk→∞G(x) = limxk→∞
∑p

i=1 αiG
i(x)

µ
µi

=
∑p

i=1 αi limxk→∞G
i(x)

µ
µi .

(9)

From assumption 3, and because each Gi verifies the GEV assump-

tions, we have limxk→∞G
i(x)

µ
µi = ∞. The limit property holds be-

cause not all coefficients αi can be zero, from assumption 1.

4. Without loss of generality, we consider the kth derivative of G(x)

with respect to x1, . . . , xk, that is

∂kG(x)

∂x1 . . . ∂xk
=

p∑
i=1

αi
∂kGi(x)

µ
µi

∂x1 . . . ∂xk
. (10)

The sign of (10) is entirely determined by the sign of ∂kGi(x)
µ
µi

∂x1...∂xk
, as

the coefficients αi are non-negative. Using Lemma 2 with β = µ
µi

, we

have
∂k

∂x1 . . . ∂xk
G(x)

µ
µi =

∑
P∈Pk

Sp
∏
R∈P

DR, (11)
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(1) (2) (3)

k p Sp
∏

R∈P DR Sp
∏

R∈P DR

even even ≤ 0 ≥ 0 ≤ 0

even odd ≥ 0 ≤ 0 ≤ 0

odd even ≤ 0 ≤ 0 ≥ 0

odd odd ≥ 0 ≥ 0 ≥ 0

Table 1: Sign of Sp
∏

R∈P DR

where

Sp(x) =

p−1∏
i=0

(
µ

µi
− i)G(x)

µ
µi
−p
, (12)

and

DR =
∂rG(x)

(∂xi)i∈R
. (13)

Consequently, we need to analyze the sign of the right-hand side in

(11). Interestingly, for a given k, all terms of this sum have the

same sign. If we consider an arbitrary partition P ∈ Pk, composed

of p subsets, the sign of the term for all possible cases is analyzed

in Table 1. Column (1) is obtained from Lemma 3, which can be

applied because 0 < µ/µi ≤ 1. Column (2) is obtained from Table 2

in Lemma 4. And column (3) is simply the product of (1) and (2).

Therefore, the sign of (11) and consequently of (10) is non-positive

if k is even, and non-negative if k is odd.

�
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4 Examples and practical issues

We present here some existing models that are special cases of the Net-

work GEV model. First, the tree representation of Nested Logit model is

a Network GEV model, where the network is obviously the tree, and the α

parameters associated with the edges are all 1. The Multinomial Logit Model

being a special case of the Nested Logit, it is also a Network GEV model.

The Cross-Nested model is a GEV model generated by

G(x1, . . . , xJ) =
∑
m

(∑
j∈C

αjmx
µm
j

) µ
µm

. (14)

It is a special case of the Network GEV model, where the network is composed

of a root v0, a list of nodes for the alternatives v1, . . . , vJ and a list of nodes

w1, . . . , wM for the nests. There is an edge between the root and each nest m,

with a parameter α0m, and an edge between each nest m and each alternative

i, with a parameter αmi. The µi associated to each alternative are set to 1,

and we obtain a GEV model generated by the following function:

G0(x1, . . . , xJ) =
∑
m

α0m

(
J∑
i=1

αmix
µm
i

) µ
µm

(15)

Let ᾱim = α
µm
µ

0m αmi, and we obtain the generating function (14) of the Cross-

Nested Logit model. As an example, we consider the simple network repre-

sented in Figure 1. We have

G1 = xµ1

1 , G
2 = xµ2

2 , G
3 = xµ3

3 .
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and

G4 = α41(G1)
µ4
µ1 + α42(G2)

µ4
µ2 + α43(G3)

µ4
µ3

= α41x
µ4

1 + α42x
µ4

2 + α43x
µ4

3

G5 = α51(G1)
µ5
µ1 + α52(G2)

µ5
µ2 + α53(G3)

µ5
µ3

= α51x
µ5

1 + α52x
µ5

2 + α53x
µ5

3

Finally,

G0 = α04(G4)
µ0
µ4 + α05(G5)

µ0
µ5

= α04 (α41x
µ4

1 + α42x
µ4

2 + α43x
µ4

3 )
µ0
µ4 +

α05 (α51x
µ5

1 + α52x
µ5

2 + α53x
µ5

3 )
µ0
µ5

=

[
α
µ4
µ0
04 α41x

µ4

1 + α
µ4
µ0
04 α42x

µ4

2 + α
µ4
µ0
04 α43x

µ4

3

]µ0
µ4

+[
α
µ5
µ0
05 α51x

µ5

1 + α
µ5
µ0
05 α52x

µ5

2 + α
µ5
µ0
05 α53x

µ5

3

]µ0
µ5

=

[(
α

1
µ0
04 α

1
µ4
41 x1

)µ4

+

(
α

1
µ0
04 α

1
µ4
42 x2

)µ4

+

(
α

1
µ0
04 α

1
µ4
43 x3

)µ4
]µ0
µ4

+[(
α

1
µ0
05 α

1
µ5
51 x1

)µ5

+

(
α

1
µ0
05 α

1
µ5
52 x2

)µ5

+

(
α

1
µ0
05 α

1
µ5
53 x3

)µ5
]µ0
µ5

Note that removing an edge of the network amounts to set the associated

parameter to 0.

The issue of model estimability must be analyzed. First, the value of the

parameters µ1, . . . , µJ is irrelevant for the model. Therefore, these can be set

to 1 without loss of generality. The other parameters µ are relevant only in

terms of their ratio, like for Nested Logit models. Therefore, a normalization

(from the top or the bottom) is required. Finally, not all parameters α

associated with the edges of the network can be identified. Actually, from a

random utility model viewpoint, the meaningful parameters are associated

with paths between the root node and the alternatives. More specifically, if
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JĴ

HHH
HHHH

HHH
HHH

HHHHj

J
J
J
J
J
J
J
JĴ
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Figure 1: A simple network

we consider a path P = (vi0 , vi1), (vi1 , vi2), . . ., (viP−1
, viP ) connecting v0 = vi0

and vi = viP , the parameter ωP associated with the path is

ωP =
P∏
j=1

(α(vij−1
,vij ))

µi
µij−1 . (16)

By assumption, ωP must be non zero for at least one path between v0 and

vi. If the Network GEV model could be written in terms of parameters ω, it

is recommended to keep the parameters α in the formulation. In that case,

the intuitive interpretation of the model based on the network structure is

maintained. If α(i,j) is interpreted as the level at which node vj “belongs to”

node vi, like for the Cross Nested logit model, a natural normalization would

be to impose ∑
i∈pred(j)

α(i,j) = 1 ∀j. (17)

In particular, for any node j with only one predecessor i, we have α(i,j) = 1.
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The estimation of a Network GEV model can be performed using any

package able to estimate a GEV model. The freeware BIOGEME (Bierlaire,

2001b) is currently being extended to Network GEV models.

5 Conclusion and Future research

In this paper, we have proposed a new formulation of GEV models based on a

network representation. It allows to design a GEV model based on intuitive

interpretation of the application, similarly to the development of trees for

Nested Logit models. We have proven in Section 3 that any Network GEV

model is indeed a GEV model and, consequently, complies with random

utility theory. The Multinomial logit, the Nested logit and the Cross Nested

logit models are all Network GEV models. The issue of estimability has been

discussed, but requires a full theoretical and empirical analysis which is out of

the scope of this paper. An interesting question that should be investigated

is the equivalence between GEV and Network GEV. Namely, can any GEV

model be represented as a Network GEV model?
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A Technical lemmas

Lemma 2 We denote by Pk the set of partitions of the indices set {1, . . . , k}.

Given a partition P belonging to Pk, composed of p sets of indices, we define

Sp(x) =

p−1∏
i=0

(β − i)G(x)β−p, (18)

Given a set R containing r indices, we define

DR =
∂rG(x)

(∂xi)i∈R
. (19)

Then, we have
∂k

∂x1 . . . ∂xk
G(x)β =

∑
P∈Pk

Sp
∏
R∈P

DR. (20)

Proof. The proof is by induction. The cases k = 1, 2, 3 are obvious

(see (33), (34), (35)). Therefore, we assume that the result is true for k,

and we prove it is true also for k + 1. We first compute

∂k+1

∂x1 . . . ∂xk+1

G(x)β =
∂

∂xk+1

(
∂k

∂x1 . . . ∂xk
G(x)β

)
(21)

that is

∂k+1

∂x1 . . . ∂xk+1

G(x)β

=
∂

∂xk+1

(∑
P∈Pk

Sp
∏
R∈P

DR

)

=
∑
P∈Pk

[(
∂

∂xk+1

Sp
) ∏
R∈P

DR + Sp
∂

∂xk+1

∏
R∈P

DR

]
,

(22)
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where
∂

∂xk+1

Sp =

p−1∏
i=0

(β − i)(β − p)G(x)β−(p+1) ∂G

∂xk+1

= Sp+1 ∂G

∂xk+1

(23)

and
∂

∂xk+1

∏
R∈P

DR =
∑
R∈P

∂

∂xk+1

DR

∏
T∈P,T 6=R

DT . (24)

Consequently,

∂k+1

∂x1 . . . ∂xk+1

G(x)β =

∑
P∈Pk

[(
Sp+1 ∂G

∂xk+1

) ∏
R∈P

DR + Sp
∑
R∈P

DR∪{k+1}
∏

T∈P,T 6=R

DT

]
.

(25)

Then, we prove the result by obtaining (25) directly from (20). Using (38)

in (20), we have

∂k+1

∂x1 . . . ∂xk+1

G(x)β =

p∑
i=1

Sp+1
∏

R∈P∪{k+1}

DR +

ni∑
`=1

Sp
∏

R∈Pk+1
i,`

DR


p∑
i=1

Sp+1 ∂G

∂xk+1

∏
R∈P

DR + Sp
ni∑
`=1

∏
R∈Pk+1

i,`

DR

 .

(26)

We finally use the definition (39) of P k+1
i,` to obtain (25) and prove the

result. �
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Lemma 3 If 0 < β ≤ 1 and G(x) is non-negative, the sign of Sp(x), defined

by (18), is non-positive if p is even and non-negative if p is odd, that is

(−1)pSp(x) ≤ 0. (27)

Proof. From (18), we have

Sp(x) = β

p−1∏
i=1

(β − i)G(x)β−p. (28)

As β andG(x) are non-negative, the sign of Sp(x) is the sign of
∏p−1

i=1 (β−i).

If β = 1, then Sp(x) = 0. If β < 1, then all factors of
∏p−1

i=1 (β − i) are

negative. In both cases, (27) is trivially verified. �

Lemma 4 Let P be a partition of the indices set {1, . . . , k}, composed of p

subsets. Then, the sign of
∏

R∈P DR, where DR is defined by (19) depends

on the parity of k and p, as reported in Table 2

k even k odd

p even ≥ 0 ≤ 0

p odd ≤ 0 ≥ 0

Table 2: Sign of
∏

R∈P DR

Proof. As G is a GEV function, we have that (−1)rDR ≤ 0 or,

equivalently,

(−1)r+1DR ≥ 0, (29)

where r is the number of indices in R. Therefore, the sign of
∏

R∈P DR is

also the sign of ∏
R∈P

(−1)r+1. (30)
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We prove the result by induction. If P contains only one set, that is p = 1

and R = {1, . . . , k}, then (30) becomes (−1)k+1. Noting that p = 1 is

odd, the result is trivially verified in that case. Now, we assume that the

result is true if P is composed of p sets, and prove it for p + 1. If P is

composed of p + 1 sets, we select one set R∗ in P . In that case, (30) is

decomposed as ∏
R∈P

(−1)r+1 = (−1)r
∗+1

∏
R∈P,R 6=R∗

(−1)r+1, (31)

where
∏

R∈P,R 6=R∗(−1)r+1 corresponds to the case where we have a parti-

tion of a set of k− r∗ indices into p sets. All possible cases are considered

in Table 3. Column (1) contains the parity of k− r∗. It is the same as the

parity of k if and only if r∗ is even. Column (2) contains the parity of p

which is directly deduced from the parity of p + 1. Column (3) contains

the sign of (−1)r
∗+1, directly deduced from the parity of r∗. Column (4)

is obtained by the recursion assumption, using the parity of k − r∗ and p

in Table (2). Finally, column (5) is obtained by multiplying columns (3)

and (4). The signs in column (5) are the same as the signs in Table 2, and

the result is proven.

�

B Derivatives

We provide here the analytical value for

∂k

∂x1 . . . ∂xk
G(x)β (32)
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(1) (2) (3) (4) (5)

k p+ 1 r∗ k − r∗ p (−1)r
∗+1

∏
R∈P,R 6=R∗

(−1)r+1
∏
R∈P

(−1)r+1

even even even even odd ≤ 0 ≤ 0 ≥ 0

even even odd odd odd ≥ 0 ≥ 0 ≥ 0

even odd even even even ≤ 0 ≥ 0 ≤ 0

even odd odd odd even ≥ 0 ≤ 0 ≤ 0

odd even even odd odd ≤ 0 ≥ 0 ≤ 0

odd even odd even odd ≥ 0 ≤ 0 ≤ 0

odd odd even odd even ≤ 0 ≤ 0 ≥ 0

odd odd odd even even ≥ 0 ≥ 0 ≥ 0

Table 3: Sign of (31)

for k = 1, 2, 3. For k = 1, we have

∂

∂x1

G(x)β = βG(x)β−1 ∂G

∂x1

(33)

For k = 2, we have

∂2

∂x1∂x2

= β(β − 1)G(x)β−2 ∂G

∂x1

∂G

∂x2

+ βG(x)β−1 ∂2G

∂x1∂x2

. (34)

For k = 3, we have

∂3

∂x1∂x2∂x3
= β(β − 1)(β − 2)G(x)β−3 ∂G

∂x1

∂G
∂x2

∂G
∂x3

+ β(β − 1)G(x)β−2
(
∂G
∂x1

∂2G
∂x2∂x3

+ ∂G
∂x2

∂2G
∂x1∂x3

+ ∂G
∂x3

∂2G
∂x1∂x2

)
+ βG(x)β−1 ∂3G

∂x1∂x2∂x3

(35)
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C Set partitions

The set Pk of partitions of an index set {1, . . . , k} is constructed recursively.

By definition, we impose that P0 = ∅. We have also that P1 = {{{1}}}. In

general, assume that

Pk =

p⋃
i=1

P k
i (36)

where

P k
i =

ni⋃
j=1

Ri
j (37)

and Rj is a subset of {1, . . . , k}. For each partition P k
i in Pk, we build ni + 1

partitions of Pk+1. The first is obtained simply by adding the singleton

{k + 1} to P k
i . All the other partitions are obtained by replacing each index

set Ri
j, one at a time, by Ri

j ∪ (k + 1). Consequently, we have

Pk+1 =

p⋃
i=1

[(
P k
i ∪ {k + 1}

) ni⋃
`=1

P k+1
i,`

]
, (38)

where

P k+1
i,` = {Ri

` ∪ (k + 1)} ∪
ni⋃
j=1

j 6=`

Ri
j. (39)

For example, as P1 contains one partition P 1
1 = {R1

1}, where R1
1 = {1}, we

have

P2 =
⋃1
i=1

[
(P 1

i ∪ {2})
⋃1
`=1 P

2
i,`

]
,

= P 1
1 ∪ {2} ∪ P 2

1,1

= {{1}{2}} ∪ P 2
1,1

(40)

where

P 2
1,1 = {R1

1 ∪ 2} ∪
1⋃
j=1

j 6=1

R1
j = {{1, 2}}. (41)
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Therefore, P2 = {{{1}{2}} , {{1, 2}}}. Denoting P 2
1 = {R1

1, R
1
2}, with R1

1 =

{1} and R1
2 = {2} and P 2

2 = {R2
1},where R2

1 = {1, 2}, we can compute P3.

P3 =
⋃2
i=1

[
(P 2

i ∪ {3})
⋃ni
`=1 P

3
i,`

]
,

=
[
(P 2

1 ∪ {3})
⋃2
`=1 P

3
1,`

]⋃ [
(P 2

2 ∪ {3})
⋃1
`=1 P

3
2,`

]
=

[
(P 2

1 ∪ {3}) ∪ P 3
1,1 ∪ P 3

1,2

]⋃ [
(P 2

2 ∪ {3}) ∪ P 3
2,1

] (42)

where

P 3
1,1 = {R1

1 ∪ 3} ∪
⋃2

j=1

j 6=1
R1
j

= {R1
1 ∪ 3} ∪R1

2

= {{1} ∪ 3} ∪ {2},

= {{1, 3}{2}}

P 3
1,2 = {{2, 3}{1}}

P 3
2,1 = {{1, 2, 3}}

(43)

Consequently,

P3 = {

{{1}{2}{3}},

{{1, 3}{2}},

{{2, 3}{1}},

{{1, 2}{3}},

{{1, 2, 3}}

}

(44)
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