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Abstract

This paper is an updated version of the paper \Discrete

choice models with multiplicative error terms" by Fosgerau and

Bierlaire (2006).

We propose a multiplicative speci�cation of a discrete choice model

that renders choice probabilities independent of the scale of the util-

ity. The scale can thus be random with unspeci�ed distribution. The

model mostly outperforms the classical additive formulation over a

range of stated choice data sets. In some cases, the improvement in

likelihood is greater than that obtained from adding observed and un-

observed heterogeneity to the additive speci�cation. The multiplica-

tive speci�cation makes it unnecessary to capture scale heterogeneity

and, consequently, yields a signi�cant potential for reducing model

complexity in the presence of heteroscedasticity. Thus the proposed

multiplicative formulation should be a useful supplement to the tech-

niques available for the analysis of discrete choices. There is however

a cost to be paid in terms of increased analytical complexity relative

to the additive formulations.
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1 Introduction

Discrete choice models have been a major part of the transport analyst's

toolbox for decades. These models are able to accommodate diverse re-

quirements and they have a �rm theoretical foundation in utility theory.

Random utility models with additive independent error terms pose the

problem that the scale of the error terms is not identi�ed. Earlier models

assumed the problem away by requiring the scale to be constant. Later

contributions have allowed the scale to vary across data sets and individ-

uals. We propose instead a multiplicative speci�cation of discrete choice

models that circumvents the problem by making the scale irrelevant. It

can thus be random and have any distribution. This speci�cation is ap-

plicable in situations where we have a priori information about the sign of

the systematic utility.

The multinomial logit (MNL) model has been very successful, due to

its computational and analytical tractability. Later, multivariate extreme

value (MEV) models (McFadden, 19781) and mixtures of MNL and MEV

models have gained popularity due to their 
exibility and theoretical re-

sults relating these models to random utility maximization (McFadden and

Train, 2000).

So far, most applications of these models have used a speci�cation with

additive independent error terms. It is computationally convenient, which

may explain its systematic use. The basic formulation of MNL and MEV

models assumes that the scale parameter µ is constant across the popu-

lation, and can therefore be arbitrarily normalized. This assumption is

strong, and a number of techniques to relax it have been developed in the

literature, as detailed below.

Additive models are sensitive to the scale of the independent variables

x. Multiplying the x by a positive number does a�ect the choice probabil-

ities. We hypothesize that this may not always be a good description of

behavior. Particularly in a stated choice context respondents may inter-

1These models are called Generalized Extreme Value models by McFadden (1978).

However, the name GEV is also used for a family of univariate extreme value distributions

(see Jenkinson, 1955).
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pret the presented numbers relatively to each other, performing an implicit

scaling before making their choice. The multiplicative error speci�cation is

insensitive to such scaling, and would better describe this behavior.

The additive speci�cation is however not required by utility theory.

There are alternative formulations which cannot be ruled out a priori. In

this paper we investigate a multiplicative speci�cation, which is the natural

alternative to the additive speci�cation.

McFadden has formulated discrete choice theory based on Random Util-

ity Maximization (RUM). For example, McFadden (2000) describes how

the indirect conditional utility function is separated into a systematic part

and a residual term summarizing all unobserved factors. It is clear that

additivity and independence of the residual term are additional assump-

tions that are made for computational convenience. In this paper we look

at an alternative to the speci�cation of additive residuals while retaining

the speci�cation of the systematic part of the indirect conditional utility

function.

With an additive speci�cation, the scale of the error term is confounded

with the parameters of Vi. Indeed, if Ui = Vi + µεi, normalizing the error

terms across individuals amounts to estimating the utility function

1

µ
Vi + εi,

so that Vi/µ is actually estimated instead of Vi. This is problematic when

the scale µ varies across the population. For instance, in the linear-in-

parameters case where Vi = β ′xi, the distribution of β is confounded with

the distribution of µ. Even if β is �xed, β/µ is distributed. Moreover, the

distribution of µ introduces correlation across the β, which complicates the

estimation.

These issues may be addressed by explicitly specifying a distribution for

µ (Bhat, 1997; Swait and Adamowicz, 2001; De Shazo and Fermo, 2002;

Caussade et al., 2005; Koppelman and Sethi, 2005; Train and Weeks, 2005).

Our multiplicative speci�cation avoids the problem altogether.

Train and Weeks (2005) compare a model in preference space to a model

in willingness-to-pay space (WTP). The model in preference space assumes

independent random coe�cients for all alternative attributes and additive
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errors, while the model in WTP space assumes a coe�cient of one for

the cost attribute and independent random coe�cients for the remaining

attributes as well as a random scale of the still additive error term. Random

coe�cients are assumed to be either normal or lognormal. They �nd that

the model in preference space �ts their data better while the model in

WTP space produces more reasonable results for the distribution of WTP.

For both models, they furthermore reject the maintained hypothesis that

coe�cients are independent.

In previous work on the Danish value-of-time survey (Fosgerau, 2006,

Fosgerau, forthcoming), we have derived a model that circumvents the

above-mentioned scaling e�ect. However, this model contains only travel

time and cost, and is only applicable to very simple stated choice designs.

The multiplicative speci�cation proposed in this paper accommodates more

general designs involving a higher number of factors.

Our multiplicative speci�cation starts from the assumption that Ui =

µViεi. If we are able to assume that the signs of µ, Vi and εi are known,

then taking logs does not a�ect choice probabilities, and the model then

becomes an additive model.

With this model it is the relative di�erences that matter. If Vi is linear in

travel time then the e�ect on choice probabilities of a 10 minute di�erence

in travel times depends on the length of the trip under the multiplicative

speci�cation. A 10 minute di�erence under the additive speci�cation has

constant e�ect on choice probabilities regardless of whether it relates to a

very short or a very long journey. Thus using the multiplicative speci�ca-

tion may reduce the need for segmentation and may hence be able to use

data more e�ciently.

This is similar to the common practice in econometrics of expressing

most variables in regressions in logs. Applying logs in the regression context

removes the scale from the data, such that the errors for small and large

values of the independent variables have the same variance.

The methodology is set out in the next section, and illustrated in Sec-

tion 4. We conclude the paper with some remarks in Section 5. Finally,

appendices A and B provides the details of parameter estimates of various

models, and appendix presents the derivation of the expected maximum
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utility of the model with multiplicative error terms.

2 Methodology

Assume a general multiplicative utility function over a �nite set C of J

alternatives given by

Ui = µViεi, (1)

where µ is an independent individual speci�c scale parameter, Vi < 0 is

the systematic part of the utility function, and εi > 0 is a random variable,

independent of Vi and µ.

We assume that the εi are i.i.d. across individuals, and potential het-

eroscedasticity is captured by the individual speci�c scale µ. The sign

restriction on Vi is a natural assumption in many applications, for example

when it is de�ned as a generalized cost, that is, a linear combination of

attributes with positive values such as travel time and cost and parameters

that are a priori known to be negative.

The choice probabilities under this model are given by

P(i|C) = Pr(Ui ≥ Uj, j ∈ C)

= Pr(µViεi ≥ µVjεj, j ∈ C)

= Pr(Viεi ≥ Vjεj, j ∈ C),

(2)

such that the individual scale is irrelevant. The multiplicative speci�cation

(1) is related to the classical speci�cation with additive independent error

terms, as can be seen from the following derivation. The logarithm is a

strictly increasing function. Consequently,

P(i|C) = Pr(Viεi ≥ Vjεj, j ∈ C)

= Pr(−Viεi ≤ −Vjεj, j ∈ C)

= Pr(ln(−Vi) + ln(εi) ≤ ln(−Vj) + ln(εj), j ∈ C)

= Pr(− ln(−Vi) − ln(εi) ≥ − ln(−Vj) − ln(εj), j ∈ C).

We de�ne

− ln(εi) = (ci + ξi)/λ, (3)
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where ci is the intercept, λ > 0 is the scale, and ξi are random variables

with a �xed mean and scale, and we obtain

P(i|C) = Pr( �Vi + ξi ≥ �Vj + ξj, j ∈ C)

= Pr(−λ ln(−Vi) + ci + ξi ≥ −λ ln(−Vj) + cj + ξj, j ∈ C),
(4)

which is now a classical random utility model with additive error, where

�Vi = −λ ln(−Vi) + ci, (5)

It is important to emphasize that, contrarily to µ in (1), the scale λ is

constant across the population, as a consequence of the i.i.d. assumption

on the εi. Note that Vi must be normalized for the model to be identi�ed.

Indeed, for any α > 0,

−λ ln(−αVi) + ci = −λ ln(−Vi) − λ ln(α) + ci

meaning that changing the scale of Vi is equivalent to shifting the constant

ci. When Vi is linear-in-parameters, it is su�cient to �x one parameter

to either 1 or -1. A useful practice is to normalize the cost coe�cient

(if present) to 1 so that other coe�cients can be readily interpreted as

willingness-to-pay indicators.

This speci�cation is fairly general and can be used for all the discrete

choice models discussed in the introduction. We are free to make assump-

tions regarding the error terms ξi and the parameters inside Vi can be

random. Thus we may obtain MNL, MEV and mixtures of MEV models.

For instance, a MNL speci�cation would be

P(i|C) =
e−λ ln(−Vi)+ci∑
j∈C e−λ ln(−Vj)+cj

=
eci(−Vi)

−λ∑
j∈C ecj(−Vj)−λ

, (6)

where eci, i ∈ C are constants to be estimated. Furthermore, ci may depend

on covariates, such that it is also possible to incorporate both observed and

unobserved heterogeneity both inside and outside the log. We illustrate

some of these speci�cations in Section 4.

If random parameters are involved, it is necessary to ensure that P(Vi ≥
0) = 0. The sign of a parameter can be restricted using, e.g., an exponential.
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For instance, if β has a normal distribution then exp(β) is positive and

lognormal. For deterministic parameters one may specify bounds as part

of the estimation or transformations such as the exponential may be used

to restrict the sign.

Maximum likelihood estimation of the model can be complicated in

the general case. The use of (4) provides an equivalent speci�cation with

additive independent error terms, which �ts into the classical modeling

framework, involving MNL and MEV models, and mixtures of these. How-

ever, even when the Vs are linear in the parameters, the equivalent additive

speci�cation (4) is nonlinear. Therefore, estimation routines must be used,

that are capable of handling this. The results presented in this paper have

been generated using the software package Biogeme (biogeme.epfl.ch;

Bierlaire, 2003; Bierlaire, 2005), which allows for the estimation of mix-

tures of MEV models, with nonlinear utility functions.

3 Model properties

We discuss now some basic properties of the model with multiplicative error

terms.

Distribution From (3), we derive the CDF of εi as

Fεi
(x) = 1 − Fξi

(−λ ln x − ci).

In the case where ξi is extreme value distributed, the CDF of ξi is

Fξi
(x) = e−e−x

and, therefore,

Fεi
(x) = 1 − e−xλeci

.

This is a generalization of an exponential distribution (obtained with

λ = 1). We note that the exponential distribution is the maximum

entropy distribution among continuous distributions on the positive

half-axis of given mean, meaning that it embodies minimal informa-

tion in addition to the mean (that is to Vi) and positivity. Thus, it

is seems to be an appropriate choice for an unknown error term.
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Elasticity The direct elasticity of alternative i with respect to an explana-

tory variable xik is de�ned as

ei =
∂P(i)

∂xik

xik

P(i)
=

∂P(i)

∂Vi

∂Vi

∂xik

xik

P(i)
,

where ∂Vi/∂xik = βk if Vi is linear-in-parameters. We use (5) to

obtain

ei =
∂P(i)

∂ �Vi

∂ �Vi

∂Vi

∂Vi

∂xik

xik

P(i)
= −

λ

Vi

∂P(i)

∂ �Vi

∂Vi

∂xik

xik

P(i)

where ∂P(i)/∂ �Vi is derived from the corresponding additive model.

For instance, if the additive model is MNL, we have

∂P(i)

∂ �Vi

= P(i)(1 − P(i)),

and

ei = −
λ

Vi

(1 − P(i))
∂Vi

∂xik

xik.

Similarly, the cross-elasticity eij of alternative i with respect to an

explanatory variable xjk is given by

eij = −
λ

Vj

∂P(i)

∂ �Vj

∂Vj

∂xjk

xjk

P(i)

where ∂P(i)/∂ �Vj is derived from the corresponding additive model.

For instance, if the additive model is MNL, we have

∂P(i)

∂ �Vj

= −P(i)P(j),

and

eij =
λ

Vi

P(j)
∂Vj

∂xjk

xjk.

Trade-offs The trade-o�s are computed in the exact same way as for an

additive model, that is

∂Ui/∂xik

∂Ui/∂xi`

=
∂Vi/∂xik

∂Vi/∂xi`

,

as ∂εi/∂xik = ∂εi/∂xi` = 0, because εi is independent of Vi.
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Expected maximum utility The maximum utility is

U∗ = max
i∈C

Ui = max
i∈C

Viεi = max
i∈C

Vie
−

ξi+ci
λ , (7)

where ξi is de�ned by (3). We assume that (ξ1, . . . , ξJ) follows a MEV

distribution, that is

F(ξ1, . . . , ξJ) = e−G(eξ1 ,...,eξJ ), (8)

where G is a σ-homogeneous function with some properties (see Mc-

Fadden, 1978 and Daly and Bierlaire, 2006 for details). Then, the

expected maximum utility is given by (see derivation in Appendix

C):

E[U∗] = (G∗)− 1
σλ Γ

(
1 +

1

σλ

)
, (9)

where

G∗ = G(ec1−λ lnV1, . . . , ecJ−λ lnVJ), (10)

and Γ(·) is the gamma function.

Compensating variation The compensating variation can be derived in

the context where −Vi, the negative of the utility of alternative i, is

interpreted as a generalized cost. In this case, when a small pertur-

bation dVi is applied, the compensating variation is simply −dVi if

alternative i is chosen, and 0 otherwise. Therefore, the compensating

variation for a marginal change dVi in Vi is

−P(i)dVi, (11)

and the compensating variation for changing Vi from a to b is given

by

−

∫b

a

P(i)dVi. (12)

When P(i) is given by a classical MNL model, this integral leads to the

well-known logsum formula (see Small and Rosen, 1981). When P(i)

is given by the model with multiplicative error (like (6)), the integral
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does not have a closed form in general2, and numerical integration

must be performed.

4 Empirical applications

We analyze three stated choice panel data sets. We start with two data

sets for value of time estimation, from Denmark and Switzerland, where

the choice model is binomial. The third data set, a trinomial mode choice

in Switzerland, allows us to test the speci�cation with a nested logit model.

4.1 Value of time in Denmark

We utilize data from the Danish value-of-time study. We have selected an

experiment that involves several attributes in addition to travel time and

cost. We report the analysis for the train segment in detail, and provide a

summary for the bus and car driver segments. The experiment is a binary

route choice with unlabeled alternatives.

The �rst model is a simple logit model with linear-in-parameters utility

functions. The attributes are the cost, in-vehicle time, number of changes,

headway, waiting time and access-egress time (ae).

The utility function is de�ned as

Vi = λ( − cost +β1 ae +β2 changes

+ β3 headway +β4 inVehTime +β5 waiting ),
(13)

where the cost coe�cient is normalized to -1 and the scale λ is estimated.

The utility function in log-form, used in the estimation software for the

multiplicative speci�cation, is de�ned as

Vi = −λ log( cost −β1 ae −β2 changes

− β3 headway −β4 inVehTime −β5 waiting) .
(14)

The estimation results are reported in Table 6 for the additive speci-

�cation and in Table 7 for the multiplicative speci�cation. We observe a

2Complicated closed form expressions can be derived for (6) with integer values of λ.

But λ is estimated and unlikely to be integer.
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signi�cant improvement in the log-likelihood (171.76) for the multiplicative

speci�cation relative to the additive.

The second model captures unobserved taste heterogeneity. Its estima-

tion accounts for the panel nature of the data. The speci�cation of the

utility is

Vi = λ(−cost− eβ5+β6ξYi) (15)

where

Yi = inVehTime+ eβ1 ae+ eβ2 changes+ eβ3 headway+ eβ4 waiting, (16)

ξ is a random parameter distributed across individuals as N(0, 1), so that

eβ5+β6ξ is lognormally distributed. The exponentials guarantee the pos-

itivity of the parameters. The utility function in log-form, used in the

estimation software for the multiplicative speci�cation, is de�ned as

Vi = −λ log(cost+ eβ5+β6ξYi), (17)

where Yi is de�ned by (16).

The estimation results are reported in Table 8 for the additive speci�ca-

tion and in Table 9 for the multiplicative speci�cation. Again, the improve-

ment of the goodness-of-�t for the multiplicative is remarkable (225.45).

Finally, we present a model capturing both observed and unobserved

heterogeneity. The speci�cation of the utility is

Vi = λ(−cost− eWiYi)

where Yi is de�ned by (16),

Wi = β5 highInc+ β6 log(inc)+ β7 lowInc+ β8 missingInc+ β9 + β10ξ

and ξ is a random parameter distributed across individuals as N(0, 1). The

utility function in log form is

Vi = −λ log(cost+ eWiYi).

The estimation results are reported in Table 10 for the additive speci�-

cation and in Table 11 for the multiplicative speci�cation. We again obtain
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Number of observations 3455

Number of individuals 523

Model Additive Multiplicative Di�erence

1 -1970.85 -1799.09 171.76

2 -1924.39 -1698.94 225.45

3 -1914.12 -1674.67 239.45

Table 1: Log-likelihood of the models for the train data set

Number of observations: 7751

Number of individuals: 1148

Model Additive Multiplicative Di�erence

1 -4255.55 -3958.35 297.2

2 -4134.56 -3817.49 317.07

3 -4124.21 -3804.9 319.31

Table 2: Log-likelihood of the models for the bus data set

a large improvement (239.45) of the goodness-of-�t for the multiplicative

model.

The log-likelihood of these three models are summarized in Table 1.

Similar models have been estimated on the bus and the car data set. The

summarized results are reported in Tables 2 and 3.

The multiplicative speci�cation signi�cantly and systematically outper-

forms the additive speci�cation in these examples. Actually, the multiplica-

tive model where taste heterogeneity is not modeled (model 1) �ts the data

much better than the additive model where both observed and unobserved

heterogeneity are modeled.

4.2 Value of time in Switzerland

We have estimated the models without socio-economics, that is (13), (14),

(15) and (17), on the Swiss value-of-time data set (Koenig et al., 2003).

We have selected the data from the route choice experiment by rail for
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Number of observations: 8589

Number of individuals: 1585

Model Additive Multiplicative Di�erence

1 -5070.42 -4304.01 766.41

2 -4667.05 -3808.22 858.83

3 -4620.56 -3761.57 858.99

Table 3: Log-Likelihood of the models for the car data set

actual rail users. As a di�erence from the models with the Danish data set,

we have omitted the attributes ae and waiting, not present in this data

set. The log-likelihood of the four models are reported in Table 4, and the

detailed results are reported in Tables 12{15.

The multiplicative speci�cation does not outperform the additive one

for the �xed parameters model. Introducing random parameters in a panel

data speci�cation improves the log-likelihood of both models, the �t of

the multiplicative speci�cation being now clearly the best, although the

improvement is not as large as for the Danish data set.

Additive Multiplicative Di�erence

Fixed parameters -1668.070 -1676.032 -7.96

Random parameters -1595.092 -1568.607 26.49

Table 4: Log-likelihood for the Swiss VOT data set

4.3 Swissmetro

We illustrate the model with a data set collected for the analysis of a future

high speed train in Switzerland (Bierlaire et al., 2001). The alternatives

are

1. Regular train (TRAIN),

2. Swissmetro (SM), the future high speed train,
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3. Driving a car (CAR).

We specify a nested logit model with the following nesting structure.

TRAIN SM CAR

NESTA 1 0 1

NESTB 0 1 0

In the base model, the systematic parts Vi of the utilities are de�ned as

follows.

Alternatives

Param. TRAIN SM CAR

B TRAIN TIME travel time 0 0

B SM TIME 0 travel time 0

B CAR TIME 0 0 travel time

B HEADWAY frequency frequency 0

B COST travel cost travel cost travel cost

We derive 16 variants of this model, each of them including or not the

following features:

1. Alternative Speci�c Socio-economic Characteristics (ASSEC): we add

the following terms to the utility of alternatives SM and CAR:

B GA i railwayPass + B MALE i male + B PURP i commuter

where i =SM,CAR;

2. Error component (EC): a normally distributed error component is

added to each of the three alternatives, with an alternative speci�c

standard error.

3. Segmented travel time coe�cient (STTC): the coe�cient of travel

time varies with socio-economic characteristics:

B SEGMENT TIME i = -exp(B i TIME + B GA i railwayPass +

B MALE i male + B PURP i commuter)

13



where i=fTRAIN,SM,CARg.

4. Random coe�cient (RC): the coe�cients for travel time and headway

are distributed, with a lognormal distribution.

For each variant, we have estimated both an additive and a multiplica-

tive speci�cation, using the panel dimension of the data when applicable.

The results are reported in Table 5.

RC EC STTC ASSEC Additive Multiplicative Di�erence

1 0 0 0 0 -5188.6 -4988.6 200.0

2 0 0 0 1 -4839.5 -4796.6 42.9

3 0 0 1 0 -4761.8 -4745.8 16.0

4 0 1 0 0 -3851.6 -3599.8 251.8

5 1 0 0 0 -3627.2 -3614.4 12.8

6 0 0 1 1 -4700.1 -4715.5 -15.4

7 0 1 0 1 -3688.5 -3532.6 155.9

8 0 1 1 0 -3574.8 -3872.1 -297.3

9 1 0 0 1 -3543.0 -3532.4 10.6

10 1 0 1 0 -3513.3 -3528.8 -15.5

11 1 1 0 0 -3617.4 -3590.0 27.3

12 0 1 1 1 -3545.4 -3508.1 37.2

13 1 0 1 1 -3497.2 -3519.6 -22.5

14 1 1 0 1 -3515.1 -3514.0 1.1

15 1 1 1 0 -3488.2 -3514.5 -26.2

16 1 1 1 1 -3465.9 -3497.2 -31.3

Table 5: Results for the 16 variants on the Swissmetro data

We observe that for simple models (1-5) the multiplicative speci�cation

outperforms the additive one. However, this is not necessarily true for

more complex models. Overall, the multiplicative speci�cation performs

better on 10 variants out of 16. We learn from this example that the

multiplicative (as expected) is not universally better, and should not be

systematically preferred. However, it is de�nitely worth testing it, as it has

a great potential for explaining the data better.
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5 Concluding remarks

It seems to be a common perception that discrete choice models based on

random utility maximization must have additive independent error terms.

This is not the case, as we have discussed in this paper. It may happen that

for some data and some speci�cation of the systematic utility, it is more

appropriate to assume a multiplicative form. This is particularly relevant

when it is desired to allow the scale of the error term to be random with

unspeci�ed distribution.

The strategy of taking logs is very natural in this situation. It allows us

to derive an equivalent formulation with additive independent error terms.

Although this transformation introduces non-linearity into the systematic

part of the conditional indirect utility, this can be handled using available

software.

A priori it is not possible to know for any given dataset whether the

multiplicative formulation will provide a better �t, although we expect

the multiplicative speci�cation to perform better in the presence of scale

heteroscedasticity. This may happen in particular when data has large

variation (e.g. short and long trips in the same model). We have reported

some cases where the additive speci�cation is still best. However, in the

majority of the cases that we have looked at, we �nd that the multiplicative

formulation �ts the data better. In quite a few cases, the improvement

is very large, sometimes even larger than the improvement gained from

allowing for unobserved heterogeneity. We emphasize that we are reporting

the complete list of results that we have obtained, whatever they turned out

to be. The choice of applications was motivated only by data availability.

Now, selecting the appropriate model depends also on other considerations,

including the following.

Consistency with the theory As discussed in the introduction, both the

additive and the multiplicative formulations are consistent with RUM.

Tractability In terms of computational and analytical tractability, the

additive speci�cation is clearly simpler.

Elasticities, trade-offs They are almost the same for both speci�cation.
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Welfare calculus The elegant logsum result of MNL, and the generaliza-

tion to MEV (McFadden, 1978 and Ben-Akiva and Lerman, 1985),

does no carry over to the multiplicative speci�cation.

Our conclusion is that multiplicative model formulation should be part

of the toolbox of discrete choice analysts, alongside the techniques that we

have for representing observed and unobserved heterogeneity.

A natural extension of the multiplicative approach is to generalize the

two speci�cations (additive and multiplicative) using a Box-Cox transform

with parameter γ > 0, that is a model where

�Vi = −λ
(−Vi)

γ − 1

γ
+ ci

in (4). Indeed, γ = 1 provides the classical additive error model, γ → 0

provides (5) that is, the multiplicative error model, while other values of

γ provide new models. Not only do these new models bring an additional

level of complexity, but they do also not address the issue of the scale.

Consequently, we consider them out of the scope of this paper. Finally,

we note that this general formulation can be used to test the nested hy-

potheses that the model is additive or multiplicative, although care must

be exercized with the latter hypothesis as it involves testing against the

value γ = 0 which lies on the boundary of the parameter space.
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A Annex: parameter estimates for the Dan-

ish Value of Time data

Robust

Variable Coe�. Asympt.

number Description estimate std. error t-stat p-value

1 ae -2.00 0.211 -9.46 0.00

2 changes -36.1 6.89 -5.23 0.00

3 headway -0.656 0.0754 -8.71 0.00

4 in-veh. time -1.55 0.159 -9.76 0.00

5 waiting time -1.68 0.770 -2.18 0.03

6 λ 0.0141 0.00144 9.82 0.00

Number of observations = 3455

L(0) = −2394.824

L(β̂) = −1970.846

−2[L(0) − L(β̂)] = 847.954

ρ2 = 0.177

�ρ2 = 0.175

Table 6: Model with �xed parameters and additive error terms
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Robust

Variable Coe�. Asympt.

number Description estimate std. error t-stat p-value

1 ae -0.672 0.0605 -11.11 0.00

2 changes -5.22 1.54 -3.40 0.00

3 headway -0.224 0.0213 -10.53 0.00

4 in-veh. time -0.782 0.0706 -11.07 0.00

5 waiting time -1.06 0.206 -5.14 0.00

6 λ 5.37 0.236 22.74 0.00

Number of observations = 3455

L(0) = −2394.824

L(β̂) = −1799.086

−2[L(0) − L(β̂)] = 1191.476

ρ2 = 0.249

�ρ2 = 0.246

Table 7: Model with �xed parameters and multiplicative error terms
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Robust

Variable Coe�. Asympt.

number Description estimate std. error t-stat p-value

1 ae 0.0639 0.357 0.18 0.86

2 changes 2.88 0.373 7.73 0.00

3 headway -0.999 0.193 -5.17 0.00

4 waiting time -0.274 0.433 -0.63 0.53

5 scale (mean) 0.331 0.178 1.86 0.06

6 scale (stderr) 0.934 0.130 7.19 0.00

7 λ 0.0187 0.00301 6.20 0.00

Number of observations = 3455

Number of individuals = 523

Number of draws for SMLE = 1000

L(0) = −2394.824

L(β̂) = −1925.467

−2[L(0) − L(β̂)] = 938.713

ρ2 = 0.196

�ρ2 = 0.193

Table 8: Model unobserved heterogeneity | additive error terms
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Robust

Variable Coe�. Asympt.

number Description estimate std. error t-stat p-value

1 ae 0.0424 0.0946 0.45 0.65

2 changes 2.24 0.239 9.38 0.00

3 headway -1.03 0.0983 -10.48 0.00

4 waiting time 0.355 0.207 1.72 0.09

5 scale (mean) -0.252 0.106 -2.38 0.02

6 scale (stderr) 1.49 0.123 12.04 0.00

7 λ 7.04 0.370 19.02 0.00

Number of observations = 3455

Number of individuals = 523

Number of draws for SMLE = 1000

L(0) = −2394.824

L(β̂) = −1700.060

−2[L(0) − L(β̂)] = 1389.528

ρ2 = 0.290

�ρ2 = 0.287

Table 9: Model with unobserved heterogeneity |multiplicative error terms
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Robust

Variable Coe�. Asympt.

number Description estimate std. error t-stat p-value

1 ae 0.0863 0.345 0.25 0.80

2 changes 2.91 0.387 7.51 0.00

3 headway -0.955 0.190 -5.02 0.00

4 waiting time -0.285 0.441 -0.65 0.52

5 high income 0.0744 0.321 0.23 0.82

6 log(income) 0.603 0.182 3.31 0.00

7 low income 0.420 0.321 1.31 0.19

8 missing income -0.542 0.315 -1.72 0.09

9 scale (mean) 0.341 0.170 2.01 0.04

10 scale (stderr) 0.845 0.0680 12.42 0.00

11 λ 0.0193 0.00315 6.12 0.00

Number of observations = 3455

Number of individuals = 523

Number of draws for SMLE = 1000

L(0) = −2394.824

L(β̂) = −1914.180

−2[L(0) − L(β̂)] = 961.286

ρ2 = 0.201

�ρ2 = 0.196

Table 10: Model with observed and unobserved heterogeneity | additive

error terms
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Robust

Variable Coe�. Asympt.

number Description estimate std. error t-stat p-value

1 ae 0.0366 0.0925 0.40 0.69

2 changes 2.22 0.239 9.32 0.00

3 headway -1.02 0.0962 -10.59 0.00

4 waiting time 0.366 0.199 1.84 0.07

5 high income 0.577 0.704 0.82 0.41

6 log(income) 1.21 0.272 4.47 0.00

7 low income 0.770 0.418 1.84 0.07

8 missing income -0.798 0.371 -2.15 0.03

9 scale (mean) -0.150 0.111 -1.34 0.18

10 scale (stderr) 1.28 0.108 11.87 0.00

11 λ 7.13 0.371 19.25 0.00

Number of observations = 3455

Number of individuals = 523

Number of draws for SMLE = 1000

L(0) = −2394.824

L(β̂) = −1675.412

−2[L(0) − L(β̂)] = 1438.822

ρ2 = 0.300

�ρ2 = 0.296

Table 11: Model with observed and unobserved heterogeneity | multi-

plicative error terms
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B Annex: parameter estimates for the Swiss

Value of Time data

Robust

Variable Coe�. Asympt.

number Description estimate std. error t-stat p-value

1 travel time -0.453 0.0383 -11.82 0.00

2 changes -8.74 1.22 -7.17 0.00

3 headway -0.284 0.0406 -7.01 0.00

4 λ 0.132 0.0188 7.02 0.00

Number of observations = 3501

Number of individuals = 389

L(0) = −2426.708

L(β̂) = −1668.070

−2[L(0) − L(β̂)] = 1517.276

ρ2 = 0.313

�ρ2 = 0.311

Table 12: Model with �xed parameters and additive error terms
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Robust

Variable Coe�. Asympt.

number Description estimate std. error t-stat p-value

1 travel time -0.339 0.0285 -11.89 0.00

2 changes -3.91 0.789 -4.95 0.00

3 headway -0.140 0.0287 -4.90 0.00

4 λ 8.55 0.907 9.42 0.00

Number of observations = 3501

Number of individuals = 389

L(0) = −2426.708

L(β̂) = −1676.032

−2[L(0) − L(β̂)] = 1501.353

ρ2 = 0.309

�ρ2 = 0.308

Table 13: Model with �xed parameters and multiplicative error terms

Robust

Variable Coe�. Asympt.

number Description estimate std. error t-stat p-value

1 scale (mean) -0.763 0.111 -6.86 0.00

2 scale (stderr) 0.668 0.0582 11.48 0.00

3 changes 2.67 0.108 24.78 0.00

4 headway -0.798 0.126 -6.34 0.00

5 λ 0.202 0.0367 -5.51 0.00

Number of observations = 3501

Number of individuals = 389

Number of draws for SMLE = 1000

L(0) = −2426.708

L(β̂) = −1595.092

−2[L(0) − L(β̂)] = 1663.233

ρ2 = 0.343

�ρ2 = 0.341

Table 14: Model with unobserved heterogeneity | additive error terms
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Robust

Variable Coe�. Asympt.

number Description estimate std. error t-stat p-value

1 scale (mean) -0.956 0.119 -8.04 0.00

2 scale (stderr) -1.18 0.140 -8.39 0.00

3 changes 2.44 0.116 20.93 0.00

4 headway -0.856 0.124 -6.90 0.00

5 λ 11.5 1.13 10.16 0.00

Number of observations = 3501

Number of individuals = 389

Number of draws for SMLE = 1000

L(0) = −2426.708

L(β̂) = −1568.607

−2[L(0) − L(β̂)] = 1716.202

ρ2 = 0.354

�ρ2 = 0.352

Table 15: Model with unobserved heterogeneity | multiplicative error

terms
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C Derivation of the expected maximum util-

ity

From (7), the maximum utility is

U∗ = max
i∈C

Vie
−

ξi+ci
λ , (18)

where ξi is de�ned by (3). Note that U∗ ≤ 0. We assume that (ξ1, . . . , ξJ)

follows a MEV distribution (8). The CDF of U∗ is obtained as follows, for

t ≤ 0:
F(t) = Pr(U∗ ≤ t) = Pr(Ui ≤ t, ∀i)

= Pr(ξi ≤ −λ ln(tV−1
i ) − ci, ∀i)

= exp(−G((tV−1
1 )λec1, . . . , (tV−1

J )λecJ)

= exp(−tσλG(ec1−λ lnV1, . . . , ec1−λ lnVJ)

= exp(−tσλG∗)

using the σ-homogeneity of G and the de�nition (10) of G∗. The CDF can

be inverted as

F−1(x) =

(
−
ln x

G∗

) 1
σλ

= (G∗)− 1
σλ

(
ln

(
1

x

)) 1
σλ

. (19)

Denoting the pdf of U∗ by f(t) = F ′(t) , we have

E[U∗] =

∫ 0

−∞ tf(t)dt =

∫ 1

0

F−1(x)dx = (G∗)− 1
σλ

∫ 1

0

(
ln

(
1

x

)) 1
σλ

dx

which leads to (9).
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