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Abstract

Defining choice sets is necessary when modeling route choice be-
havior using random utility models. Since the number of paths be-
tween a given origin-destination pair may be intractable, path enu-
meration algorithms are used for this purpose.

In this paper, we present a new point of view on choice set genera-
tion. In contrast to existing approaches, we hypothesize that all paths
connecting the origin to the destination belong to the “true” choice
set. In this context, we view stochastic path enumeration algorithms
as importance sampling of alternatives. For this type of sampling
protocol it is necessary to correct the path utilities in order to obtain
unbiased parameter estimates. We propose a stochastic path enumer-
ation algorithm that makes the definition of such sampling correction
possible. Some preliminary numerical results are presented.

1 Introduction

Path enumeration algorithms play an important role in route choice model-
ing with random utility models since choice sets are in general unobservable.
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Due to the often very large number of paths, estimating a model based on
all elementary paths connecting a given origin-destination (OD) pair may
not be possible. It is therefore necessary to enumerate a limited set of
paths.

Recently, several researches have turned their attention to choice set
generation and its effects on route choice model estimation results (e.g.
Bekhor and Prato, 2006, Bekhor et al., 2006 and van Nes et al., 2006).
Various heuristics have been proposed in the literature with the objective
to generate the set of paths a traveler actually considers. This set should
include all attractive paths but no unreasonable paths. The modeler de-
fines attractiveness and reasonableness based on observed route choices and
personal judgment.

In this paper we present a new point of view on path enumeration for
route choice modeling. In contrast to existing literature, we hypothesize
that the true choice set for a given OD pair is the universal one. That is,
the set of all feasible paths. The objective of the choice set generation is
to define choice sets such that the model estimation and prediction results
are unbiased. For this purpose we consider stochastic path enumeration
algorithms as importance sampling approaches. In order to obtain unbi-
ased results, it is necessary to correct for this type of sampling protocol
when estimating and applying route choice models. We propose a gen-
eral stochastic choice set generation approach and a specific algorithm that
allows the computation of sampling correction.

In the following section we present a review of existing choice set genera-
tion approaches and in Section 3 an overview of sampling of alternatives. In
particular, we derive the correction for the sampling protocol correspond-
ing to the proposed algorithm (described in Section 4). We give some
preliminary numerical results in Section 5 before presenting conclusions
and discussing topics for future work.

2 Choice Set Generation Approaches

For a given OD pair the number feasible paths (including paths with cycles)
is unbounded. It is therefore always necessary to constrain route choice



Figure 1: Illustration of path sets for a given OD pair

models to a limited number of alternatives. We illustrate in Figure 1 the
different sets of paths for a given OD pair. In general only the set of
elementary paths U is considered which is a subset of the unbounded
universal set /. The number of elementary paths is tractable but in real
networks it is often too large to be enumerated. Existing path enumeration
algorithms for route choice modeling generates a subset of elementary paths
here denoted M¢g. The approach proposed in this paper produces a subset
M that may contain paths with cycles.

Choice sets can be defined based on enumerated paths in two ways.
Either, a deterministic way including all enumerated paths. Or, in a
probabilistic way using the two-stage choice model proposed by Manski
(1977) (see also Swait and Ben-Akiva, 1987, Ben-Akiva and Boccara, 1995,
Morikawa, 1996 and Cascetta and Papola, 2001). This paper focuses on
path enumeration and for the sake of simplicity we define choice sets de-
terministically.

Many heuristics for enumerating paths have been proposed in the liter-
ature. These can be divided into deterministic and stochastic approaches.
The first category refers to algorithms always generating the same set of
paths for a given OD pair. Examples of such approaches are link elimination
(Azevedo et al., 1993), constrained k-shortest paths (e.g. van der Zijpp and
Catalano, 2005), branch-and-bound (Friedrich et al., 2001, Hoogendoorn-
Lanser, 2005 and Prato and Bekhor, 2006), labeled paths (Ben-Akiva et al.,



1984) and link penalty (de la Barra et al., 1993).

Two stochastic approaches have been proposed in the literature. Ram-
ming (2001) used a simulation method that produces alternative paths
by drawing link impedances from different probability distributions. The
shortest path according to the randomly distributed impedance is cal-
culated and introduced in the choice set. Recently, Bovy and Fiorenzo-
Catalano (2006) proposed the so-called doubly stochastic choice set gener-
ation approach. Paths are enumerated by repeatedly computing shortest
paths where the generalized cost function has both random parameters
and random attributes. The algorithm has been applied to a multi-modal
network.

3 Importance Sampling

The multinomial logit (MNL) model can be consistently estimated on a
subset of alternatives. The probability that an individual n chooses an
alternative i is then conditional on the choice set C,, defined by the modeler.
This conditional probability is
eVintn q(Cn i)
P(ilC,) = (1)
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and includes an alternative specific term, In q(C,lj), correcting for sam-
pling bias. This correction term is based on the probability of sampling C,,
given that j is the chosen alternative, q(C.|j). See for example Ben-Akiva
and Lerman (1985) or Train (2003) for detailed discussions on sampling of
alternatives.

If all alternatives have equal selection probabilities, the estimation on
the subset is done in the same way as the estimation on the full set of al-
ternatives. Namely, q(C,/i) is then equal to q(Cn|j) (uniform conditioning
property, McFadden, 1978) and the correction for sampling bias cancels out
in Equation (1). This simple random sampling protocol is however difficult
to use in a path enumeration context. First of all, we are unaware of any



algorithm generating paths with equal probabilities without first enumer-
ating the full set of paths. Second, due to the large (possibly intractable)
number of paths, a simple random sample is likely to contain many alterna-
tives that a traveler would never consider. Comparing the chosen path to a
set of highly unattractive alternatives would not provide much information
on the traveler’s route choice.

Importance sampling is a more efficient scheme for path enumeration
since it takes expected choice probabilities into account. Paths which are
expected to have high choice probabilities have higher sampling probabil-
ities than paths with lower expected choice probabilities. However, for
this type of sampling protocol the correction terms in Equation (1) do not
cancel out and q(C.lj) V j € C,, must be defined. Note that if alterna-
tive specific constants are estimated, all parameter estimates except the
constants would be unbiased even if the correction is not included in the
utilities. In a route choice context it is in general not possible to estimate
alternative specific constants and the correction for sampling is therefore
essential.

We define a sampling protocol in the context of path enumeration as
follows: a set C, is generated by drawing R paths with replacement from
the universal set of paths ¢/ and adding the chosen path to it (ICNn! =R+1).
Each path j € U/ has sampling probability q(j) and Z]’eu q(j) ~ 1. This
approximation of the sum is based on the assumption that paths with cycles
have very small probabilities.

The outcome of this protocol is (E,Ez, . ,E]) where Ej is the number
of times alternative j was drawn (}_;,, k; = R).

Following Ben-Akiva (1993) we derive the formulation of q(C,lj) for
this sampling protocol. The probability of an outcome is given by the
multinomial distribution

~ ~ ~ R! -
Plki, ko, ..., k) = —— [ [a())". (2)
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The number of times alternative j appears in CNTl is k; = i]- + djc, where ¢
denotes the index of the chosen alternative and ;. equals one if j = ¢ and
zero otherwise. Let C,, be the set containing all alternatives corresponding



to the R draws (C,, ={j € U | k; > 0}). The size of C, ranges from one to
R+ 1; |Cn| = 1 if only duplicates of the chosen alternative were drawn and
|C..] = R+1 if the chosen alternative was not drawn nor were any duplicates.

Using Equation (2), the probability of drawing Cn given the chosen
alternative i can be defined as

ki
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where K¢, = H;E%;k;' | q(j)¥. We can now define the probability that

an individual chooses alternative i given the set of draws CNn as

evin —Hn(%)
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where K¢, in Equation 3 cancels out since it is constant for all alternatives
in C,,.

In the following section we first present a general stochastic path enu-
meration approach that can be combined with various algorithms. Second
we propose a biased random walk algorithm that allows for straightforward
computation of path selection probabilities.

4 A Stochastic Path Enumeration Approach

This general stochastic approach for enumerating paths is based on the
concept of subpaths where a subpath is a sequence of links. We define the
probability of a subpath based on its distance to the shortest path. More
precisely, its probability is defined by the double bounded Kumaraswamy
distribution (Kumaraswamy, 1980) whose cumulative distribution function
is F(x¢la,b) =1 — (1 —x%)° for x; € [0,1]. a and b are shape parameters
and for a given subpath s with source node v and sink node w, x, is defined

as
SP(o,d)

X = SPlo,w) + C(s) + SP(w, d)’
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Figure 2: Kumaraswamy distribution - cumulative distribution function

where C(s) is the cost of s, o the origin, d the destination and SP(vq,v;)
is the cost of the shortest path between nodes vy and v,. Any generalized
cost can be used in this context. Note that x; equals one if subpath s is
on the shortest path and x; — 0 as C; — oo. In Figure 2 we show the
cumulative distribution function for different values of a when b = 1. The
probabilities assigned to the subpaths can be controlled by the definition
of the distribution parameters. High values of a when b = 1 yield low
probabilities for subpaths with high cost. Low values of a have the opposite
effect.

This is a flexible approach that can be used in various path enumeration
algorithms including those presented in the literature. For example, in an
algorithm similar to the link elimination approach but where the choice of
subpaths (or links) to be eliminated is stochastic. Another example is a
gateway algorithm, where a subpath is selected anywhere in the network,
using the probability distribution described above. A generated path is
composed of three segments: the shortest path from the origin to the source
node of the subpath, the subpath itself, and the shortest path from the sink



node of the subpath to the destination. This gateway algorithm was used
by Bierlaire et al. (2006) (see also Vrtic et al., 2006) for modeling long
distance route choice behavior in Switzerland.

In this paper, we use a biased random walk algorithm that is described
in the following section.

4.1 Biased Random Walk Algorithm

Starting from the origin, this algorithm selects a link using the probability
distribution described previously. Another link starting at the sink node
of the first one is then selected and this process is applied until the desti-
nation is reached and a complete path has been generated. The algorithm
biases the random walk towards the shortest path in a way controlled by
the parameters of the distribution. If a uniform distribution (special case
of Kumaraswamy distribution with a = 0 and b = 1) is used then the al-
gorithm corresponds to a simple random walk. Note however that a simple
random walk does not generate a simple random sample of paths.

This algorithm has some nice properties that are important for an im-
portance sampling approach. First, the path selection probabilities can be
computed. The probability q(j) of generating a path j is the probability of
selecting the ordered sequence of links T;

a(G) =] Ja(tié, a,b) (5)

tet

where { denotes a link, v its source node and &, the set of outgoing links
from v. In accordance with the approach presented previously q({|€,, a, b)
is defined by the Kumaraswamy distribution using

SP(v, d)
C(¢) + SP(w,d)’

Xe =

A second property of this algorithm is that any path in ¢/ can potentially
be generated, including paths with cycles.



5 Preliminary Numerical Results

In order to evaluate the effects of sampling correction we estimate models
on synthetic data from two toy networks. Paths in the first network can
have no overlap nor cycles. The second network is more complex and
observations are generated using a probit model.

5.1 Network with Non-correlated Elementary Paths

Consider a network composed of 40 oriented links connecting two nodes
(origin and destination). The universal choice set includes consequently 40
non correlated elementary paths. The links have different lengths (L) and
some have a speed bump (SB). We associate a utility U; = BrL;+BssSBj+¢;
with each path j, where 3;, = —0.6, Bsg = —0.3 and ¢; is distributed
Gumbel (location parameter set to 0 and scale to 1). 500 observations have
been generated by associating a choice with the highest utility for each set
of draws of ¢; V j € . The true model is hence MNL for this example.

We generate a set of paths for each observation using the biased random
walk algorithm. The generalized cost function is the sum of length and
number of speed bumps. Moreover, we make 40 draws using distribution
parameters a = 2 and b = 1 which results in choice sets with 11.9 paths
on average (maximum 18 and minimum 7).

The estimation results are reported in Table 1. We provide scaled co-
efficient estimates where the length coefficient has been normalized to its
true value, EL = B = —0.6. The scaled speed bump coefficient is signifi-
cantly different from its true value —0.3 (t-test statistic 3.67) in the model
without correction but this is not the case for the model with correction.
This example confirms the theory on sampling of alternatives for path enu-
meration. Namely, a correction is necessary in order to obtain unbiased
estimation results.

5.2 Network with Correlated Paths

The network is shown in Figure 3 where the origin and destination nodes
are marked “O” and “D” respectively. All links have the length of one,



MNL MNL
Sampling correction | without with
BL -0.203 -0.286
Scaled estimate -0.600 -0.600
Robust std. 0.0193 0.019
Robust t-test -10.53 -15.01
Rss -0.0194 -0.143
Scaled estimate -0.0573 -0.300
Robust std. 0.0662 0.0661
Robust t-test -0.29 -2.17
Null log-likelihood | -1069.453 | -1633.501
Final log-likelihood -788.42 -759.848
Adjusted p? 0.261 0.288

BIOGEME (Bierlaire, 2005, Bierlaire, 2003)
has been used for all model estimations.

Table 1: Estimation Results for MNL Example

except the link in the upper left corner which has length three and the one
in the lower right corner which has length two. Moreover, the links marked
with SB have a speed bump. The network contains cycles, non elementary
paths can therefore be enumerated with the biased random walk algorithm.

Path utilities are assumed to be link-additive and the utility for a link
Lis Uy = BrLy + BseSB¢ + 0v/Levy with B, = —0.6 and Bgg = —0.4. v,
is distributed standard normal and the variance is assumed proportional
to link length with a parameter o fixed to 0.8. In this case, observations
can be generated according to a probit model (Burrell, 1968) by repeatedly
computing the shortest path (minimizing —U,) for each realization of the
link utilities. Note that negative cycles are possible since U, can be positive.
The shortest path algorithm cannot converge in the presence of negative
cycles and these realizations of the link utilities are therefore ignored. 382
observations were generated using 500 realizations of the network.

We define a choice set for each observation in the same way as for the
previous example but using 30 draws. The size of the choice sets ranges
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Figure 3: Example Network

from 7 to 19 paths with an average of 13.5 paths.

We estimate MNL and path size logit (PSL) models (Ben-Akiva and
Ramming, 1998, Ben-Akiva and Bierlaire, 2003, Frejinger and Bierlaire,
2007) with and without sampling correction. The results are reported in
Table 2. The scaled Bsg is significantly different from the true value (—0.4)
for both MNL models (t-test statistic of 6.18 and 6.28 respectively). A pos-
sible explanation is that the correlation is ignored in the MNL which biases
the results. On the contrary, the scaled ESB is not significantly different
from its true value for both PSL models. It seems that the path size term
corrects for both sampling and correlation in this case. It is interesting to
compare the standard deviation of the coefficient estimates between the two
models. The estimates in the model with correction have smaller standard
deviation. This supports the argument that the sampling bias is absorbed
by the coefficients even thought this it does not significantly change the
results for this example. Finally, note that BL is not significantly different
from —0.6 for the models without correction. This is a coincidence since
the scales of logit and probit models are different.

It is difficult to isolate the effects of sampling correction on the estima-
tion results in the presence of correlation among alternatives. The reason is
that we cannot estimate a model, such as probit, that is flexible enough to
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capture the full correlation structure. The results are therefore necessarily
biased since the PSL model approximates a nested logit model.

MNL MNL PSL PSL
Sampling correction | without with without with
BL -0.627 -0.978 -0.619 -0.969
Scaled estimate -0.600 -0.600 -0.600 -0.600
Robust std. 0.0397 0.032 0.0407 0.0358
Robust t-test -15.79 -30.57 -15.22 -27.04
Bss -0.0822 | -0.0801 -0.347 -0.461
Scaled estimate -0.0787 -0.0491 -0.336 -0.285
Robust std. 0.052 0.0559 0.182 0.158
Robust t-test -1.58 -1.43 -1.90 -2.92
RBrs 1.17 1.74
Scaled estimate 1.13 1.08
Robust std. 0.788 0.705
Robust t-test 1.49 2.47
Null log-likelihood -988.63 | -2769.959 || -988.63 | -2769.959
Final log-likelihood | -676.111 | -653.396 || -674.481 | -649.268
Adjusted p? 0.314 0.337 0.315 0.340
BIOGEME (Bierlaire, 2005, Bierlaire, 2003) has been used for
all model estimations.

Table 2: Estimation Results for Example with Correlated Paths

6 Conclusions and Future Work

Defining choice sets is necessary for modeling route choice behavior with
random utility models. In this paper we propose a new point of view on
path enumeration. In contrast to existing literature, we hypothesize that all
paths belong to the true choice set and view stochastic path generation as
an importance sampling approach. In order to obtain unbiased parameter
estimates it is necessary to correct path utilities for sampling bias.

12



We propose a stochastic path enumeration algorithm that allows the
computation of path selection probabilities and sampling correction. Pre-
liminary numerical results on two small networks are presented. This is
ongoing research and several issues and questions remain to be investi-
gated.
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