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ABSTRACT

The application of methods drawn from nonlinear and stochastic dynamics to the

analysis of cardiovascular time series are applied with particular interests in the

identification of changes associated with aging. Scale invariant and scale depen-

dent approaches are studied. Using signals measured from healthy adults of all

age (16-82 years, 71 men and 47 women), four different approaches to investigate

cardiovascular aging are considered: (a) complexity and fractal analysis of heart

rate variability (HRV); (b) spectral analysis of HRV using the wavelet transform;

(c) spectral analysis of blood flow signals recorded with iontophoresis, using the

wavelet transform; and (d) cardiorespiratory synchronization analysis. In (a) de-

trended fluctuation analysis (DFA) comprises a modified root-mean-square (rms)

analysis of a random walk and has been developed to detect the fractal (self-

similar) correlation property of non-stationary time series. Approaches (b), (c)

and (d) focus on nonlinear oscillatory dynamics. In this approach non-stationarity

is perceived as time- variability of oscillatory components. The cardiovascular

system is perceived as being composed of many nonlinear oscillators of different

physiological origin, interacting with each other and subject to noise. The under-

standing of coupled nonlinear oscillators has progressed rapidly in recent years,

especially after the phase description was established. We show how these ideas

can be applied to the cardiovascular system. As a first step in studies (b) and (c),

we use wavelet analysis to separate the frequency components of nonlinear oscilla-

tions of different physiological origin into six intervals. We discuss the age-related

changes in each of these frequency components and show how there changes are

related to the results of the DFA. As the second step, we study the interaction

between cardiac (I) and respiratory (II) systems, by the application of synchroniza-

tion analysis. Finally, we present an overview of cardiovascular aging in terms of

nonlinear dynamics and identify the further problems that remain to be tackled.
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1. INTRODUCTION

In this thesis, methods from nonlinear science are used to identify changes in car-

diovascular signals associated with the process of aging. This chapter sets the

scene by considering the relevance of coupled oscillators to the cardiovascular sys-

tem and by giving an overview of the complexity and spectral analysis of heart rate,

age-related physiological changes in the cardiovascular system and aging studies

with iontophoretic blood flow measurements. Chapter 2 gives a brief physiological

explanation of the cardiovascular system. Chapter 3 describes how the measure-

ments were made. The statistical tests are explained in Chapter 4. Phase dy-

namics is considered in chapter 5, together with a description of its relevance to

heart rate variability. Chapter 6 describes the application of complexity analysis to

heart rate and blood flow signals. Chapter 7 describes the problem to detect time

varying oscillatory components. Chapter 8 gives the results of cardiorespiratory

synchronization. Chapter 9 describes the correlation between different oscillatory

components in blood flow signals calculated by wavelet analysis in Chapter 7.

Finally in chapter 10 we summarize the results and draw conclusions.

1.1 Coupled nonlinear oscillators and the cardiovascular
system

Two major milestones marked the development of coupled nonlinear oscillators:

the introduction of the concept of entrainment within an ensemble of oscillators

by Winfree [157]; and its analysis by Kuramoto [73] using a phase model. After

Winfree had gone further into the theory of the geometry of biological time [158],

Kuramoto generalized the phase dynamics approach [74] by reducing the degrees

of freedom of the original dynamical system. For this to work, the original dy-

namics should be perturbed weakly by noise, with an external force or coupling to

dynamics with a limit-cycle orbit. The latter describes dissipative systems and the

form of the phase dynamics is not dependent on the form of the original model.
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Numerous researchers contributed to the development of the theory, and the ap-

proach was further generalized by Strogatz [142]. Because of its universality and

simplicity, phase dynamics can be applied quite generally to oscillatory phenom-

ena in dissipative systems. It was this body of work that subsequently motivated

the introduction of the theory of phase synchronization, facilitating studies of the

interactions between coupled nonlinear and chaotic oscillators [116].

Coupled oscillators have been investigated by many physicists because the

emergence of synchronization has similarities to phase transition phenomena, which

had traditionally been studied. This synchronization transition was analyzed by

the method of mean field theory in global coupled oscillators, in which one os-

cillator couples to all the other oscillators equally under a sine coupling function

(the Kuramoto model). The stability of the macroscopic oscillation (synchronized

solution) was then addressed by Croford and Strogatz [28], [29] and [141], and the

coupled function was extended by Sakaguchi [124]. Not only global coupling, but

also local coupling in which a given oscillator couples only to its nearest neighbors

and which is equivalent to the diffusion coupling in the continuous system, has

been studied extensively, eg. in the form of the Ginzburg-Landau equation [74].

An intermediate form of coupling between local and global, which is called non-

local coupling, was suggested by Kuramoto [75, 77]. The nonlocal coupling has a

finite coupling distance so that an oscillator can interact not only with its nearest

neighbors, but also with some other oscillators. It differs from global coupling

because an oscillator cannot in reality interact with all the others because of the

finite coupling distance. Compared to local and global coupling which have been

studied widely, nonlocal coupling has not been studied very much to date. But

this model is expected to be useful because we can change the coupling length in

the model. It is expected to encompass a lot of interesting phenomena which are

as yet undiscovered. Studies of nonlocal coupling include [76, 131, 144, 130, 78].

In the human cardiovascular system, there are many phenomena to which the

idea of the entrainment or synchronization of coupled oscillators can be applied.

One of them is the emergence of macroscopic oscillations from the individual mi-

croscopic oscillation of each cell with slightly different frequency by entrainment.

For example, it is well known [156] that the heart has pace-maker cells to which
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other cells are entrained. It is also reported that the initiation of vasomotion re-

quires the synchronization of Ca2+ release from the sarcoplasmic reticulum [113].

Another approach is to study the interaction of macroscopic oscillators of different

physiological origin. In the latter approach, coupled oscillators were proposed as

a possible description of the dynamics of the cardiovascular system [138] and syn-

chronization between cardiac and respiratory oscillations, and their mutual mod-

ulation, were examined with particular care [89, 126, 127, 136, 137, 67, 149, 151].

The emerging picture motivated additional studies, and several methods for analy-

sis of the direction of coupling among interacting oscillatory processes have recently

been proposed [129, 121, 122, 108]. The notion of phase dynamics can be useful not

only in terms of phase synchronization but also of phase-resetting [157]. The anni-

hilation of pacemaker activity in cardiac tissues was observed via phase-resetting

in [66], where current pulse was used to stimulate SA nodal pacemaker cells and

observed phase-resetting phenomena. If the timing and amplitude were appropri-

ate, the autonomous oscillatory activity stopped. There is also another study to

terminate spiral waves during cardiac fibrillation via shock-induced phase-resetting

[48]. The spiral waves rotating around the singularities in the heart, which is called

ventricular fibrillation, can lead to death because the heart cannot pump the blood

properly. In this way, phase dynamics can be applied successfully even to clinical

medicine.

1.2 Time-invariant complexity analysis of heart rate
variability (HRV)

The investigation of deterministic chaotic dynamics and, in particular, the in-

troduction of measures to quantify the complexity of fractal dynamics triggered

an avalanche of new studies of cardiovascular dynamics. H.E. Hurst introduced

the Hurst exponent to quantify a scaling property when he investigated problems

related to water storage in the Nile [59, 60]. Mandelbrot and Wallis examined

and elaborated the method futher in [93, 94, 95, 96, 97, 98, 99]. Feder gives an

excellent overview of the history, theory and applications, and adds some more

statistical experiments in [38]. Although the estimation of the Hurst exponent

was originally developed in hydrology, modern techniques for estimating the Hurst

exponent come from fractal mathematics. The mathematics and images derived



1. Introduction 4

from fractal geometry exploded into the world in the 1970s and 1980s. A fractal

object is composed of sub-units and sub-sub-units on multiple levels that resemble

the structure of the whole object (self-similarity) and it has a fractional dimension.

As for chaotic dynamics, it often has a strange attractor which is characterized

by fractal dimensionality D [100]. This dimension of a chaotic system is one of

the ways to measure complexity. The pioneering algorithm by Grassberger and

Proccacia was introduced to calculate the ‘strangeness’ of attractors in a easier

way [45] and motivated a large number of applications. Another way to measure

the complexity is based on the entropy and was also proposed by Grassberger

and Proccacia [47]. The approximate dimension and approximate entropy were

proposed by Kalpan et al [69]. Then chaotic behavior was proposed as a possible

scenario [10, 117] to explain the dynamics of cardiac signals. Several methods,

based on statistical physics were proposed. Scaling properties [63, 3, 54, 8, 16],

multifractal properties [64, 4], and the 1/f spectra [72, 110, 65] of heart rate

variability (HRV), were all discussed.

On the other hand, the heart rate has been known to have characteristics that

differ between healthy people and people with heart disease [43]. The heart rate

of healthy people is far from being a homeostatic constant state and has visually

apparent non-stationarity, whereas the heart rate with heart disease is associated

with the emergence of excessive regularity or uncorrelated randomness. A constant

heart rate was observed in coma as well [134]. These features are thought to be

related to fractal and nonlinear properties. To quantify the complexity of healthy

heart rate and detect the alterations with disease and aging is a major challenge

in physiology.

New methods have been developed to replace traditional methods which are

suitable only for stationary signals, such as power-spectrum and autocorrelation

analysis, and to quantify accurately ‘long-range’ correlation (see definitions in

section 6.3) in non-stationary signals: the detrended fluctuation analysis (DFA)

[111, 112] and the detrended moving average method (DMA) [24, 25, 26]. They

are also based on the idea of a fractal in nonlinear theory. The fractal concept is

extended to time series so that we can see the self-similar properties on different

time scales. The DFA is a method to quantify the fractal correlation in time series

by filtering out polynomial trends as explained in more detail in chapter 6. Then
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to avoid the assumption that the trend is polynomial, the DMA method was in-

troduced to estimate the correlation properties of non-stationary signals without

any assumption of trends, the probability distribution or other characteristics of

stochastic processes. These methods have been applied to financial [25], physio-

logical [34, 52, 53] and biological signals [105].

It has been suggested that the HRV of healthy subjects shows self-similar (scale-

invariant) fluctuations over a wide range of time scales, and that disease or aging

make HRV less complex (with higher regularity and predictability). Actually it

was reported that the complexity decreases with increasing age by using DFA in

some studies such as [114, 143]. The physiological background to the loss of com-

plexity with age has been studied extensively, yet it has not been fully elucidated.

However, a balance between two branches of the autonomic nervous system is

thought to attribute to the change of the complexity of heart rate [150].

In our study, we will confirm the previous results and extend them.

1.3 Spectral analysis of heart rate variability (HRV) and
aging

With the advent of computers, starting in the 1960s, it became possible to sample

physiological variables in real time and to store data for analysis. The resul-

tant time series (signals) immediately introduced a need for tools for studying the

dynamical properties of the underlying physiological processes. Because of the

complexity of the time series the tools developed for spectral analysis were applied

mainly with the aim of filtering out the noise, thereby reducing the complexity.

Various methods of linear filtering were introduced, as was also a fast algorithm

for calculation of the Fourier transform (now well known as the fast Fourier trans-

form, or FFT). Application of the FFT to the most studied cardiovascular signal,

the ECG, immediately showed that it possesses oscillatory components by Penaz

et al. [109]. In their pioneering work Hyndman et al. [61] pointed to the gener-

ally oscillatory nature of physiological control systems. Sayers [125] and Luczak

and Lauring [90] also did initiative work for rhythms in beat-to-beat heart rate

signals. The spectral analysis of heart rate variability (HRV) was introduced by

Akselrod et al. in 1981 [2] as a noninvasive means to evaluate quantitatively the

beat-to-beat cardiovascular control. Besides the respiratory oscillations around
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0.3 Hz (HF), several peaks were observed in the spectrum analysis around 0.1

Hz (LF) and below 0.05 Hz (VLF) in the frequency domain [2] [61]. It has been

revealed in many papers that sympathetic and parasympathetic activities affect

these components. HF is considered to represent vagal control of heart rate and

LF is jointly contributed by both vagal and sympathetic nerves. The ratio LF/HF

is considered as sympathovagal balance by many researchers [79].

However, the majority of the studies were done by FFT and autoregressive

(AR) spectrum estimation [145]. By these methods, the frequency below 0.05 Hz

was not studied. To overcome this, the wavelet transform was used for spectrum

analysis by Lotrič [89], where age-related changes in the spectrum from 0.0095-0.6

Hz were studied. In this thesis, we add a new frequency interval from 0.005-0.0095

Hz to the previous study by Lotrič. Moreover the gender difference, which was

not mentioned there, will be discussed, as well as aging.

1.4 Structural and functional changes in the
cardiovascular system with age

Cardiovascular structure and function change with age, affecting the function of

the heart and other organs, and perhaps causing diseases.

One of the major changes with aging is the remodelling of large arteries, when

there is an increase in wall thickness and lumen enlargement. Arterial stiffening

is another hallmark of arterial aging [85]. The geometry and diastolic function of

the left ventriculum alters substantially with age [106].

Aging is also associated with alterations in the function of endothelium, the

layer of cells between the blood and vascular smooth muscle cells in blood vessels.

The endothelial control of vasomotor tone is altered with age and the alteration

impairs the vascular adaptation to changes in flow, especially those induced by

exercise and ischemia. Endothelium normally releases vasoactive substances such

as nitric oxide (NO). Its ability to release them is also altered by aging. The

impairment of endothelial dependent relaxation, which is especially mediated by

NO, is observed in aged subjects. Most studies indicate that aging is associated

with a decrease in NO production and release [23].
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1.5 Blood flow with iontophoresis and aging

Endothelium was once thought to serve just as lining for the blood vessels. However

after Furchgott and Zawadzki 1980 [40] found out that the relaxation evoked by

acetylcholine in the rabbit aorta is mediated only in the presence of endothelium,

numerous studies have demonstrated that endothelium plays an important role

in regulating local vascular tone by releasing vasodilating and vasoconstricting

substances.

Iontophoresis, which allows the transdermal delivery of polar drugs containing

vasoactive endothelial-dependent and endothelial-independent substances such as

acetylcholine (ACh) and sodium nitroprusside (SNP), has been widely used to

assess how endothelial vasodilation changes with essential hypertension, heart fail-

ure, arteriosclerosis and exercise, as well as aging. Blood flow was measured by

using laser Doppler flowmetry (LDF) at the sites into which ACh and SNP were

delivered by iontophoresis and then the blood flow signals were analyzed by wavelet

transform according to [139] This is a non-invasive measurement and one can ac-

quire data to make an assessment of the human cardiovascular system in vivo.

In earlier studies [80, 81, 82, 83, 84, 139], it was revealed that there are several

peaks in the frequency domain arising from different physiological origins such as

endothelial, neurogenic, myogenic, respiratory and cardiac components. In addi-

tion, a large number of studies were done to reveal the physiological origin of the

oscillatory components [132]. By this method of analysis, the endothelial func-

tion can be compared among different ages by looking into the frequency interval

corresponding to the endothelial activity.

In physiology, a lot of aging studies of blood flow by iontophoresis have been

done and some of them reported that endothelial-dependent vasodilation decreased

with increasing age [36, 42]. There are also some studies which observed gender

difference in endothelial dependent vasodilation [27, 1]. However wavelet analysis

and any oscillatory components analysis have not yet been combined with ion-

tophoresis studies of aging. Here we present novel results about aging by LDF

measurement of blood flow with both iontophoresis and wavelet analysis.



2. PHYSIOLOGICAL BACKGROUND

In this chapter, I briefly review the physiological background of the cardiovascular

system according to [156]

2.1 Electric activity in the cell

First, I describe the electrical activity in a single cell, which provides the basis for

the subsequent sections.

The predominant solutes in the extracellular fluid are sodium and chloride ions.

The intracellular fluid contains high concentrations of potassium ions and ionized

non-diffusible molecules, particularly proteins, with negatively charged side chains

and phosphate compounds. Electrical phenomena result from the distribution of

these charged particles and occur at the cell plasma membrane.

All cells under resting conditions have a potential difference across their plasma

membranes. The inside is negatively charged with respect to the outside. This

potential is the membrane resting potential.

By convention, the extracellular fluid is assigned a voltage zero and the polarity

of the membrane potential is stated in terms of the sign of the excess charge inside

the cell. The magnitude of the resting potential is from -5 to -100 mV depending

on the type of the cell. The resting potential is steady unless a movement of

charged particles occurs between the inside and the outside. The distribution of

charged particles inside and outside the cell is shown schematically in Fig. 2.1.

Transient changes in the membrane potential from the resting level produce

electrical signals. These signals occur in two forms, graded potential and ac-

tion potential. Graded potentials are important in producing signals over short

distances whereas action potentials produce signals over long distances. Graded

potentials arise in all the cells but action potentials do not. The latter needs some

specific function in the membrane. Here I refer only to the action potential since

it bears on the following sections.
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Fig. 2.1: The distribution of charged particles inside and outside a cell.

The term ‘depolarize’, ‘repolarize’, ‘hyperpolarize’ are used to describe the

direction of changes in the membrane potential relative to the resting potential

(Fig. 2.2). The membrane is said to be depolarized when its potential is less

negative than its resting state. Overshoot is a reversal of the membrane potential

polarity. When a membrane potential that has been depolarized returns toward

the resting value, it is said to be repolarizing. The membrane is hyperpolarizing

when the potential is more negative than the resting level.

r e s t i n g  p o t e n t i a l

m a m b r a n e
p o t e n t i a l
( m V ) 0

- 7 0
D e p o l a r i z i n g

O v e r s h o o t
R e p o l a r i z i n g

H y p e r p o l a r i z i n g

Fig. 2.2: The change of membrane potential.

Action potentials are rapid and large alterations in the membrane potential

(Fig. 2.3). They may occur at a rate of 1000 per second. Membranes which are

able to produce an action potential are called excitable membranes and the ability

to generate action potentials is called excitability. If a stimulus is not strong
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enough, an action potential does not occur. Only when the stimulus is strong

enough to make membrane the potential reach the threshold potential, it triggers

an action potential.

0

- 7 0 R e s t i n g  m e m b r a n e
p o t e n t i a l

T h r e s h o l d  p o t e n t i a l

T i m e ( m s ) 4

M e m b r a n e
 p o t e n t i a l
( m V )

A f t e r h y p e r p o l a r i z a t i o n

A c t i o n  p o t e n t i a l

Fig. 2.3: Action potential.

2.2 The circulatory system

The heart, the vascular system (blood vessels) and the blood are the three principle

components that make up the circulatory system. As reported by the British

physiologist William Harvey in 1628, the cardiovascular system forms a closed

loop, so that blood pumped out of the heart through one set of vessels returns to

the heart via a different set. The whole system can be divided into two circuits,

the pulmonary circulation and the systemic circulation (Fig. 2.4b). Both start and

end in the heart. Both the right and left sides of the heart have two chambers: the

upper chamber is the atrium and a lower chamber is the ventricle. There is flow

from the atrium to the ventricle on each side of the heart but there is no direct

flow between the two atria or two ventricles.

The pulmonary circulation includes blood pumped from the right ventricle

through the lungs and then to the left atrium. It is then pumped through the

systemic circulation from the left ventricle through all the organs and tissues of

the body except the lungs, and to the right atrium. In both circuits, the vessels

which carry blood away from the heart are called the arteries and those which

carry blood towards the heart are called veins.

In the systemic circuits, blood leaves the left ventricle via a single large artery,

the aorta (Fig. 2.4a). The arteries of the systemic circulation branch off the aorta,
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dividing into smaller vessels. The smallest arteries branch into arterioles, which

branch into a huge number of very small vessels, the capillaries. The capillaries

unite to form vessels with larger diameter, the venules and then veins. The flow

in arterioles, capillaries and venules is termed microcirculation.

In the pulmonary system, blood leaves the right ventricle via a single large

artery, the pulmonary trunk, which divides into two pulmonary arteries, one sup-

plying the right lung and the other the left. In the lungs, the arteries continue to

branch and form the capillaries that unite into venules and then veins. The blood

leaves the lungs via four pulmonary veins, which empty into the left atrium.

As blood flows through the lung capillaries, it picks up oxygen supplied to the

lungs by breathing. So the blood in the pulmonary veins, the left side of the heart,

and the systemic arteries has a higher oxygen content. And the blood of the other

side of the circulatory system has a lower oxygen content.

2.3 The heart

2.3.1 Anatomy

The heart is a muscular organ enclosed in a fibrous sac, the pericardium, and lo-

cated in the chest. The walls of the heart are composed primarily of cardiac muscle

cells and termed the myocardium. The inner surface of the cardiac chambers, as

well as the inner wall of the blood vessels, is lined by a thin layer of cells known

as endothelium.

The human heart is divided into right and left halves, each consisting of an

atrium and ventricle. Located between the atrium and ventricle in each half of

the heart are the atrioventricular (AV) valves, which permit blood to flow from

atrium to ventricle but not from ventricle to atrium (Fig. 2.4a).

The opening and closing of the AV valves is a passive process resulting from

pressure difference across the valves. When the blood pressure in an atrium is

greater than in the ventricle, the valve is pushed open and flow proceeds from

atrium to ventricle. In contrast, when a contracting ventricle achieves an internal

pressure greater than that in its connected atrium, the AV valve between them is

forced to close.

The openings of the right ventricle into the pulmonary trunk, and of the left

ventricle into the aorta, also contain valves, the pulmonary and aortic valves,
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Fig. 2.4: The systemic and pulmonary circulation.



2. Physiological Background 13

respectively (Fig. 2.4a). These valves permit blood to flow into the arteries during

ventricular contraction but prevent blood from moving in the opposite direction

during ventricular relaxation. They also act in a passive way like the AV valves

and they are either open or closed depending on the pressure differences across

them.

2.3.2 Heartbeat coordination

The heart is a dual pump in that the left and right sides of the heart pump blood

separately but simultaneously. The atria contracts first, followed almost immedi-

ately by the ventricles. Contraction of cardiac muscle is triggered by depolarization

of the plasma membrane. The gap junctions that connect myocardial cells allow

the action potential to spread from one cell to another. Thus, the excitation of one

cardiac cell results in the excitation of all the cardiac cells. This initial depolariza-

tion normally arises in a small group of cells, the sinoatrial (SA) node, located in

the right atrium near the entrance of the superior vena cava (Fig. 2.5). The action

potential spreads from the SA node throughout the atria and then throughout the

ventricles. So the SA node works as the pacemaker for the entire heart and its

discharge rate determines the heart rate, the number of times the heart contracts

per minute.

The action potential initiated in the SA node spreads throughout the right

atrium, and from the right atrium to the left atrium, so rapidly that the two atria

contract at the same time.

The spread of the action potential to the ventricles involves the rest of the

conducting system, a portion of which is called the atrioventricular (AV) node.

The AV node is located at the base of the right atrium (Fig. 2.5). The action

potential spreading through the right atrium causes depolarization of the AV node.

Because the propagation of the action potential through the AV node is relatively

slow, atrial contraction is completed before ventricular excitation occurs.

After leaving the AV node, the impulse enters the interventricular septum

between ventricles. This pathway has conducting-system fibers termed the bundle

of His (Fig. 2.5). The AV node and the bundle of His constitute the only electrical

link between the atria and ventricles.

Within the interventricular septum the bundle of His divides into right and
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left bundle branches, which leave the septum to enter the walls of both ventricles

(Fig. 2.5). These fibers contact with Purkinje fibers, large conducting cells that

rapidly distribute the impulse thorough much of the ventricles. Finally the Purk-

inje fibers make contact with ventricular myocardial cells, by which the impulse

spreads through the rest of the ventricles.

S i n o a t r i a l  
n o d e

A t r i o v e n t r i c u l a r
 n o d e B u n d l e  o f  H i s

L e f t  
b u n d l e  
b r a n c h

R i g h t
b u n d l e
b r a n c h

P u r k i n j e  f i b e r s

Fig. 2.5: Conducting system of the heart.

2.3.3 Mechanical event of the cardiac cycle

The cardiac cycle is divided into two major phases, both named for events in

the ventricles. The period of ventricular contraction and blood ejection is called

systole, and its alternates with a period of ventricular relaxation and blood filling,

diastole. At an average, one cardiac cycle lasts approximately 1.0 second, with

0.4 seconds in ventricular systole and 0.6 seconds in ventricular diastole.

Both systole and diastole can be subdivided into two periods. During the first

part of the systole, the ventricles are contracting but all the valves in the heart

closed and no blood can be ejected. This period is termed isovolumetric ventricular

contraction because the ventricular volume is constant. The ventricular walls are

developing tension and squeezing the blood they enclose.

Once the rising blood pressure in the ventricles exceeds that in the aorta and
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pulmonary trunk, the aortic and pulmonary valves open, and the ventricular ejec-

tion period of the systole occurs.

During the first part of diastole, the ventricles begin to relax and the aortic

and pulmonary valves close as well as the AV valves. No blood is entering and

leaving the ventricles and its ventricular volume is not changing. Therefore this

period is called isovolumetric ventricular relaxation. The AV valves then open and

ventricular filling occurs as blood flows in from the atria. Atrial contraction occurs

at the end of diastole after most of the ventricular filling has taken place.

2.3.4 Control of the heart rate

The isolated heart, disconnected from the nervous system beats, approximately at

a rate of 100 beats/min. The heart rate in the body may be much lower or higher

than this; the SA node is usually under the influence of nerves and hormones.

A large number of parasympathetic and sympathetic fibers end on the SA node.

Activity of the parasympathetic nerves causes the heart rate to decrease whereas

that of sympathetic nerves causes the heart rate to increase. In the resting state,

there is considerably more parasympathetic activity to the heart than sympathetic,

so the normal resting heart rate of about 61 beats/min is well below the inherent

rate of 100 beats/min.

2.4 The vascular system

The functional and structural characteristics of the blood vessels change with suc-

cessive branching. But there is one structural component in common in the entire

cardiovascular system. It is a smooth single-celled layer of endothelial cells or en-

dothelium, which lines the inner surface of the vessels. Capillaries consist only of

endothelium, whereas all other vessels have additional layers of connective tissue

and smooth muscle.

2.4.1 Endothelium

The endothelium is located at the interface between the blood and the vessel wall.

The cells are in close contact and form a layer that prevents blood cell interaction

with the vessel wall as blood moves through the vessel lumen. The endothelium is

a layer of cells that lines the lumen of all blood vessels. It plays a critical role in
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the mechanics of blood flow, the regulation of coagulation, leukocyte adhesion, and

vascular smooth muscle cell growth, and also serves as a barrier to the transvascular

diffusion of liquids and solutes.

It was first reported by Furchgott and Zawadzki in 1980 that the intact en-

dothelium produces a factor which causes relaxation of vascular smooth muscle.

This was originally named endothelium-derived relaxing factor (EDRF) and now

it has been found out to be nitric oxide (NO). Nitric oxide is released continuously

by endothelium in the arterioles and contributes to arteriolar vasodilation in the

basal state. The production of NO can be stimulated by a variety of endothelial

antagonists, including acetycholine, as well as by shear stress resulting from an

increase of blood flow or pressure. In addition to NO, endothelium releases other

vasodilators such as prostacyclin (PGI2) and vasoconstrictors such as endothelin-1

(ET-1) [101].

Fig. 2.6: Release of relaxing and contracting factors from endothelial cells and their ef-
fects on vascular smooth muscles. AC = adenylyl cyclase; ACE = angiotensin
converting enzyme; ATP = adenosine triphosphate; A I = angiotensin I; A II
= angiotensin II; cAMP = cyclic adenosine monophosphate; cGMP = cyclic
guanosine monophosphate; COX = cyclo-oxygenase; ECE = endothelin con-
verting enzyme; EDHE = endothelium-derived hyperpolarising factor; eNOS
= endothelial nitric oxide synthase; ET-1 = endothelin-1; GTP = guano-
sine triphosphate; NO = nitric oxide; O−•

2 = superoxide anions; PGH2 =
prostaglandin H2; PGI2 = prostacyclin; R = recepter; sGC = soluble guany-
lyl cyclase; SR = sarcoplasmic reticulum; TAX2 = thromboxane A2.

The picture is taken from [101].
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2.4.2 Vascular smooth muscle

The vascular smooth muscle cells are arranged in helical or circular layers around

larger blood vessels and in a single layer around arterioles. Vascular muscle cells

provide active tension in the vessel wall and regulate the diameter of the vessels.

In many vessels there are smooth muscles that undergo spontaneous depolar-

ization. Their cells act as pacemakers and excite neighboring cells, thus providing

background tension, the myogenic basal tone. Their activities are independent of

innervation. The property is similar to that of the heart, but the contractile char-

acteristics and the mechanisms that cause contraction of vascular smooth muscle

are very different from those for cardiac muscle. Vascular smooth muscle under-

goes slow, sustained, tonic contractions, whereas cardiac muscle contractions are

rapid and of relatively short duration (a few hundred milliseconds).

Contraction in vascular smooth muscle can be initiated by mechanical, electri-

cal, or chemical stimuli. Passive stretching of vascular smooth muscle can cause

contraction that originates from the smooth muscle itself and is therefore termed a

myogenic response. Electrical depolarization of the vascular muscle cell membrane

also elicits contraction, most likely by opening voltage dependent calcium chan-

nels and causing an increase in the intracellular concentration of calcium. Finally,

a number of chemical stimuli such as norepinephrine, angiotensin II, vasopressin

and endothelin-1 can cause contraction. Each of these substances bind to specific

receptors on the vascular smooth muscle cell (or to receptors on the endothelium),

which then leads to vascular smooth muscle contraction.

The arterioles consist of both smooth muscle and endothelium, whose structure

is shown in Fig. 2.7.

2.5 The nervous system

2.5.1 Innervation of the heart

There are two divisions of the autonomic nervous system which affect the heart’s

activities, the parasympathetic nervous system and the sympathetic nervous sys-

tem.

Parasympathetic innervation is achieved by two vagus systems. The right vagus

affects the SA node predominantly. This nerve has an ability to slow SA nodal
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Fig. 2.7: The structure of arterioles.

firing and even stop it for several seconds. The left vagus nerve mainly inhibits AV

conducting tissues. The sympathetic nerve supply is nearly uniformly distributed

in the heart. Increased sympathetic activity produces an increase in the heart rate

and velocity and force of contraction.

Both divisions of the autonomic nervous system have a tonic influence on the

cardiac pacemaker, the SA node. The sympathetic nerve system enhances the au-

torhythmicity, whereas the parasympathetic nervous system inhibits it. Parasym-

pathetic nerves predominate in healthy, resting individuals. After a parasym-

pathetic blockage, the heart rate increases substantially and after sympathetic

blockade, it decreases slightly. After a blockade of both divisions, the heart rate is

about 100 beats per minute for young adults.

2.5.2 Innervation of the vessels

Most of the arteries and veins are innervated by the sympathetic nervous system.

The fibers have a tonic contractile effect on the blood vessels.
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2.6 Substances

In this section, details of the substances, ACh and SNP, are described.

2.6.1 Acetylcholine

Acetylcholine (ACh) is a neurotransmitter that is released from the terminal of

parasympathetic nerve or motor nerve. It serves as a transmitter of nervous stimu-

lation through synapses. Its chemical formula is CH3COOCH2CH2N
+(CH3)3. Its

structure is presented in Fig. 2.8a.

When it binds to the acetylcholine receptors of striated muscle fibers, it stim-

ulates those fibers to contract. ACh is also used in the brain, where it tends to

cause excitatory actions. The glands that receive impulses from the parasym-

pathetic part of the autonomic nervous system are also stimulated in the same

way. This is why an increase in ACh causes a decreased heart rate and increased

production of saliva.

Acetylcholine was first identified in 1914 by Henry Hallett Dale, then confirmed

as a neurotransmitter by Otto Loewi in 1921. For their work, they received the

1936 Nobel Prize in Physiology or Medicine.

Later it was found out in rabbits experiments that the removal of endothelium

prevented the ACh-induced vasodilation [40].

2.6.2 Sodium Nitroprusside

Sodium nitroprusside (SNP) breaks down in the blood and releases a chemical

called nitric oxide (NO). Nitric oxide enters the muscle cells in the walls of the

blood vessels and causes them to relax. When the muscles relax, the blood vessels

become wider and the blood pressure decreases.

Its chemical formula is Na2[Fe(CN)5NO] and its structure is presented in Fig. 2.8b.

Sodium nitroprusside is used for the emergency treatment of high blood pres-

sure (hypertensive crisis). It is also used to produce controlled hypotension (low

blood pressure) in anesthetized patients during surgery. It had been used in the

emergency treatment of severe heart failure to reduce heart workload. However,

it has side effects and is no longer used for clinical treatment of hypertension.
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Fig. 2.8: The structure of ACh (a) and SNP (b).



3. MEASUREMENT

3.1 Measurement time

In living systems, there are several rhythmic processes with different time scales.

For example, seasonal growth and involution has the time scale around years,

reproduction around months, sleep-wakefulness cycle around days, sleep cycle and

smooth muscle tone around hours, blood distribution around minutes, respiration

and heart beat around seconds and nervous action around tenths of seconds [57].

The measurement time should be longer than the time scale of the phenomena in

which we are interested. In our study, we are interested in phenomena whose scale

is of the order of the blood distribution time. Under steady conditions in resting

subjects, the volume of blood pumped by the heart in one minute is on average

equivalent to the whole amount of blood in the humans [156]. Thus, the dynamics

of the blood distribution can be analyzed on the time scale of minutes. We are

especially interested in oscillations from 0.005 to 2.0 Hz whose period is from 0.5

to 200 seconds. Their physiological origins will be described below in section 7.2.1.

If a signal is periodic, two periods are enough to specify them. However, signals

from the human cardiovascular system are not periodic, but quasiperiodic and their

period fluctuate constantly. In that case, the measurement should be long enough

to contain at least several periods. On the other hand, the longer a signal, the

more pronounced the effects of non-stationarity becomes. For example, changes

of physiological conditions or physical movement can occur during measurements.

Therefore we chose 30 minutes as a compromise.

3.2 Measurement techniques

3.2.1 ECG

The electrocardiogram (ECG) is a tool for evaluating the electrical events in the

heart. ECG measurements have been used for diagnostic purposes for more than
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a century. The action potential of cardiac muscle cells can be viewed as batteries

that cause charge to move throughout the body fluids. These moving charges are

caused by all the action potentials occurring simultaneously in many individual

myocardial cells and can be detected by recording electrodes at the surface of the

skin. ECG is not a direct record of the changes in membrane potential across

individual muscle cells. Instead, it is a measure of the currents generated in the

extracellular fluid by the changes occurring simultaneously in many cardiac cells

on the surface of the body.

A conventional 3-lead measurement of the ECG is done by using three leads

which are put on the right and left shoulder bones for the first and second leads

and on the left leg or limb bone for the third lead.

The P wave is the first deflection and represents the electrical impulse through

the atrial musculature (depolarization). The second deflection is the QRS complex

and represents the spread of the electrical impulse through the ventricular muscu-

lature, which triggers the ventricular contraction. The P-R interval is measured

from the beginning of the P wave to the beginning of the QRS complex. It reflects

the time taken by impulse to travel the entire distance from the SA node to the

ventricular muscle. The final deflection is the T wave and represents the period of

recovery for the ventricles (repolarization).
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Fig. 3.1: Cycles of ECG signal.
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3.2.2 Respiration

Respiration is what we do constantly to exchange oxygen and carbon dioxide be-

tween our organism and the external environment. In humans, the respiratory

system includes the oral and nasal cavities, the lungs, the series of tubes leading

to the lungs and the chest structures which move the air into and out of the lungs.

In respiration, there are two movements: inspiration and expiration. Inspiration is

the movement of air from the external environment into lungs which increases the

volume of the lungs. Expiration is the movement in the opposite direction. One

cycle of respiration consists of an inspiration and expiration. In our study, respira-

tion was measured by a belt around the thorax which can detect the change of the

volume of the lungs by inspiration and expiration during breathing (Respiratory

effort trans, TP-TSD201, BIOPAC Systems, Inc. Goleta, CA, USA).

3.2.3 Blood flow

3.2.3.1 Laser Doppler flowmetery

After the first laser was demonstrated by Maiman [91], Cummins et al. proposed a

way to measure the velocity of particles in solution by using the Doppler frequency-

shifted light [30]. After some years, Riva et al. applied this technique to the

measurement of the velocity of red blood cells in the glass tube flow model [119]

and Stern used the laser Doppler technique for blood perfusion measurement in

the undisturbed microcirculation [140].

The laser Doppler technique measures blood flow in the very small blood ves-

sels of the microvasculature, such as the low-speed flows associated with nutritional

blood flow in capillaries close to the skin surface and flow in the underlying arteri-

oles and venules involved in regulation of skin temperature. The tissue thickness

sampled is typically 1 mm, the capillary diameters 10 microns and the velocity

spectrum measurement typically 0.01 to 10 mm/s. The technique depends on the

Doppler principle by which low power light from a monochromatic (single wave-

length) stable laser is scattered by moving red blood cells and as a consequence

frequency is broadened. The frequency broadened light, together with laser light

scattered from static tissue, is photodetected and the resulting photocurrent pro-

cessed to provide a blood flow measurement. Because of this mechanism, there

are two optic fibers in laser Doppler probes. One is to deliver light to the tissues
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and the other is to collect the scattered light. Bonner and Nossal showed that

after filtering the scattered light, they could get an output which is proportional

to the velocity and the number of red blood cells in the measured volume but is

not related to the direction of the blood flow [20].

The corresponding instruments for blood flow measurement were developed by

Watkins and Holloway [154], Nilsson et al. [104] and Fischer et al. [39]. They

demonstrated a good correlation between the output of the devices and the blood

flow.

In our study, a near-infra-red laser of wavelength 785 nm is used to measure the

velocity and concentration of red blood cells within the volume covered by the laser

light. The covered volume depends on several factors: optical density of the tissue,

separation of the probe fibres and the power and wavelength of the laser. From

imaging at this wavelength by a commercially available instrument (DRT4, Moor

Instruments, Axminster, Devon, UK), it is known that the full dermal thickness

(about 1 mm) is probed, so from simple geometry a hemisphere of radius 1mm

gives a volume of order 2 mm3, in which ’of order’ has to be emphasized.

Because of the fact that there is a residual value called the biological zero in

the case of occlusion [138], we can not use an absolute unite (e.g ml/s/mm3)

but arbitrary unit (AU) for the flow. The residual value comes from the Brownian

motion of remaining red blood cells. To obtain an absolute measure, the biologocal

zero has to be determined for every measurement by doing probe calibration in

the water with polystyrene microspheres.

T r a n s m i t t e r R e c e i v e r

Fig. 3.2: Sketch showing how a probe detects flow.
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3.2.3.2 Iontophoresis

Iontophoresis is widely used for transcutaneous delivery of ionized drugs for the

assessment of skin microvascular function. A small electrical current is used to

transfer locally vasoactive substances such as endothelial-dependent ACh and

endothelial-independent SNP across the dermal barrier as unipolar currents of

relatively large molecules. As discussed in subsection 2.6.2, SNP breaks down to

yield nitric oxide (NO) directly, which acts on vascular smooth muscle cells, while

ACh acts on the intact vascular endothelium and makes the endothelium release

NO. SNP acts directly on smooth muscles but ACh acts through the endothelium.

Therefore the oscillations related to endothelial activity can be extracted by seeing

the difference between them, in this way oscillation around 0.01 Hz and 0.07 Hz

were identified in previous studies to be endothelial-dependent [80, 83, 139]. ACh

and SNP are relatively high conductivity solutions and have different polarity.

Therefore we need to apply anodal iontophoresis to ACh and cathodal iontophore-

sis to SNP.

However there are some methodological problems related to iontophoresis. It

is known that blood flow is increased in response to the current without vasoactive

drugs but with pharmacologically neutral electrolytes such as H2O [17, 35] or

NaCl solution [7]. This phenomenon is known as the galvanic effect, or current-

induced vasodilation. The mechanism is unclear but could involve, for example,

local heating due to the voltage required to convey the ions through the dermal

barrier. It was shown in [13] that the magnitude of the voltage between an chamber

and the adjacent cells needed to sustain the chosen iontophoresis current is not

an important factor in causing changes in blood flow using H2O and NaCl with

anodal and cathodal iontophoresis, ACh with anodal iontophoresis and SNP with

cathodal iontophoresis. There is another study [153] in which H2O and NaCl were

used with the same protocol as used in this thesis and with anodal and cathodal

iontophoresis. They concluded that the differing responses of the 0.01 Hz spectral

component to ACh and SNP may be interpreted with confidence as a specific effect

of substances, and not of the iontophoresis current itself.

Currents were delivered from a battery-powered constant-current iontophoresis

controller (Moor Instruments MIC1-e). The iontophoresis probehholders were of

perspex with internal platinum wire electrodes. Their internal diameter was 8 mm,
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giving an area of 1 cm2 in contact with the skin. The dosages of the drugs delivered

are proportional to the total charge (Q) in millicoulombs (mC) which migrates

through skin surface, determined by the product of constant current measured

in milliamperes (mA) and the duration (t) of current flow in seconds. We used

a protocol that passes a charge of 2 mC (100 µA for 20 seconds) followed by a

240 seconds interval seven times in one measurement, thus filling the 30 minutes

of recording.

3.2.4 Measurement set up

The measurement of two blood flow channels with ACh and SNP was obtained by

laser Doppler flowmetry (LDF) with DRT4. A battery powered constant current

stimulator for iontophoresis was connected to DRT4 and the probeholders for ACh

and SNP. The chambers combined with laser Doppler MP1 probes were placed on

the anterior side of the left forearm on the different sites under which the vessel

densities were similar. 1 % w/v ACh and 1 % w/v SNP were put into the holes

of the iontophoretic chambers. The cahmbers also served as the support for the

probes of the LDF measurements.

The measurement of basal blood flow was obtained with other instruments

(moorLAB server and moorLAB satellite, Moor Instruments, Axminster, Devon,

UK). Two Laser Doppler probes were fixed on the right wrist and on the inner

right ankle respectively.

The cut-off frequency of the low-pass filter of 22.5 kHz and a time constant

of 0.1 second were selected thus allowing the dynamics of the slow oscillatory

processes to be optimally captured.

The flow measured by the LDF instrument depends largely on the site of the

probe because some areas contain a high density of arteriovenous anastomoses [19]

which can cause high shunt flow, whereas most of the skin is perfused by capillaries

with low flow. So we chose measurement sites on bony prominence so as to avoid

high density of arteriovenous anastomoses and large arteries.

The ECG was set up as described in subsection 3.2.1. Respiration was measured

with Biopac respiratory effort transducer placed around the thorax which can

convert the stretch of the belt to an electric signal. The ECG and respiration

signals were amplified by a signal conditioning unit (Cardiosignals, Jozef Stefan
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Institute, Ljubljana, Slovenia). All signals were sampled at 400 Hz by a 16-bit

A/D converter (National Instruments) and stored in a personal computer.

3.3 Subjects

118 healthy individuals were measured including 71 males (42.6±15.1 years, range

16-74 years) and 47 females (45.8± 16.6 years, range 18-82 years). They had not

had any medication nor any history of cardiovascular disease prior to recordings.

They were asked not to eat or drink coffee for one hour before the measurement.

Subject lay on a bed in a supine position and were asked to relax while periph-

eral blood flow, ECG and respiration were recorded throughout 30 minutes. The

measurements were done at room temperature 22± 1 ◦C.

3.4 Results: obtained signals

3.4.1 ECG and respiration
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Fig. 3.3: An ECG typical signal (a) and a respiratory signal (b) obtained from measure-
ment. The PQRST events are shown in (a).

For the first several decades of ECG measurements, attention was focussed

mainly on the detailed shape of the approximately periodic pulses seen in the
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signal. As discussed in subsection 3.2.1, a typical ECG signal consists of the P

wave, the QRS complex, and the T wave as shown with the marks of PQRST

events in Fig. 3.3a. A respiratory signal is shown in Fig. 3.3b. The maximum in

each period represents inspiration and the minimum expiration.

3.4.2 Blood flow with iontophoresis

Blood flow signals with iontophoresis are shown in Fig. 3.4. In (a) and (b), slow

oscillation is shown from the record of 30 minutes of the whole measurement. In

(d) and (e), 10 seconds of record is shown to see faster oscillation. It has to be

noted that the flow and its oscillations increase more than 10 times after applying

the substances.
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Fig. 3.4: The blood flow measured with ACh (a) and SNP (b), and the iontophoretic
current pulses (c) shown for q whole measurement of for 30 minutes. To see
faster variations, 10 seconds of the record are shown for ACh (d) and SNP (e).
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A statistical significance test is used to determine the statistical significance of an

observation. In this chapter, the statistical tests used in this thesis are explained.

With an assumption of the underlying distribution of the data, a parametric

test are conducted. For example, the t-test is a typical parametric test [44]. It is

used to test whether two Gaussian populations have different statistical distribu-

tions. On the other hand, when the underlying distribution of data is unknown,

a non-parametric test should be conducted. In our studies, we use the Wilcoxon

rank sum test, a non-parametric test, to test the difference of the distributions of

two groups because we have no prior knowledge of the distribution of samples. In

section 4.1, the details of the significance tests are explained. Correlation analysis

is used to draw inferences about the strength of the relationship between two or

more variables. In section 4.2, the details of correlation analysis will be explained.

4.1 Significance tests

A conjecture concerning the unknown distribution of a random variable is called

a statistical hypothesis. The aim of a significant test is to test whether the hy-

pothesis is true or not. If the probability that the hypothesis holds is below the

threshold chosen for statistical significance, the hypothesis is rejected. The statis-

tical significance is usually set to 0.05 and the same value was used in this thesis.

These statistical significance tests were conducted using MatLab (MatWorks).

4.1.1 The T -test

In this subsection, a typical parametric test, the t-test, is explained briefly. The

t-statistic was introduced by William Sealy Gosset for cheaply monitoring the

quality of beer brews. Gosset published the t-test in Biometrika in 1908, but was

forced to use a pen name, Student, by his employer who regarded the fact that

they were using statistics as a trade secret.
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Given two data sets X1 and X2, each characterized by its mean X̄1 and X̄2,

standard deviation s1 and s2 and number of data points n1 and n2, we can use a

t-test to determine whether the means are distinct under the assumption that the

underlying distributions can be assumed to be normal. All such tests are usually

called Student’s t-tests. Strictly speaking that name should only be used if the

variances of the two populations are also assumed to be equal. The test used when

this assumption is dropped is sometimes called Welch’s t-test. There are different

versions of the t-test depending on whether the two samples are independent of

each other (e.g., individuals randomly assigned into two groups), or paired so that

each member of one sample has a unique relationship with a particular member of

the other sample (e.g., the same people measured before and after an intervention,

or IQ test scores of a husband and wife).

In the case that two samples are independent, the t-value is calculated as

t =
X̄1 − X̄2

sX1−X2

, where sX1−X2 =

√
(n1 − 1)s1

2 + (n2 − 1)s2
2

n1 + n2 − 2
(

1

n1

+
1

n2

). (4.1)

Once a t-value is determined, a p-value can be found using a table of values from

the t-distribution with (n1 +n2− 2) degrees of freedom. The t-distribution fT is a

symmetric bell-shaped distribution with heavier tails than the normal distribution

as shown in Fig. 4.1. The t-distribution is defined as

fT (t) =
Γ((k + 1)/2)√

kπΓ(k/2)
(1 + t2/k)−(k+1)/2 (4.2)

where k is the degree of freedom. The p-value is calculated as

p = 2
∫ ∞

t
fT (t)dt, (4.3)

If the p-value is below the threshold chosen for statistical significance (usually

0.05), then the null hypothesis H0 that the distributions of the two groups are

identical is rejected in favor of an alternative hypothesis, which typically states

that the groups do differ.

The t-test is also used to examine whether the slope of a regression line differs

significantly from 0.

4.1.2 Rank sum test

The rank sum test is a big category of non-parametric tests [32]. The general idea

is that instead of using an original observed data, we list the data in ascending
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Fig. 4.1: The t-distribution with various degrees of freedom k. The graph is taken from
Wikipedia, http://en.wikipedia.org/.

order and assign a rank to each item, the position where the item appears in the

sorted list. Using the ranks instead of the original observed data makes the test

much less sensitive to outliers and noise than parametric tests.

Depending on the number of classes in the data sets, there are different kinds of

rank sum tests. The Wilcoxon rank sum test [155] is a non-parametric alternative

to the t-test. Here we focus on the Wilcoxon rank sum test. We demonstrate how

to conduct the Wilcoxon rank sum test by taking an example. Let us take two

groups X and Y. X contains 11 samples and Y contains 7 samples as shown in

Tab. 4.1. We want to test whether the null hypothesis H0 that the distribution of

samples X is identical to that of samples Y is true or false.

Types Number Values
X 11 33 14 12 11 22 28 10 8 18 19 20
Y 7 17 28 15 35 27 32 29

Tab. 4.1: Values of two groups.

We combine all the samples of X and Y and sort them in the ascending order.

The ranks are assigned to the samples based on the order. If k samples have the

same rank of i, than all k samples have an average rank i + (k− 1)/2. The results
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of the example are shown in Tab. 4.2

Values 8 10 11 12 14 15 17 18 19
Types X X X X X Y Y X X
Ranks 1 2 3 4 5 6 7 8 9

Values 20 22 27 28 28 29 32 33 35
Types X X Y X Y Y Y X Y
Ranks 10 11 12 13.5 13.5 15 16 17 18

Tab. 4.2: Assigned ranks to each sample.

Suppose that n1 and n2 are the numbers of the smaller sample size and the

larger sample size, respectively. In this example, n1 = 7 and n2=11. Then we

calculate the sum of group Y and have the statistic W = 6 + 7 + 12 + 13.5 + 15 +

16 + 18 = 87.5. If the null hypothesis H0 holds, the statistic W should be around

the expectation value (n1 +n2 +1) ·n1/2 = 66.5. If W is too small or too large, the

null hypothesis H0 is likely to be false. Using MatLab, the p-value is calculated

as p = 0.0589 for this example. If we set the statistical significance to 0.05, the

null hypothesis H0 can not be rejected since 0.05 < 0.0589, whereas if we set the

statistical significance 0.1, the null hypothesis H0 is rejected.

4.2 Correlation analysis

Suppose that we have n observations of two variables, X = x1, · · · , xn and Y =

y1, · · · , yn. The variation of variable Y can be separated into two parts: the varia-

tion associated with variable X and the variation not associated with variable X.

The fraction that is explained by the linear relationship between X and Y is called

the coefficient of determination and its square root is the correlation coefficient.

The correlation coefficient r can be expressed [9] as

r =

∑n
i=1 xiyi − 1

n
(
∑n

i=1 xi)(
∑n

i=1 yi)√∑n
i=1 x2

i − 1
n
(
∑n

i=1 xi)2
√∑n

i=1 y2
i − 1

n
(
∑n

i=1 yi)2
. (4.4)

The estimated correlation coefficient r is a random variable and each random

variable has a distribution function. The distribution of r is a function of the

sample size n and the real correlation coefficient ρ. A correlation coefficient of

zero means that there is no linear relationship between the two variables. To test
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whether two variables are linearly related, we set the null hypothesis,

H0 : ρ = 0. (4.5)

It can be shown that for n > 2, this hypothesis can be tested using a t-test that is

given by

tr = r

√
n− 2

1− r2
. (4.6)

The value tr is a random value with a t-distribution with n−2 degrees of freedom.

The p-value is defined as

p = 2
∫ ∞

tr
fT (t)dt. (4.7)

If the p-value is lower than statistical significance, then the null hypothesis is

rejected and the correlation coefficient is considered statistically significant. In

our study, the statistical significance was chosen 0.05.

It is important to check the relationship between variables graphically before

performing the correlation analysis in order to to check whether there is no outlier

in the data. In the t-test, an outlier can affect the statistics significantly. In some

cases, variables have a nonlinear relationship and this can be identified graphically

as well. The nonlinearity may result in low correlation and may sometimes be

improved by using a log-plot.

In this thesis, we calculated linear regression, correlation coefficients and their

significance were determined using MatLab (MatWorks). The values of rm and pm

represent correlation with age and the probability for males, and the values of rf

and pf represent those for females. The blue line and dots represent males and

the red females in all the graphs throughout the thesis.
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5.1 Description of phase dynamics

In this section, we review phase dynamics following Kuramoto [74]. Phase dynam-

ics provides a way of describing a system with only one variable, the phase. In

this subsection, we explain how the phase is defined and its dynamics is obtained

by one of the reduction methods, which will be explained later in more detail.

5.1.1 Small perturbations in general

Suppose that X(t) develops its dynamics according to dX/dt = F(X) and that

there is a linearly stable T -periodic solution X0 which statisfies

dX0

dt
= F(X0), X0(t + T ) = X0(t). (5.1)

Let C denote the closed orbit corresponding to X0. Clearly a phase φ can be

defined on C as a variable linearly increasing with time, as follows,

dφ(X)

dt
= ω, ω =

2π

T
, X ∈ C. (5.2)

Now let us add a small perturbation p(t) to the dynamics. At this stage, p(t)

is restricted to a small perturbation. It may depend on the variable X or on the

variables of other oscillators. Then the dynamics of X is expressed by the following

equation,

dX

dt
= F(X) + p(t). (5.3)

Once the perturbation is added, the orbit does not correspond exactly to C but is

expected to be away a bit from C. In that case, the phase needs to be defined in

the region close to C. The definition can be extended to the region G containing

all neighborhood of C by using the dynamical system dX/dt = F(X). Here I

introduce the so-called ischrone I(φ). If the points starting from a plane approach

the point starting from X0(φ) on C, the crossing point of C and I(φ) (shown in
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Fig. 5.1), as t →∞, we call the plane the isochrone I(φ). It means that the phase

of the same isochrone remains the same. The following equation then leads

(gradXφ,F(X)) = ω. (5.4)

l i m i t - c y c l e  o r b i t  C

i s o c h r o n e  I

X 0 (   )

I (   )

Fig. 5.1: Explanation of the isochrone. The circle is the limit cycle orbit C. A curve on
which all the points have the same phase is called an isochrone and is denoted
by I(φ). The crossing point between C and I(φ) is denoted by X0(φ). The
center of the limit cycle C, where all the isochrones cross, is the singular point
where the phase cannot be defined.

Note that the definition of phase is made for the system without perturbation

by the Eq. (5.2), but it can be extended to the system with the perturbation by

using the notion of the isochrone. By introducing this phase variable, the dynamics

in the region G is finally described as

dφ(X)

dt
= (gradXφ,F(X) + p(t)) = ω + (gradXφ,p(t)). (5.5)

It should be noted that gradXφ on the right hand side is a function of the position X

and Eq. (5.5) is not a closed equation of the phase φ. However, if the perturbation

is small, the value can be approximated by the value on C as

U∗(φ) ≡ gradXφ|X0(φ). (5.6)

By using U∗, the function of φ , the phase equation under perturbation p(t) can

be obtained as
dφ

dt
= ω + (U∗(φ),p(t)). (5.7)
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If the perturbation is given as a function of φ, the Eq.( 5.7) can be closed in terms

of φ. We will look at a few examples in the subsequent subsections.

5.1.2 Small deviation from the original dynamical system

In this subsection, we discuss the case where the dynamical equation is deviated

from F(X) to F(X) + δF(X). In this case, p(t) = δF(X) and Eq. (5.7) becomes

dφ

dt
= ω + (U∗(φ), δF(X)). (5.8)

In the first approximation, δF(X) can be replaced by δF(X0(φ)). Then Eq. (5.8)

becomes
dφ

dt
= ω + (U∗(φ), δF(X0(φ))). (5.9)

This is a closed equation for φ. Another important operation called averaging is

used in the next step. To do this, we introduce a new variable ψ as

φ = ωt + ψ. (5.10)

Without the perturbation, ψ is a variable which represents the initial phase, but

under small perturbation it is a variable which changes slowly with time. The

dynamics of ψ becomes

dψ

dt
= (U∗(ωt + ψ), δF(X0(ωt + ψ))). (5.11)

Since the dynamics of ψ is very slow, ψ can be considered as approximately con-

stant during the period 2π/T . In fact, ψ is so slow compared to ωt that it is

expected that averaging of the right hand side occurs on the time scale of ψ. Then

the dynamics of ψ can be expressed as

dψ

dt
= δω, (5.12)

δω ≡ 1

2π

∫ 2π

0
dθ(U∗(θ + ψ), δF(X0(θ + ψ))). (5.13)

It should be noted that δω is not dependent on ψ, but constant, since the integrated

function on the right hand side is a 2π-periodic function. The equation

dφ

dt
= ω + δω (5.14)

indicates that the deviation of the original dynamical system leads to a deviation

of the frequency in the phase dynamics.
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5.2 Analytical methods to detect the instantaneous phase

The first thing which we have to do is to define the phase of signals numerically.

There are three methods to define the instantaneous phase. They are based on

peak-detection, the Hilbert transform and wavelet transform. The method based

on peak-detection was used to study entrainment between cardiac and respiratory

signals by calculating their frequency ratio[128] or to obtain the instantaneous

phase [115]. The method based on Hilbert transform was originally introduced by

Gabor [41] and brought into the context of synchronization of chaotic oscillators

by Rosenbulm et al. [120]. The third method was introduced by Bandrivskyy et

al. [14]. They makes use of phase of wavelet analysis, which is explained in section

7.1.4, to detect the instantaneous phase of signals of skin temperature and blood

flow.

5.2.1 Marked events

If each cycle of a signal contains events which can be marked to characterize the

oscillator and is possible to detect them, the phase is defined by using the times

of these events,

φ(t) = 2π
t− tk

tk+1 − tk
+ 2πk, tk < t < tk+1, (5.15)

where tk and tk+1 are the time of the k-th and k + 1-th marked events. By this

definition, the phase increases linearly with time. It should be noted that this

method corresponds to the phase definition by a Poincaré section [115]. In some

cases, we can find a projection of an orbit on a plane (x, y) that rotates around

a point (x0, y0). We can choose a Poincare section and tk is the time of the k-th

crossing of the Poincare surface. In our case, the Poincaré section is defined by

the plane of y = maximum.

5.2.2 Hilbert transform

When a signal g(t) is obtained, there is a way to analyze its amplitude and phase

by constructing the so-called analytic signal ζ(t) from the original signal g(t),

according to the following equation

ζ(t) = g(t) + ıgH(t) = A(t)eıφ(t), (5.16)
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where gH(t) is the Hilbert transform of g(t) written as

gH(t) = π−1PV
∫ ∞

−∞
g(τ)

t− τ
dτ. (5.17)

Here PV means the integral in the sense of Cauchy principal value. The instan-

taneous amplitude A(t) and phase φ(t) are determined by Eq. (5.16). Then the

phase can be calculated as

φ(t) = arctan
gH(t)

g(t)
. (5.18)

Note that the phase obtained by this method ranges from −π to π.

From Eq. (5.17), it can be seen that the Hilbert transform is the convolution of

the functions g(t) and 1/πt. According to a property of convolution, the Fourier

transform ĝH of gH(t) is the product of the Fourier transform of g(t) and 1/πt.

For physically relevant Fourier frequencies f > 0,

ĝH(f) =
∫ ∞

−∞
dt exp(−2πfıt)g(t) ∗

∫ ∞

−∞
dt

exp(−2πfıt)

πt
, (5.19)

which is equivalent to ĝH(f) = −ıĝ(f). This means that the Hilbert transform can

be seen as a filter whose amplitude response is unity and whose phase response is

a π/2 lag at all frequencies [120].

A harmonic oscillation g(t) = A cos(ωt) is often represented by in the complex

form as A cos(ωt)+ıA sin(ωt). This means that the real oscillation is complemented

by the imaginary part whose phase delay by π/2, which is related to g(t) by the

Hilbert transform [116].

It should be remarked that this method is reasonable only when the original

signal g(t) is a narrow band-signal. Real signals usually contain wide range of

frequencies because of noise or other factors, and some filtering may be necessary

in order to use this method.

5.2.3 Application to real data

To define the phase of the heartbeat and respiration from acquired signals, the

method based on marked events was used. This was because of the weak points

of the Hilbert transform described above. The R-peak was used as a marked

event in each heartbeat in ECG signals, and the maximum point corresponding

to inhalation in respiratory signals was used as marked event in each respiratory

cycle.
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5.3 Results

5.3.1 Heart rate variability (HRV) and respiratory rate variability
(RRV)

The instantaneous frequencies were introduced by using the times of marked events

described above. If the k-th and k + 1-th marked events occur at tk and tk+1

respectively, the instantaneous frequency fi is defined as

fi(tk,k+1) =
1

(tk+1 − tk)
where tk,k+1 =

(tk + tk+1)

2
. (5.20)

The instantaneous frequency between tk,k+1 and tk+1,k+2 is defined by linear inter-

polation as

fi(t) =
f(tk+1,k+2)− f(tk,k+1)

tk+1,k+2 − tk,k+1

(t−tk,k+1)+fi(tk,k+1), tk,k+1 < t < tk+1,k+2. (5.21)

This method was applied to both the ECG and respiratory signals. The depen-

dence of instantaneous frequency with time are called heart rate variability (HRV)

and respiratory rate variability (RRV) respectively. HRV is one of the indicators

for cardiac regulation. The existence of fluctuation of heart rate was noticed as

early as 1733 by Hales [51], related to the respiratory oscillation. This modulation

is known as respiratory sinus arrhythmia (RSA). These values represent the change

of the period during which the phase starts from zero and resets to 2π. Actual

examples of HRV and RRV signals are shown in Fig. 5.2, where the RSA can be

seen. As explained in subsection 5.1.2, the variation of the frequency of HRV and

RRV can be considered to come from the term of (U∗(φ),p(t)) in Eq. (5.7), where

the perturbation p(t) can be the parameter change described in subsection 5.1.2

and the coupling with other oscillators such as respiratory oscillation as we will

explain below in section 8.1. The respiratory oscillation seems to have an espe-

cially important role in modulating the heart rate since the heart rate is known

to contain an oscillatory component which corresponds to respiration [138]. The

results of spectral analysis of HRV will be discussed in subsection 7.2.1 and the

origin of other oscillatory processes which modulate the heart rate will be also

explained there.
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Fig. 5.2: (a) an ECG signal during a time segment where R-peaks are marked at time
tc(j+k) for k = 0, . . . , 9, (b) the instantaneous frequency 1/(tc(j+k+1) − tc(j+k))
marked at a time (tc(j+k) + tc(j+k+1))/2 for k = 0, . . . , 9 forms a HRV signal
during the time segment, (c) a respiratory signal during the time segment
where maxima are marked at time tr(i+l) for l = 0, 1, 2, (d) the instantaneous
frequency 1/(tc(i+l+1) − tc(i+l)) marked at a time (tc(i+l) + tr(i+l+1))/2 for k =
0, 1, 2 forms a RRV signal during the time segment, (e) the HRV signal during
the whole measurement and (f) the RRV signal during the whole measurement
(f)
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5.3.2 Effects of aging on HRV and RRV

The time average and standard deviation of HRV and RRV were calculated for

each person and are plotted as a function of age in Fig. 5.3. There is significant cor-

relation with age in the standard deviation of HRV both for males (r = −0.28, p =

0.02) and for females (r = −0.28, p = 0.02). Correlation coefficient and statisti-

cal significance were calculated with parametric statistical testing using MatLab

(MatWork) in this theses (see section 4.2). The other values, average HRV, aver-

age RRV and standard deviation of RRV do not show significant correlation with

age for either males or females. The average RRV of female is significantly higher

than that of males in the aged population above 55 years (p = 0.05) whereas the

other values do not show significant a gender difference (see Tab. 5.3.2).

There are already some reports of aging effects in HRV signals, for example

[69, 123, 133, 152]. The significant decrease of the standard deviation of heart rate

with age is common and already well known. There are also some differences from

their results. For example, Stein et al. [133] reported that there is a significant

decrease in average heart rate for male, whereas Ryan et al. [123] reported that

the average heart rate did not change between young and aged groups, which

agree with our observation. The difference probably comes from the difference of

recording time and the number of subjects. Rather than discussing the details of

these differences, we will focus on the connection to the results in other sections

of this thesis.

Gender difference
HRV RRV

below 40 years above 55 years below 40 years above 55 years
Average p = 0.83 p = 0.18 p = 0.86 p = 0.05 (f)

Standard deviation p = 0.24 p = 0.44 p = 0.14 p = 0.17

Tab. 5.1: Gender difference of average HRV, average RRV, standard deviation of HRV
and standard deviation of RRV. (f) means that the values of females are sig-
nificantly higher than those of males.
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6. COMPLEXITY ANALYSIS

6.1 Overview of existing results

In this section, we will overview the results obtained but later also the introduction

of detrended fluctuation analysis (DFA) and detrended moving analysis (DMA).

The history of developments in this area is described in section 1.2

Complexity is independent of the mean and variance of a signal and different

techniques are required for its measurement. For example, two sine waves of

different amplitude can be thought to have the same complexity although they

have different variances.

Chaos theory provides several meaningful ways to quantify complexity. One

characteristic is the dimension, which is interpreted as the number of variables

in the difference or differential equations needed to construct a dynamical system

which will reproduce the measured signals. An other characteristic is entropy,

which is related to the amount of information needed to predict the future state

of the system. A larger dimension and a larger entropy imply greater complexity.

The approximate dimension and entropy ApEn were calculated in the signals of

the blood pressure and heart rate [69] and it was observed that younger subjects

have higher complexity than older people for both blood pressure and heart rate

variability. Ryan et al. calculated ApEn and reported that the complexity of

heart rate dynamics are higher in women than men [123]. Higuchi suggested

quantification of the complexity based on the fractal dimension [55, 56]. By using

this method, fractal changes in heart rate were studied with aging and heart failure

[50]. There is also a review about complexity and aging by Lipsitz et. al. [86].

Most of the output signals of physical, biological, physiological and economic

systems are non-stationary and exhibit complex self-similar fluctuations over a

broad range of space or time scales. To see the scaling property, a time series is

expected to grow with the window size in a power-law way and to be unbounded.

But a real signal is bounded. A method to resolve this paradox is to integrate
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the signals. The integration of a signal is the critical first step common to all the

methods used to calculate the complexity. Starting with an original signal g(i),

where i = 1, . . . , N , and N is the length of the signal, the first step of the Hurst

exponent, DFA, and DMA methods is to integrate g(i) and obtain the integrated

signal y(i) as

y(i) =
i∑

j=1

[g(j)− ḡ], (6.1)

where

ḡ ≡ 1

N

N∑

j=1

g(j). (6.2)

To calculate the Hurst exponent, we have to calculate the standard deviation,

S(N) = [
1

N

N∑

t=1

{g(i)− ḡ}2]1/2, (6.3)

and the range,

R(N) = max
1≤i≤N

y(i)− min
1≤i≤N

y(i). (6.4)

The Hurst exponent H is then defined as

R/S = (cN)H , (6.5)

where the coefficient c was taken as 0.5 by Hurst. He found that the ratio R/S is

very well described for a large number of natural phenomena by the above empirical

relation. The relation between the Hurst exponent and the fractal dimension is

simply D = 2−H.

A Hurst exponent of 0.5 < H < 1 represents persistent behavior. Persistence

means that if the curve has been increasing for a period, it is expected to continue

for another period. A Hurst exponent of 0 < H < 0.5 shows anti-persistent

behavior. After a period of decreases, a period of increases tends to occur.

6.2 Analytical methods: Detrended Moving Analysis
(DMA) and Detrended Fluctuation Analysis (DFA)

The DFA method is a modified root-mean-square (rms) analysis of a random walk.

The basic idea of these methods is based on the fractal property of a time series.

A time series is self-similar if it satisfies

y(i) ≡ aαy(
i

a
), (6.6)
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where y(i) is the integrated original signal g(i), and ≡ means that the statistical

properties of both sides of the equation are identical (both sides have the identical

probability distribution as a properly rescaled process). The x-axis is rescaled as

t → t/a and the y-axis as y → aαy.

Suppose that the original signal length is n2, and that a window of length

n1 < n2 is taken to test for self-similarity compared to the original signal. Then the

magnification factor of the x-axis Mx = a, is n2/n1. Suppose that the probability

distribution, P (y), of the variable y for the two windows before and after the

magnification, where s1 and s2 indicate the standard deviations for these two

distribution functions. Then the magnification factor of the y-axis My = aα is

s2/s1. The self-similarity parameter α is expressed as

α =
ln My

ln Mx

=
ln s2 − ln s1

ln n2 − ln n1

. (6.7)

To calculate s, the DFA method uses a filtering by polynomial functions. At first,

the integrated signal y(i) is divided into boxes of equal length n. In each box,

we fit y(i) using a polynomial function yn(i), which represents the local trend in

that box. When a lth-order polynomial function is used for filtering, we call the

method DFA-l.

Next, the integrated profile y(i) is detrended by subtracting the local trend

yn(i) in each box of length n and we can get Yn as

Yn(i) ≡ y(i)− yn(i). (6.8)

By this procedure, non-stationarity in the form of polynomial trends are elimi-

nated.

Finally, for each box, the rms fluctuation of the integrated and detrended signal

is defined as

F (n) ≡
√√√√ 1

N

N∑

i=1

[Yn(i)]2 (6.9)

and F (n) is then considered as s in the above discussion.

The DMA method uses a moving average method to get yn. For example, the

simple backward moving average is

yn(i) ≡ 1

n

n−1∑

k=0

y(i− k). (6.10)
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For more details, see [159]. Then we subtract the trend yn from the original signal

as in Eq. (6.8), can calculate F (n) according to Eq. (6.9).

The calculation of F (n) is made for varied box lengths n to obtain a power-law

relationship between the rms fluctuation function F (n) and the scale n in the form

of

F (n) ∼ nα. (6.11)

A linear relationship between log(F (n)) and log(n) indicates the presence of

scaling (self-similarity). The fluctuations in the small boxes are related to the

fluctuations in the larger boxes in a power-law fashion. The slope of the graph

between log(F (n)) and log(n) determines the self-similarity parameter α, which

quantifies the presence or absence of fractal correlation properties in the signals.

Because power laws are scale-invariant, F (n) is also called the scaling function

and the parameter α is the scaling exponent.

These two methods are both suitable for non-stationary signals such as the

physiological signals described before. Which method is better, DMA or DFA?

There is a comparative study about the performance of DFA and DMA methods

[159]. A study was made of how accurately these methods reproduce the exponent

α and what are the limitations of the methods when applied to signals with small

or large values of α. It was reported in [159] that DMA tends to underestimate

the exponent if it is larger than one, whereas the DFA, especially DFA-1, shows

relatively good correspondence to real values over a wide range of α. In our study,

the exponents went beyond one. Therefore we adopted the DFA-1.

6.3 Relationship between the exponents obtained by
DFA and from the auto-correlation function

Many simple systems have an auto-correlation function that decays exponentially

with time. However it was discovered that in a system composed of many inter-

acting subsystems, it decays not exponentially but in a power-law form [12, 110].

This implicates that there is no single characteristic time in a complex system. If

correlations decay with a power-law form, the system is called ‘scale-free’ because

there is no characteristic scale associated with a power law. Since at large time

scales a power law is larger than an exponential function, correlations described

by power laws are termed ’long range’ correlations in the sense that they are of
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larger range than an exponentially decaying function. The DFA method can detect

the long range correlation and here we will discuss the relationship between the

exponent and the correlation function.

The exponent α (self-similarity parameter) which is calculated from an inte-

grated time series is related to the more familiar auto-correlation function, C(τ),

or the Fourier spectrum, S(f), of the original (non-integrated) signal. (It is

well known that C(τ) and S(f) are related through the Fourier transform as

S(f) =
∫∞
−∞ C(τ) exp(ı2πfτ)dτ .)

White noise, whose value at each moment is completely uncorrelated with any

previous value, has an auto-correlation function, C(τ), which is 0 for any non-zero

τ (time-lag). The exponent α of white noise is 0.5 [38].

An exponent α greater than 0.5, and less than or equal to 1.0, indicates persis-

tent long-range power-law correlations, i.e., C(τ) ∼ τ−γ. The relationship between

α and γ is γ = 2− 2α . It should also be noted that the power spectrum, S(f), of

the original (non-integrated) signal is also of a power-law form, i.e., S(f) ∼ 1/fβ.

Since the power spectral density is simply the Fourier transform of the autocorre-

lation function, β = 1 − γ = 2α − 1. The case of α = 1 corresponds to 1/f noise

(β = 1).

When α < 0.5, power-law anti-correlations are present such that large values

are more likely to be followed by small values [15].

When α > 1, correlations exist but cease to be of power-law form; α = 1.5

indicates brown noise, which is created by the integration of white noise. Brown

noise is much more correlated than white noise, since the fluctuations at a point

in time do depend on previous fluctuations and cannot stray too far from them in

too short a time. Brown noise has a spectral density proportional to 1/f 2 and has

stronger modulation in slow time scales.

The exponent α can also be viewed as an indicator of the roughness of the

original time series: the larger the value of α, the smoother the time series. In

this context, 1/f noise can be interpreted as a compromise between the complete

unpredictability of white noise (very rough form) and the much smoother form of

brown noise [118].
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6.4 Results

6.4.1 Application to HRV signals

The original HRV signals of a young female and an aged female are shown in

Fig. 6.1 along with examples of white noise and brown noise. The HRV signals

are determined according to R-peaks as explained in section 5.3.1. The interval

between subsequent R peaks is usually around 1 second. According to Eq. (5.20),

the sampling frequency of the HRV signal is also originally around 1 Hz although

we made their sampling frequency 10 Hz by linear interpolation. To compare HRV

signals to white noise and brown noise, we generated and recorded white noise with

a sampling frequency 1 Hz and extended its sampling frequency to 10 Hz by linear

interpolation, just as we did to the HRV signals. The brown noise with sampling

frequency of 1 Hz was obtained by integrating the white noise with 1 Hz and its

sampling frequency was also extended to 10 Hz by linear interpolation.

We take the number of points n from 20 to 2000, which means from 2 to

200 seconds. The results of DFA for white noise, brown noise and the HRV signals

from a young female and an aged female are shown in Fig. 6.2. When n is smaller

than 100, the slope between log(n) and log(F ) deviates from 0.5 for white noise.

This deviation from 0.5 in the white noise in Fig. 6.1 is thought to come from the

small sampling frequency. Fig. 6.4 shows the time series of the white noise with

sampling frequency of 10 Hz and the result of DFA. An exponent around 0.5 is

obtained within the whole region from n = 20 to n = 200. For this reason, we

only use the results for n > 100.

As shown in Fig. 6.2a, the exponent of white noise is 0.49, which is close to the

expected value 0.5. The exponent of brown noise is 1.49, whereas it is also close

to the expected value 1.50 as shown in Fig. 6.2b. The exponents of human HRV

signals cannot be determined uniquely as in the case of white noise and brown

noise, because the slope between log(F ) and log(n) changes depending on the size

of n as shown in the bottom of Fig. 6.2. We divided the range of n into two intervals

so that the slope of HRV could be determined more reliably. The exponent αi of

an intermediate time scale is defined by using n from 100 to 500 (10-50 sec), while

the exponent αl of a long time scale is defined by using n from 500 to 2000 (50-

200 sec). The physiological meaning of each interval will be described below in
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section 7.2.1.

The results for all subjects are plotted separately in different colors for males

and females in Fig. 6.3 (blue for males and red for females). The exponent αi has

significant correlation with age for both males (r = 0.29, p = 0.01) and females

(r = 0.37, p = 0.01). There is no significant gender difference, neither in the

younger age group below 40 years (p = 0.19), nor in the older age group above 55

years (p = 0.06).

In the long range (50-200 sec), there is no significant correlation related to age

for either male (r = 0.03, p = 0.83) or female (r = 0.05, p = 0.73). There is

no significant gender difference, neither in the younger age group below 40 years

(p = 0.35) nor in the older age group above 55 years (p = 0.80).
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Fig. 6.2: The log-log plot between F and n of white noise (a), brown noise (b), the HRV
of a young female (c), the HRV of an aged female (d). In (a) and (b), the
exponent α was calculated on the right side of the line, n = 100. In (c) and
(d), the exponent αi was calculated between the two lines (the intermediate
range), n = 100 and n = 500, whereas the exponent αl was calculated on the
right side of the line n = 500 (the long range).
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6.4.2 Application to blood flow signals

The DFA method was applied to the blood flow signals measured with ACh and

SNP. The signals were resampled from 400 Hz to 10 Hz by averaging 40 points

and their lower frequency oscillations below 0.005 Hz were detrended. The blood

flow signals of a young female and an aged female are shown in Fig. 6.5. The

results of the application of DFA to these four signals are shown in Fig. 6.6. In

the case of the blood flow, the slope seems to be defined well on a time scale

from 1 to 200 seconds. The plots of α with age for ACh and SNP are shown in

Fig. 6.7. There is significant negative correlation with age in the ACh signals for

males (r = −0.37, p = 0.00) and for females (r = −0.59, p = 0.00) and in the

SNP signals for males (r = −0.58, p = 0.00) and females (r = −0.58, p = 0.00).

There is a significant gender difference for ACh in the younger population below

40 years (p = 0.00): the α values of young females are significantly higher than

those of young males. However the difference disappears in the aged population

above 55 years (p = 0.49). For SNP, no significant gender difference was observed

both in the younger population (p = 0.27) and the aged population (p = 0.95).

The exponent α for ACh is higher than that of SNP for young females, young

males below 40 years and for aged males and females above 55 years (p = 0.00 in

all cases).

6.5 Discussion

6.5.1 HRV signals

There are several studies of aging based on the use of DFA [43] [143]. They

reported that the exponents of DFA increase with age, which means that the

complexity decreases with age. The exponents depend on the time window in

which they are calculated. They took a size of 4 to 11 seconds for the short-term

exponent and a size more than 11 seconds for the intermediate-term exponent. In

our case, it was found that the result below 10 seconds is not correct because of

the lack of information in the original heart rate signals and we therefore discarded

information below 10 seconds. For reasons which we describe below in section 7.2.1,

we divided the window size into 10-50 seconds and 50-200 seconds. Our results

are consistent with the earlier result that the exponent increases with age on
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a time scale from 10 to 50 seconds. The HRV signals of younger subjects are

relatively close to white noise, whereas those of aged subjects are relatively close

to brown noise in the intermediate time scale. That means that HRV signals of

aged subjects are less complex than those of young subjects. These results support

the hypothesis that aging is associated with less complexity [43]. The physiological

reasons which cause the effects of aging on complexity will be discussed in details

below in section 7.2.1 in relation to the detailed spectral analysis of HRV signals.

Although DFA is a good way to quantify the complexity, it has to be noted

that it is intended only for mono-fractal signals, to measure only one exponent

characterizing a given signal. It is reported that the heart rate data of healthy

subjects are not mono-fractal but multi-fractal [43]. Multi-fractal signals show

self-similar (scale-invariant) fluctuation over a wide range of time scales, require

a large number of indices to characterize their scaling properties and are more

complex than mono-fractal signals. In this study, we found that the slope between

log(F (n)) and log(n) often changes dramatically around n = 50 as it can be seen

in Fig. 6.2. This means that the DFA is not sufficient to characterize fractal

correlations fully and may indicate multi-fractal properties.

6.5.2 Blood flow signals

For the blood flow signals measured with ACh and SNP, the signals of aged subjects

are more complex than those of young subjects, which is opposite to the results

for the HRV signals. The signals with SNP are more complex than those with

ACh. The difference between ACh and SNP comes possibly from whether the

respond is endothelial-related or not. Note that the sites of measurement for these

two substances are quite close, and that the data wa obtained under the same

physiological condition for the same subject.

It seems that a less complex responce during vasodilation means a younger

vascular function. The physiological reasons for the effect of aging on complexity

will be discussed later in section 7.2.2 related to the spectral analysis of the blood

flow signals.



7. DETECTION OF TIME-VARYING OSCILLATORY
COMPONENTS

In this section, we explain the methods used to detect oscillatory components in

the measured signals.

There are two major difficulties in the frequency analysis of cardiovascular

signals. The first is the time-varying nature of the characteristic frequencies. As

seen in the HRV and RRV of Fig. 5.2, the signals do not have a constant period,

but their inherent cycles always fluctuate. The second it the broad frequency

band within which the characteristic peaks are expected. Each method suffers

from limitations of the resolution in time and frequency.

The FFT is a basic method of frequency analysis, and it is still commonly

used. However it has shortcomings when applied to the analysis of finite and non-

stationary data. First of all, the FFT cannot chase the time varying frequency.

It produces only one picture in the frequency domain from a whole signal. If the

signal has a time varying frequency, the frequency peak is broadened. Moreover

any abrupt change at one moment affects the whole result. To overcome these

drawbacks of the FFT, a short-time Fourier transform was introduced by Gabor

[41] in which a window with a certain length is shifted along the signal to obtain

information about the time, and the FFT is performed within the window to get the

current frequency components (see section 7.1.1). However the time and frequency

resolution depend on the window length, and the detection of low frequencies

demands a wide window. Wavelet analysis is more suitable for signals with time-

variable frequency than Fourier analysis because a sudden change is less effective.

This is a big merit because a movement of the body during measurement easily

destroys the signals with FFT. Moreover, it is more accurate for low frequencies

because it is a scale-independent method in terms of frequency, as we explain later

in section 7.1.4.
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7.1 Analytical methods

7.1.1 Fourier analysis

The Fourier transform is a method which detects the frequency components in a

time-domain signal g(u) by use of the following equation,

ĝ(f) =
∫ ∞

−∞
g(t)e−2πıfudu. (7.1)

The original signal can be obtained by an inverse Fourier transform,

g(u) =
1

2π

∫ ∞

−∞
ĝ(f)e2πıfudf. (7.2)

The energy of the signal equals

Etot =‖ s ‖2=
∫ ∞

−∞
|g(u)|2du =

∫ ∞

−∞
|ĝ(f)|2df =‖ ĝ ‖2 . (7.3)

This relation between ‖ g ‖ and ‖ ĝ ‖ is known as Plancherel’s theorem.

7.1.2 Short time Fourier transform

The Fourier transform cannot deal with local properties in time. To overcome

the short-time Fourier transform (STFT) was introduced. A window w(u) with a

fixed length is shifted along time to obtain the local information around t. The

information of the original signal g(u) in the time-frequency domain ĝ(f, t) is then

obtained from

G(f, t) =
∫ ∞

−∞
w(u− t)g(u)e−2πıfudu. (7.4)

The original signal is reconstructed as

g(u) =
1

2π ‖ w2 ‖
∫ ∞

−∞
dt

∫ ∞

−∞
Ĝ(f, t)w(u− t)e2πıftdf. (7.5)

In analogy to Plancherel’s theorem, the energy is expressed as

‖ g ‖2=
∫ ∞

−∞
|g(u)|2du =

1

‖ w2 ‖
∫ ∞

−∞

∫ ∞

−∞
|G(f, t)|2dfdt, (7.6)

where ‖ w2 ‖= ∫∞
−∞ |w(t)|2dt.

The uncertainty principle can be used here to point out that the time and

frequency resolution can not be increased at the same time.
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The mean time and frequency are given by

t∗ ≡ 1

‖ w ‖
∫ ∞

−∞
|w(t)|2tdt, (7.7)

f ∗ ≡ 1

‖ ŵ ‖
∫ ∞

−∞
|ŵ(f)|2fdf, (7.8)

where ‖ ŵ2 ‖= ∫∞
−∞ |ŵ(t)|2df . The standard deviations ∆t and ∆f are determined

by

∆t
2 ≡ 1

‖ w ‖
∫ ∞

−∞
|w(t)|2(t− t∗)2dt, (7.9)

∆f
2 ≡ 1

‖ ŵ ‖
∫ ∞

−∞
|ŵ(f)|2(f − f∗)2df, (7.10)

The uncertainty principle states

∆t∆f ≥ 1

4π
. (7.11)

This means that in order to gain good time resolution, a narrow time window

should be used, while a good frequency resolution and detection of low frequencies

demands a wide time window.

7.1.3 Discrete Fourier transform (DFT)

In order to apply the Fourier transform to real signals, we have to think of discrete

Fourier transform. Suppose that an original signal has a finite window length

T = Nts and is sampled at discrete points its, where i = 0, . . . , N − 1. The

discrete Fourier transform of the signal

G(fk) =
N−1∑

0

g(its)e
−2πık/N (7.12)

is defined only for discrete frequencies fk = k/T , where k = 0, . . . , N − 1. The

frequency resolution is determined by the length of the signal as 4f = 1/T and

the upper frequency limit fmax equals 2/ts .

7.1.4 Wavelet Analysis

Wavelet analysis is a scale-independent method in terms of frequency. It was a

mother wavelet which is based on functions of various scales. In this study, we use

the Morlet mother wavelet which is written as

ψ(u) =
1√
π

e−iw0ue−u2/2. (7.13)
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By use of a scaling factor s and a centered time t, a family of nonorthogonal basis

functions is obtained as

Ψs,t(u) = |s|−1/2ψ(
u− t

s
). (7.14)

The continuous wavelet transform of a signal g(u) is then defined as

g̃(s, t) =
∫ ∞

−∞
Ψ̄s,t(u)g(u)du. (7.15)

Thus any specific scale is avoided and the analysis becomes scale-independent in

terms of frequency. The spectral function g̃(s, t) is complex and expressed by its

amplitude and phase as g̃(s, t) = r(s, t) exp(ıθ(s, t)). The phase θ(s, t) is considered

as an instantaneous phase of oscillation of a frequency scale s at a time t [14].

The energy density of the signal in the time-scale domain is expressed as [68]

ρ(s, t) = C−1s−2|g̃(s, t)|2 (7.16)

The total energy of the signal g(u) is

Etot =‖ g ‖= C−1
∫ ∫ 1

s2
|g̃(s, t)|2dsdt. (7.17)

The energy in a frequency interval from fi2 to fi1, as later used in subsection 7.2.1,

is expressed as

Ei(fi1, fi2) =
1

(fi2 − fi1)(t2 − t1)

∫ 1/fi2

1/fi1

∫ t2

t1

1

s2
|g̃(s, t)|2dsdt. (7.18)

If we use the relationship s = 1/f and ds = −df/f 2, we can easily derive the

following equation,

Ei(fi1, fi2) =
1

(t2 − t1)

∫ fi1

fi2

∫ t2

t1
|g̃(f, t)|2dfdt =‖ g̃ ‖2 . (7.19)

We can recover ‖ g ‖=‖ g̃ ‖2 in analogy to the Plancherel’s theorem.

The time and frequency-averaged amplitude, or wavelet amplitude, in a fre-

quency interval from fi2 to fi1 is expressed as

Ai(fi1, fi2) =
1

(fi2 − fi1)(t2 − t1)

∫ fi1

fi2

∫ t2

t1
|g̃(f, t)|dfdt. (7.20)

If we use the relationship s = 1/f and ds = −df/f 2, we can quickly arrive at the

following equation,

Ai(fi1, fi2) =
1

(fi2 − fi1)(t2 − t1)

∫ 1/fi2

1/fi1

∫ t2

t1

1

s2
|g̃(s, t)|dsdt. (7.21)
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Bračič and Stefanovska introduced the averaged amplitude as absolute amplitude

[22].

The relative amplitude and energy are defined as the ratio of those quantities

within a given frequency interval to those within the total frequency interval, in

the following way,

ai(fi1, fi2) =
Ai(fi1, fi2)

Atot

, (7.22)

ei(fi1, fi2) =
Ei(fi1, fi2)

Etot

. (7.23)

The total amplitude Atot and energy Etot are defined in the whole interval in which

we are interested.

7.1.4.1 Frequency resolution

Suppose that the mother wavelet has centers of gravity at t0 and f0 in time and

frequency and the corresponding standard deviation is 4t0 and 4f0 . The scaled

mother wavelet Ψs,t has a center at st0 and deviation s4t0 according to Eq. 7.14.

The center of Ψs,t in the frequency domain is expressed as

f(s) =
1

s
f0, (7.24)

and the corresponding standard deviation as

4f(s) =
1

s
4f0 . (7.25)

Then the local information around f is given in the frequency interval

[f0/s−4f0/2s, f0/s +4f0/2s]. (7.26)

The ratio between the center frequency f(s) and bandwidth 4f(s)

4f(s)

f(s)
=
4f0

f0

(7.27)

is independent of the scaling s. This property can be seen if time average of

wavelet of simple sinus waves, sin(2πt), sin(0.2πt) and sin(0.02πt) are plotted on

linear and semi-log scales as shown in Fig. 7.1. On the semi-log scale, the width

of the peak looks the same although on the linear scale, it is quite different.
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Fig. 7.1: Time averaged wavelet amplitude plotted on a linear scale (a) and a semi-log
scale (b).

7.1.4.2 Energy and amplitude

Let us see the difference of the energy and amplitude of the wavelet defined by

Eq. (7.18) and Eq. (7.21). As described below, our frequency interval of interest

is from 0.005 to 2.0 Hz, which is divided into six subintervals (see the Tab. 7.1).

According to these divisions of frequency intervals, we calculated the energy and

amplitude of the sine waves, sin(2πt), sin(0.2πt) and sin(0.02πt) by wavelet anal-

ysis. For all the three cases, the total energy
∫ |g(u)|2du is same. The absolute

energy within a certain interval depends on the square of the amplitude of oscil-

lation and does not depend on the frequency. In the case of B sin(ωt), the total

energy of wavelet depends only on B2 but not on ω. Then the relative energy in the

ith interval is proportional to |Bi|2/ ∑6
j=1 |Bj|2, where the sum of Bj is calculated

for the six intervals which are listed in the Tab. 7.1.

On the other hand, the amplitude of the wavelet is affected not only by the

amplitude B but also by the frequency ω. To illustrate this, we use three sine

functions whose total amplitudes are different. The higher the frequency, the
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higher is the total amplitude. However, if we calculate the absolute amplitude

in each interval, the higher frequency produces a lower amplitude. In the case

of sin(2πt), the total amplitude is 2.7 and A1, which is averaged from 0.6 to 2.0

Hz, is 3.9, whereas in the case of sin(0.2πt), the total amplitude is 0.9 and A3,

which is averaged from 0.052 to 0.145 Hz, is 18. It is because the wavelet has the

property that 4f/f is constant, as seen in Fig. 7.1b. If two frequencies, ω1 and

ω2, lie in different intervals i1 and i2, and if the two oscillations have the same

amplitude, the wavelet amplitude of the lower frequency Ai1 is higher than that

of the higher frequency Ai2 . If the two frequencies lie in the same interval such

as sin(2πt) and sin(2.4πt), the relative amplitude return the same value for both

cases, which is obvious from its definition. But if there are several peaks in different

intervals, the interpretation of relative amplitude is much more complicated since

the information about amplitude and frequency in several intervals are combined.

7.2 Results

7.2.1 Components that modulate HRV

Tab. 7.1 show the frequency intervals in which we are interested for physiological

reasons. A similar study but on smaller number of subjects using spectral analysis

of HRV by wavelet has conducted by Lotrič et al. [89]. They studied the effects of

aging on activity within the frequency intervals from II to V in Tab. 7.1. In this

thesis, the interval VI of endothelial activity is newly added, and gender difference,

which was not mentioned in [89], is discussed.

Interval Frequency (Hz) Physiological origin
I 0.6-2.0 cardiac activity
II 0.145-0.6 respiration
III 0.052-0.145 myogenic activity
IV 0.021-0.052 neurogenic activity
V 0.0095-0.021 endothelial metabolic activity
VI 0.005-0.0095 endothelial activity

Tab. 7.1: The frequency intervals considered in this study and their physiological origins

Lotrič et al. compared Fourier transform and evolutive autoregressive (AR)

modelling, which are frequently used with HRV signals, with the wavelet trans-

form. For the Fourier transform, the frequency resolution ∆f is determined by
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the window length and is constant for all the frequencies. For that reason, it

was reported that it does not accurately locate the peaks in the low frequency

interval. In contrast to the Fourier transform, ∆f/f is constant for the wavelet

transform. Therefore the relative frequency resolution remains the same over all

the frequency intervals. The absolute frequency resolution ∆f is actually much

better in the low frequency interval than in the high frequency interval for wavelet

transform. Because of the wide frequency range of the intervals in Tab. 7.1, the

wavelet transform is more suitable than the Fourier transform.

Autoregressive spectrum estimators avoid the problem of frequency discretiza-

tion. By this method, a model of the time series is first built and the spectrum

of this model is considered as an estimate of the spectrum of the original model.

Linear models of different order are used to represent measured signals. An advan-

tage of the wavelet transform compared to AR estimation is that it is calculated

directly from the data and does not need modelling. The limitations of linear

modelling, and the choice of model order, are avoided.

It was therefore concluded that the wavelet transform is the most suitable

method of the three. We used the results of the wavelet transform.

The oscillations from intervals II to V in blood flows were studied by Bračič et

al. [22]. In our study, the lowest frequency interval VI is added to include another

endothelial-related activity.

The amplitude of the wavelet in time-frequency domain, and the time-average

wavelet spectrum of HRV are presented in Figs. 7.2 and 7.3, respectively. The

origins of these spectral peaks have been discussed in several papers [22, 134, 89,

139, 80, 81, 82, 83, 132, 138]. Here we review them briefly again.

(1) Interval I around 1 Hz: the cardiac activity

The basic frequency around 1 Hz in the ECG signal corresponds to the fre-

quency of the heart activity. At rest, it varies from 0.6 in sportsmen to 1.6 Hz in

subjects with impaired cardiovascular systems. The effect of the heart pumping is

manifested in the vessels.

(2) Interval II around 0.2 Hz: the respiratory activity

Since Hales found out the RSA, it has been studied extensively since then

[6, 5, 32, 58]. The modulation in this frequency interval corresponds well to the

respiratory signal as shown in the Fig. 5.2, and the instantaneous respiratory
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Fig. 7.2: The time frequency domain of wavelet
transform of HRV.
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Fig. 7.3: The time-averaged ampli-
tude of HRV.

frequency correspond well to the peak in the frequency domain of HRV wavelet

analysis.

(3) Interval III around 0.1 Hz: myogenic activity

The heart and respiratory activity serve as pumps that drive blood through

vessels. The vessels themselves also help to control blood flow via the mech-

anism called myogenic autoregulation. The vascular smooth muscles contract in

response to an increase of intravascular pressure and relax in response to a decrease

of pressure. These responses are thought to be controlled by the oscillations of

ionic concentrations, especially Ca2+ across the membranes of the vascular smooth

muscles. It has been proposed that oscillations in the blood flow around 0.1 Hz

may originate from the intrinsic myogenic activity of the vascular smooth muscles

caused by pacemaker cells found in the vessel walls [82].

(4) Interval IV around 0.03 Hz: the neurogenic activity

The autonomous nervous system innervates the heart, lungs and blood vessels,

except the capillaries. The continuous activity of the autonomous nervous system

serves to maintain the basal level of contraction of the vessels. The nervous system

controls the peripheral resistance by changing its oscillatory frequency: an increase

produces vasoconstriction. The peak around 0.03 Hz is hypothesized to originate

from neurogenic activity because there is an indirect evidence that disconnecting

nerves from the vessels, thereby suppressing the neurogenic regulation of the vessel

radius, causes the oscillation around 0.03 Hz to disappear [70]. It was observed
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that there is a significantly lower oscillation amplitude on flaps of transplanted

skin, compared to intact skin, in this frequency interval [132]. Brajać et al. also

observed a significant change before and after denervation on rats [11]

(5) Interval V around 0.01 Hz: the NO-related endothelial activity

The blood supplies the cells with nutrients and removes the waste products

of their metabolism while circulating around the circle of vessels. The substances

related to metabolism such as O2 or CO2 have a direct effect on the state of

contraction of the vascular musculature. The control of the blood flow based on

the concentrations of metabolites is termed metabolic regulation. There is indirect

evidence that the oscillation around 0.01 Hz originate from endothelial activity [83]

[139]. The layer of endothelial cells serves as a barrier between the blood and the

tissues of vessels and controls the contraction and relaxation of smooth muscle by

releasing various substances. It seems that metabolic regulation of the blood flow is

mediated by the activity of endothelial cells through adjusting the concentrations

of various substances. Nitric oxide (NO) is one of the most important vasoactive

substances. It was reported that the interval V was modulated by the inhibition

of NO synthetase of endothelium [80] and this interval is related to NO from

endothelium.

(6) Interval VI around 0.007 Hz: the endothelial activity

This interval has not been identified until very recently probably because it

was filtered out during data pre-processing. However, a strong peak was observed

around 0.007 Hz in this study, as well as other studies [14, 81]. This interval may

also be related to the endothelial activity.

It has to be noted that the interval I is not shown in Fig. 7.3. The HRV signals

are determined according to R peaks as explained in section 5.3.1. The interval of

continuous R peaks is usually around 1 Hz. According to Eq. (5.20), the sampling

frequency of the HRV signal is also around 1 Hz. It means that the HRV signals

do not have enough sampling points so that the frequency of interval I can be

resolved.

For calculation, the scaling s varied from 0.5 to 200 by successive multiplication

with a factor 1.05 in this chapter.

The effects of aging on the absolute energy within each interval except I, are

shown in Fig. 7.4 and Tab. 7.2, and those on relative energy defined by Eq. (7.23)
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in Fig. 7.5 and Tab. 7.3. If a few outliers changes results of the significant tests, I

got rid of the outliers and showed the results after the removal of them.

It can be seen that total energy decreases significantly with age both for females

(r = −0.33, p = 0.02), which corresponds to the significant decrease with age in

the standard deviation in HRV as shown in Fig. 5.3. There is a trend to decrease

with age for males, although the p-value does not show significance for males

(r = −0.20, p = 0.10). The decomposition into the six intervals reveals that this

decrease of total energy comes from the significant decrease in absolute energy of

interval II and interval III both for males and for females. Absolute energy in

interval II decreases significantly with age for males (r = −0.39, p = 0.00) and

for females (r = −0.50, p = 0.00) and absolute energy in interval III decreases

significantly with age for males (r = −0.38, p = 0.00) and females (r = −0.46,

p = 0.00). Absolute energies in intervals IV, V and VI do not show significance

age-related changes.

I introduce the results of relative energy because they are closely related to

the results of the complexity analysis, which we discussed in the subsection 6.4.1.

The relative energy is important rather than the absolute energy for complexity

analysis as is discussed in the subsection 7.4. Here I explain the results briefly. It

is observed that interval V (endothelial) increases significantly for males (r = 0.29,

p = 0.01) and for females (r = 0.40, p = 0.01). Relative amplitude in interval III

(myogenic) decreases significantly for males (r = −0.25, p = 0.03) and relative

amplitudes decrease for females in intervals II (r = −0.47, p = 0.00) and IV

(r = 0.56, p = 0.00).

Absolute energy for HRV
males females

Interval r p r p
Total -0.20 0.10 -0.39 0.01
VI -0.02 0.86 -0.09 0.57
V -0.09 0.44 -0.08 0.63
IV -0.16 0.21 -0.27 0.09
III -0.38 0.00 -0.46 0.00
II -0.39 0.00 -0.50 0.00

Tab. 7.2: Summary table for age-related changes in absolute energy

The gender differences within each interval for HRV are summarized in Tab. 7.4.
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Fig. 7.4: Total energy (a), absolute energy in interval VI (b), V (c), IV (d), III (e), II
(f).

20 40 60 80
0

0.1

0.2

0.3

0.4
r
m

=0.18, p
m

=0.13

V
I

r
f
=0.18, p

f
=0.23

20 40 60 80
0

0.1

0.2

0.3

0.4
r
m

=0.29, p
m

=0.01

V

Relative energy of HRV

r
f
=0.40, p

f
=0.01

20 40 60 80
0

0.1

0.2

0.3

0.4
r
m

=0.19, p
m

=0.11

IV

r
f
=0.56, p

f
=0.00

Age (years)

c

d e

20 40 60 80
0

0.2

0.4

0.6 r
m

=−0.25, p
m

=0.03

Age (years)

III

r
f
=−0.19, p

f
=0.21

20 40 60 80
0

0.5

1
r
m

=−0.15, p
m

=0.19

Age (years)

II

r
f
=−0.47, p

f
=0.00

a b

Fig. 7.5: Relative energy in interval VI (a), V (b), IV (c), III (d), II (e).



7. Detection of time-varying oscillatory components 69

Relative energy for HRV
males females

Interval r p r p
VI 0.18 0.13 0.18 0.23
V 0.29 0.01 0.40 0.01
IV 0.19 0.11 0.56 0.00
III -0.25 0.03 -0.19 0.21
II -0.15 0.19 -0.47 0.00

Tab. 7.3: Summary table for age-related changes in relative energy

There is a significant gender difference in absolute energy of interval II in the

younger population below 40 years (p = 0.01): energy of females are higher than

that of males. For relative amplitude, there are significant differences in interval III

in the younger population (p = 0.02) and in interval II in the younger population

(p = 0.05). It means that RSA is relatively (and absolutely) stronger for females

than for males, whereas the myogenic modulation is relatively stronger for males

than females in the younger population.

Gender difference (HRV)
Absolute energy Relative energy

below 40 years above 55 years below 40 years above 55 years
Total p = 0.09 p = 0.44
VI p = 0.41 p = 0.63 p = 0.59 p = 0.53
V p = 0.56 p = 0.40 p = 0.53 p = 0.64
IV p = 0.12 p = 0.75 p = 0.22 p = 0.61
III p = 0.74 p = 0.43 p = 0.02 (m) p = 0.36
II p = 0.01 (f) p = 0.06 p = 0.05 (f) p = 0.39

Tab. 7.4: Gender differences between females and males in the results of wavelet analysis
of HRV. (m) means that energy for males is significantly higher than that of
females and (f) vice versa.

7.2.2 Oscillatory components in the blood flow signal

In this section, we discuss the oscillatory components in blood flow signals. The

blood is pumped out from the heart, goes into arteries and arterioles, then branches

into capillaries, integrates into veins and comes back to the heart again. Thus the

cardiovascular system forms a closed loop of vessels, as first reported by the British

physiologist William Harvey in 1628. The cardiac output circulates throughout



7. Detection of time-varying oscillatory components 70

the body and is determined by the product of the heart rate and the stroke volume.

The amount of the cardiac output is around 5 liters per minute. The oscillation of

blood flow propagates from the heart into the microcirculation including the sites

on the right wrist, on the inner right ankle and at two sites on the left arm, where

we measured the basal flows and the flow with ACh and SNP as we described in

chapter 3. One of the blood flow signals is shown in Fig. 3.4.

7.2.2.1 Absolute energy

All the blood flow signals were resampled from 400 Hz to 10 Hz and detrended as

discussed in subsection 6.4.2. Then the wavelet analysis was applied to them. The

wavelet transform calculated from the signal measured with ACh in Fig. 3.4a is

shown in Fig. 7.6, and a time-averaged Wavelet amplitude is shown in Fig. 7.7. The

wavelet transform calculated from the signal measured with SNP in Fig. 3.4b is

shown in Fig. 7.8, and a time-averaged segment is shown in Fig. 7.9. These signals

with ACh and SNP are from the same subject. The six peaks, the physiological

origins of which have already been discussed in section 7.2.1, were observed. As we

explained in chapter 3, the two vasodilators, ACh and SNP, were applied to assess

the change in endothelial function with age. The six peaks still exist but the

strength of these oscillatory components is different from endothelial-dependent

ACh to endothelial-independent SNP in several intervals as shown in these wavelet

results. For example, in this case, the peak at the lowest frequency for ACh

is higher than that for SNP. It has to be emphasized again that we measured

the signals with ACh and SNP in close proximity (2-5 cm apart) with similar

vasculature, on the same person, simultaneously, which indicates the differences

come from different actions of the two different substances. The different effect

of the substances was documented in a large number of studies with respect to

the oscillatory components. The difference with respect to the average flow and

energies have to be established.

Age-related changes in average flow and total energy are shown in Fig. 7.10,

those in absolute energy for ACh in Fig. 7.11, and in absolute energy for SNP

in Fig. 7.12. A summary of these results is shown in Tab. 7.5. If a few outliers

changes results of the significant tests, I got rid of the outliers and showed the

results after the removal of them.
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Fig. 7.6: The time frequency domain of wavelet
transform of blood flow with ACh.
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Fig. 7.7: The time-averaged ampli-
tude of blood flow with
ACh.

Fig. 7.8: The time frequency domain of wavelet
transform of blood flow with SNP.
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Average flow does not change with age for either ACh or SNP. The total am-

plitude with ACh increases significantly with age for males but decreases signifi-

cantly with age for females. It is because the absolute energy in intervals VI and

V decreases significantly with age for females, and because the absolute energy in

interval I increases significantly with age for males. Actually there are significant

gender differences for ACh in interval VI and V as shown in Tab. 7.7. Young

females have higher energy in the endothelial related intervals than young males.

The total energy for SNP increases with age for females because of the increase

in the absolute energies in the interval I and II.

The differences between ACh and SNP of absolute energy are summarized in

Tab. 7.6. For females, the absolute energy with ACh is higher than those with

SNP in interval VI, both in the younger population and the aged population in

interval V in the younger population whereas for males the absolute energy with

ACh is higher in intervals VI and V in the younger population. We can say that

with age, humans tend to lose the differences in response to ACh and SNP in

intervals V or VI compared to SNP.
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Fig. 7.10: The correlation between age and average flow with ACh (a), average flow with
SNP (b), total energy with ACh (c) and total energy with SNP (d).
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Fig. 7.11: The correlation with age and absolute energy in interval VI (a), V (b), IV (c),
III (d), II (e), I (f) for ACh.

Absolute energy
males females

ACh SNP ACh SNP
Interval r p r p r p r p

Average flow -0.00 0.98 0.03 0.82 -0.21 0.16 0.04 0.79
Total energy 0.23 0.05 0.20 0.11 -0.33 0.02 0.31 0.04

VI -0.05 0.67 0.18 0.15 -0.42 0.00 -0.17 0.26
V -0.05 0.71 0.16 0.21 -0.47 0.00 -0.16 0.30
IV 0.13 0.31 -0.00 0.99 -0.30 0.05 0.01 0.96
III -0.14 0.27 0.09 0.51 0.12 0.41 0.24 0.13
II -0.01 0.93 0.15 0.25 0.12 0.41 0.31 0.05
I 0.33 0.01 0.20 0.11 0.24 0.14 0.37 0.01

Tab. 7.5: Summary table for age-related changes in average flow, total energy and ab-
solute energy.
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Fig. 7.12: The correlation with age and absolute energy in interval VI (a), V (b), IV (c),
III (d), II (e), I (f) for SNP.

The difference between ACh and SNP for absolute energy
Males Females

below 40 years above 55 years below 40 years above 55 years
Average flow p = 0.00 (S) p = 0.22 p = 0.86 p = 0.61
Total energy p = 0.28 p = 0.95 p = 0.01 (A) p = 0.56
Interval VI p = 0.00 (A) p = 0.24 p = 0.00 (A) p = 0.00 (A)
Interval V p = 0.03 (A) p = 0.92 p = 0.01 (A) p = 0.09
Interval IV p = 0.11 p = 0.13 p = 0.96 p = 0.43
Interval III p = 0.35 p = 0.06 p = 0.91 p = 0.65
Interval II p = 0.10 p = 0.97 p = 0.69 p = 0.65
Interval I p = 0.08 p = 0.91 p = 0.96 p = 0.44

Tab. 7.6: The difference in average flow, total energy and absolute energy between ACh
and SNP. (A) means that ACh is significantly higher than SNP and (S) vice
versa.
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Gender difference for absolute energy
ACh SNP

below 40 years above 55 years below 40 years above 55 years
Average flow p = 0.19 p = 0.45 p = 0.55 p = 0.17
Total energy p = 0.01 (f) p = 0.87 p = 0.65 p = 0.44
Interval VI p = 0.00 (f) p = 0.35 p = 0.77 p = 0.23
Interval V p = 0.00 (f) p = 0.59 p = 0.60 p = 0.19
Interval IV p = 0.07 p = 1.0 p = 0.73 p = 0.40
Interval III p = 0.85 p = 0.43 p = 0.28 p = 0.37
Interval II p = 0.83 p = 1.0 p = 0.31 p = 0.61
Interval I p = 0.17 p = 0.68 p = 0.70 p = 0.28

Tab. 7.7: Gender differences in average flow, total energy and absolute energy of ACh
(the left side) and SNP (the right side). (m) means that males’ are significantly
higher than females’ and (f) vice versa.

7.2.2.2 Relative energy

When we measured blood flow signals, we chose measurement sites such that the

density of vessels would be same for all the subjects in the measurement area.

However, it is still difficult to get exactly the same density because we can not

determine the microvasculature under the skin, and because every subject has a

different condition of the skin. For this reason, relative energy was calculated so

that we could see a normalized value in each interval by dividing the absolute

energy by the total energy.

Age-related changes in relative energy with ACh and SNP are shown in Figs. 7.13

and 7.14, respectively and a summary is shown in Tab. 7.8. There is a trend that

the relative contribution decreases in intervals VI and V and increases in interval

I. The decrease in the relative energy in the intervals VI and V brought partly

by the increase in the absolute energy in the intervals I and II. The substance

difference is summarized in Tab. 7.9 and the gender difference in Tab. 7.10, for

relative energy. For substance differences, the relative contribution of interval VI

(endothelial) is higher for ACh than SNP while the other intervals except V are

higher in SNP. For gender differences, the energy for females are higher in interval

VI whereas the energy for males are higher in intervals III and II in the younger

population. However these gender differences disappear in the aged population.

It should be noted that the results of the relative energy has an important
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meaning related to DFA as explained in subsection 7.4.
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Fig. 7.13: The correlation with age and relative energy in interval VI (a), V (b), IV (c),
III(d), II(e), I(f) for ACh.

7.3 Discussion

7.3.1 The HRV signals

Physiological reasons why the gender effect in the interval II exists are a matter

for discussion. It is reported in [31]that gender and communal trait such as quar-

relsome or agreeable affects the strength of RSA. This may indicate that vagal

activity is important for controlling RSA. It also reported in [31] that men had

lower RSA values than women in the quarrelsome condition. Combined with the

fact which we found that gender effects do not survive after 55 years, we may

conclude that the change in the hormonal state of females is one of the reasons for

differences in RSA.

The increase with age of relative energy in the interval VI and V comes from the

decrease of absolute energy in the interval II and III. The age-related changes in

relative energy itself do not indicate the strength of physiological origins. However,
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Fig. 7.14: The correlation with age and relative energy in interval VI (a), V (b), IV (c),
III(d), II(e), I(f) for SNP.

Relative energy
males females

ACh SNP ACh SNP
Interval r p r p r p r p

VI -0.22 0.06 -0.28 0.02 -0.49 0.00 -0.43 0.00
V -0.33 0.00 -0.51 0.00 -0.36 0.01 -0.38 0.00
IV -0.08 0.51 -0.28 0.02 0.01 0.97 -0.43 0.00
III -0.13 0.30 -0.19 0.11 -0.41 0.00 0.02 0.87
II 0.07 0.56 0.02 0.86 0.50 0.00 0.40 0.01
I 0.48 0.00 0.57 0.00 0.48 0.00 0.47 0.00

Tab. 7.8: Summary table for age-related changes in relative energy.
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The difference between ACh and SNP for relative energy
Males Females

below 40 years above 55 years below 40 years above 55 years
Interval VI p = 0.00 (A) p = 0.00 (A) p = 0.00 (A) p = 0.00 (A)
Interval V p = 0.94 p = 0.25 p = 0.67 p = 0.274
Interval IV p = 0.00 (S) p = 0.04 (S) p = 0.00 (S) p = 0.02 (S)
Interval III p = 0.00 (S) p = 0.14 p = 0.00 (S) p = 0.06
Interval II p = 0.00 (S) p = 0.02 p = 0.00 (S) p = 0.05
Interval I p = 0.00 (S) p = 0.13 p = 0.00 (S) p = 0.20

Tab. 7.9: The difference in average flow, total energy and relative energy between ACh
and SNP. (A) means that ACh is significantly higher than SNP and (S) vice
versa.

Gender difference for relative energy
ACh SNP

below 40 years above 55 years below 40 years above 55 years
Interval VI p = 0.01 (f) p = 0.51 p = 0.19 p = 0.70
Interval V p = 0.13 p = 0.73 p = 0.54 p = 0.95
Interval IV p = 0.15 p = 0.80 p = 0.69 p = 0.78
Interval III p = 0.00 (m) p = 0.73 p = 0.08 p = 0.57
Interval II p = 0.00 (m) p = 0.95 p = 0.05 p = 0.95
Interval I p = 0.15 p = 0.95 p = 0.90 p = 0.80

Tab. 7.10: Gender difference in average flow, total energy and relative energy with ACh
(the left side) and SNP (the right side). (m) means that energy for males is
significantly higher than that of females and (f) vice versa.
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relative energy affects the complexity of the HRV signals and help to characterize

the HRV signals in a different way from absolute energy.

7.3.2 The blood flow signals

A difference in spectral energy between ACh and SNP was observed in intervals

VI and V especially for younger subjects. It is thought that higher energies in

these intervals were produced by the endothelial activities and young females have

higher endothelial function than younger males and aged subjects. It is well known

that younger females have less cardiovascular risk than males and aged females.

Our results support the idea that the higher endothelial activity which generates

the oscillations in interval V and VI leads to a healthier cardiovascular function.

On the other hand, the oscillations in the interval I tend to increase with age. It

may indicate that external pumping such as heart or respiration dominate, rather

than the vessel function, determine the circulation the required amount of blood

in the aged population. It might be assumed that the vessels lose elasticity and

ability to dilate by themselves through endothelial response decreasing with age

and the heart has to work harder. The fact that average flow does not change

means that peripheral resistance increases with age, and the hard pumping work

of the heart and the increasing stiffness and high resistance of the vessels with

increasing age might cause cardiovascular problems such as high blood pressure.

In summary, aging is associated with a decrease of endothelial oscillation and

an increase of cardiac oscillation in dilating blood flow.

7.4 The relationship with complexity analysis

7.4.1 Hypothesis

It can be seen that HRV signals have less variability when people get older. The

reason is the decrease of RSA and myogenic effects with increasing age. The

decrease in RSA is well known, and our result of subsection 7.2.1 is in agreement

with it [89]. How the coupling between cardiac and respiratory or cardiac and

myogenic systems changes with age needs to be studied.

Now we discuss the relationship between the results of wavelet analysis of HRV

and those of the complexity analysis in the previous chapter. As we have already

discussed, the HRV signals of younger people are more complex than those of aged
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people. It is expected that the shape of the signals of young people are closer to

white noise whereas those of aged people are closer to brown noise in the time

scale from 10 to 50 seconds. To see the differences of four HRV signals, white

noise, brown noise and HRV of a young and an aged person, 100 seconds of these

signals are shown in Fig. 7.15. The brown noise looks smoother than the white

noise because brown noise has a higher ratio of slow oscillations to fast oscillations

than white noise. The HRV of the aged female also looks smoother than that of a

young female for the same reason.

The range from 10 to 50 seconds, where the exponents αi increase significantly

with age, corresponds to intervals III and IV. It can be assumed that these aging

effects on αi comes from the significantly increasing ratio of wavelet energy in the

slower oscillations in interval IV over wavelet energy in the faster oscillations in

interval III with age for males (r = 0.32, p = 0.01) and for females (r = 0.42, p =

0.00) as shown in Fig. 7.16a. The aging effect of αl cannot been seen in the longer

time scale from 50 to 300 seconds, which correspond to interval V and VI. This

could be because the ratio of wavelet energy of the slower oscillation in interval

VI over the faster oscillation in interval V doesn’t change significantly with age

for males (r = 0.02, p = 0.84) or for females (r = −0.12, p = 0.45) as shown

in Fig. 7.16b. This assumption will be proved correct by using a simple model in

subsection 7.4.2.
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Fig. 7.16: The energy in the interval IV over III (a) and that in the interval VI over V
(b).

The exponent α decreases with age both for ACh and SNP. It can be explained

by that fact that the relative energy of the slower oscillation (the intervals VI and
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V) decrease with age and the relatvie energy of the faster oscillation (the intervals

I and II) increase with age as shown in Fig 7.13 and Fig 7.14.

7.4.2 Proof by models

As we explained in section 6.3, there is a relationship between the exponent calcu-

lated by DFA and the power spectrum (or auto-correlation function) of the time

series. Although the signals which we measured here did not necessarily have

power-law correlations, we have assumed that the ratio between the wavelet en-

ergy of the faster oscillations and that of the slower oscillations is related to the

complexity exponent. In this subsection, we will prove our assumption by using

simple models.

The ratio of wavelet energy reflects Bs
2/Bf

2, where Bs and Bf are the ampli-

tude of the slower oscillation and that of the faster oscillation, respectively. To see

the case of HRV, we took the time series as sin(0.2πt)+B sin(0.02πt). We changed

the amplitude B and calculated the exponent α for each case. It should be noted

that the exponent is affected by the ratio between the two amplitudes, but not by

the amplitude itself, because α(sin(0.2πt) + B sin(0.02πt)) has the same exponent

for all values of α. The original signals are shown in Fig. 7.17 and the results of

complexity analysis are shown in Fig. 7.18. The exponent α is equal to 0.72 when

B = 0.5, and 1.27 when B = 1.5. Thus if the amplitude B increases, the exponent

α increases and the complexity decreases. This confirms in the case of HRV signals

that the effect of aging on the self-similar parameter of intermediate time scale αi

is caused by the ratio between the amplitude of the slower oscillation (interval IV)

and that of the faster oscillation (interval III) as shown in Fig. 6.3a.

In terms of the blood flow signals measured with ACh and SNP, it is more

complicated to confirm the hypothesis because they contained not only two but at

least six peaks in the range of n which are analyzed. To see the example, we took

the model, B1 sin(2πt) + 0.7 sin(0.2πt) + 0.7 sin(0.06πt) + B4 sin(0.014πt). We

have to keep total energy and change the relative energy since absolute energy does

not change the DFA exponent but relative energy does. As the age-related change

in relative energy in Fig. 7.13 and 7.14 shows, the fastest oscillation becomes

relatively stronger and the slowest oscillation becomes weaker when people get

older. In order to imitate the properties, B1 = 1.5 and B4 = 0.5 was chosen for an
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aged subject shown in Fig. 7.19a and B1 = 0.5 and B4 = 1.5 for a young subject

shown in Fig. 7.19b. For the aged subject, α is equal to 0.78, and for the young

subject, α is equal to 1.24. When the relative energy of the slowest frequency

becomes bigger, the exponent also becomes bigger. Even though the real blood

flow signal is more complicated, it seems valid that the ratio between the slower

oscillation (interval VI or V) and the faster oscillation (interval II and I) is related

to the self-similar exponent obtained by DFA. The reason the exponent decreases

significantly with age is that the slower oscillation is relatively stronger in the

younger population than in the aged population.
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Fig. 7.17: The time series of sin(0.2πt) + B sin(0.02πt). B = 0.5 (a), B = 1.5 (b).

It has to be noted that we can apply the theory only in the regime where

the slope between log(F (n)) and log(n) can be determined uniquely. If the slope

changes dramatically at any point, it means that DFA cannot appropriately be

applied and the relation between DFA and spectral analysis does not hold either.
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Fig. 7.18: The log-log plot between F and n for sin(0.2πt) + B sin(0.02πt). B = 0.5 (a),
B = 1.5 (b).
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Fig. 7.19: The time series of B1 sin(2πt) + 0.7 sin(0.2πt) + 0.7 sin(0.06πt)
+ B4 sin(0.014πt). B1 = 1.5, B4 = 0.5 (a), B1 = 0.5, B4 = 1.5
(b).
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8. CARDIORESPIRATORY INTERACTION

The cardiac and respiratory systems are known to be coupled by several mechanism

[19], for example, neurologically [49] and mechanically [18]. In the previous section,

we discussed one form of cardiorespiratory interaction, the modulation of heart

rate by the respiratory system, as well as the modulation by other physiological

processes. In this section, we discuss another form of the interaction between the

cardiac and respiratory systems, cardiorespiratory synchronization as reported in

the study of anesthetized rats [136], young healthy athletes [126, 127], infants [103],

healthy adults [148, 88, 149] and heart transplant patients [149]. As discussed in

[102], modulation and synchronization can be competing process. In this section,

we study the effect of aging on cardiovascular synchronization and compare it with

the results of the other sections.

As we saw in section 5.1, in the case that oscillators have weak coupling, or

there is a weak external force, the perturbation influences only the phase. This

means that the oscillation can be described by only one variable, the phase. Here,

we discuss phase synchronization under the assumption that the cardiorespiratory

interaction is weak enough to be described by phase dynamics.

8.1 Theory of a pair of coupled oscillators

In this section, we discuss the case where two nonlinear oscillators which are almost

identical interact weakly with others. The dynamics of two oscillators is given by

dX1

dt
= F(X1) + δF1(X1) + V12(X1,X2), (8.1)

dX2

dt
= F(X2) + δF2(X2) + V21(X2,X1). (8.2)

The dynamics of two oscillators is supposed to be closed. Then F(X) is the

common structure for both oscillators and δF(Xi) is the deviation from F(Xi).

V12(X1,X2) and V21(X2,X1) represent the interaction term. By this expression,

the phases of oscillator 1 and 2 can be defined commonly based on the dynamics
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of F(X). Then in the same way as in previous subsections, the dynamics of the

oscillators is

dφ1

dt
= ω + (U∗, δF1(φ1) + V12(φ1, φ2)), (8.3)

dφ2

dt
= ω + (U∗, δF2(φ2) + V21(φ2, φ1)), (8.4)

which is defined by the Eq. (5.7). New variables are introduced as φ1,2 = ωt+ψ1,2

and, by averaging, the equations of ψ are expressed as

dψ1

dt
= δω1 + Γ12(ψ1 − ψ2), (8.5)

dψ2

dt
= δω2 + Γ21(ψ2 − ψ1), (8.6)

where

δω1,2 =
1

2π

∫ 2π

0
dθ(U∗(θ + ψ1,2), δF1,2(θ + ψ1,2)), (8.7)

Γ12(ψ1 − ψ2) =
1

2π

∫ 2π

0
dθ(U∗(θ + ψ1),V12(θ + ψ1, θ + ψ2)). (8.8)

When the interaction is symmetric as V21(X2,X1) = V21(X2,X1) ≡ V(X1,X2),

it is clear that Γ12(ψ) = Γ21(ψ) = Γ(ψ). In that case, the dynamics of the difference

of the two phases ψ = ψ1 − ψ2 is written as

dψ

dt
= δω + Γa(ψ). (8.9)

where δω = δω1 − δω2 and Γa(ψ) = Γ(ψ) − Γ(−ψ). It has to be noted that

Γa(0) = Γa(π) = Γa(−π) = 0. If ψ is constant, it means that the two oscillators

are synchronized. This synchronization solution ψ = constant corresponds to

dψ/dt = 0 in the Eq. (8.9). Therefore whether synchronization occurs depends on

whether the right hand side of Eq. (8.9) has a zero solution and whether the zero

solution is stable or not. From this, it is concluded that synchronization occurs if

δω is within a range shown as Fig. 8.1. For example, if the coupling function is

a simple sine function like Γ(ψ) = −K sin(ψ), the condition which the frequency

difference has to satisfy is |δω/K| < 1.

If phase-locking occurs and ψ = ψ0 (in other words, if ψ0 is a stable fixed

point), the frequency of both oscillators via entrainment becomes ω + δω1 +Γ(ψ0),

which is equal to ω + δω2 + Γ(−ψ0).
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Fig. 8.2: This shows the synchronous region in the K − δω plane. The region b is one
where phase locking occurs and called Arnold tongue whereas the regions a and
c are ones where phase locking doesn’t occur.
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For each coupling strength of K, there is the range of δω where phase-locking

occurs. We can calculate this region in the K − δω plane, which is called the

Arnold tongue.

In the case of n:m synchronization, we can carry through a similar discussion

by thinking in terms of nψ1 and mψ2.

If an oscillator is coupled with many oscillators according to

dXi

dt
= F(Xi) + δFi(Xi) +

N∑

j=1

Vij(Xi,Xj), (i = 1, 2, · · · , N), (8.10)

the same method is applied as for a pair of coupled oscillators and the dynamics

of ψi ≡ φi − ωt (i = 1, 2, · · · , N) is

dψi

dt
= δωi +

N∑

j=1

Γij(ψi − ψj). (8.11)

In terms of φi,
dφi

dt
= ωi +

N∑

j=1

Γij(φi − φj). (8.12)

If the form is
dφi

dt
= ωi − K

N

N∑

j=1

sin(φi − φj), (8.13)

this is called the Kuramoto model.

8.2 Analytical methods

8.2.1 Synchrogram

One way to detect m:n synchronization between respiration and heartbeat is to

make a synchrogram. It is constructed by plotting the normalized relative phase

of heartbeats within m respiratory cycles in the following equation,

ψm(tk) = φr(tk) (mod 2πm), (8.14)

where tk is the time of k-th marked event of heartbeat and φr(tk) is the instanta-

neous phase of respiration at the time of tk. In a perfect m:n phase locking, ψm

constructs n horizontal strips in the synchorogram. However, in reality these strips

are broadened because of noise. One synchrogram can detect synchronization for

only one value of m. For example if we choose m = 2, the synchrogram detects

only 2:n synchronization. In order to cover all possible synchronization state, we
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would have to plot synchrogram for all values of m although it is not practical in

reality.

While m : n complete synchronization occurs, the phase difference between two

oscillators defined by

ϕn,m = nφ1 −mφ2 (8.15)

is constant. The weaker definition is expressed by

|nφ1 −mφ2 − δ| < const. (8.16)

Under weak noise, the phase difference ϕn,m flactuates randomly around a constant

value. In this case, phase synchronization is detected as an appearance of a peak

un the distribution of the relative phase defined by

Ψn,m = ϕn,m mod2π. (8.17)

8.2.2 Synchronization index

A synchrogram is one of the ways to see synchronization visually but it is not

enough to quantify the synchronization in the presence of noise. Especially it is

difficult to judge which ratio of synchronization occurs by seeing different synchro-

grams with different m. To overcome this weakness, synchronization indices were

introduced by Tass et al. in 1998 [146]. There are two ways to introduce these

synchronization indices.

One is based on the conditional probability. We have two phases φ1(tj) and

φ2(tj) defined on the intervals [0 2πm] and [0 2πn] respectively, where j is an index

of time. Each interval is divided into N bins. We take a certain centered time tc1

and decide a certain window length around the centered time tc1 and call this time

interval ‘interval-1’. We take all j such that tj is within the interval-1. Then, for

each bin l, 1 ≤ l ≤ N , we calculate

rl(tc1) =
1

Ml

∑

j

eıφ2(tj)/n (8.18)

for all j, such that φ1(tj) belongs to the bin l and Ml is the number of points in this

bin. If there is a complete m:n dependence between two phases, then |rl(tc1)| = 1,

whereas it is zero if there is no dependence. Finally we calculate the average over

all bins in the following equation,

λnm(tc1) =
1

N

N∑

l=1

|rl(tc1)|. (8.19)
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Thus λnm measures the conditional probability for φ2 to have a certain value

provided φ1 is in a certain bin at the time tc1. Then we move the centered time

tc1 to tci and calculate the index in the same way. In order to find out m and n,

we need to try different sets of values and pick out the set that gives the largest

index.

The other approach is based on entropy. It is defined by the following equation,

ρnm =
Smax − S

Smax

. (8.20)

where S is the entropy of the distribution of Ψm,n and defined as

S = −
N∑

k=1

pk ln pk, (8.21)

where N is the number of bins which divide Ψm,n and pk is the probability that

the phase difference is in the k-th bin.

It has to be noted that Smax = ln N , where N is the number of bins. It is

normalized in such a way that 0 ≤ ρnm ≤ 1, where ρnm = 0 corresponds to an

uniform distribution (no synchronization) and ρnm = 1 corresponds to a Dirac

delta-like distribution (perfect synchronization).

8.3 Results

8.3.1 Synchronization duration of real data

The method to evaluate the degree of synchronization is introduced in order to

discuss the age-related changes in synchronization. At first we calculated the

synchronization index of 1:n and 2:n cardiac respiratory synchronization for each

subject with the window length 5T for 1:n synchronization and 10T for 2:n syn-

chronization where T is the average respiratory period . The reason for the choice

of window length is to see the synchronization during the same periods for all the

subjects rather than to use the fixed time by subjects. If the index was above

0.95 and the duration was longer than 5T for 1:n synchronization and 10T for

2:n synchronization, we judged that synchronization occurred during the interval.

When one signal of one subject is exchanged with the signal of another subject

or when a signal is randomized, the synchronization index happens to comes up

to high values without cardiovascular coupling. To be sure that the synchroniza-

tion comes from a real cardiovascular interaction, we set minimum thresholds for
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the synchronization index and duration. The synchrogram and synchronization

index is shown in the Fig. 8.3. It is observed that the state of synchronization

changes with time and even the synchronization ratio changes from 1:3 to 2:7.

This kind of synchronization transition is quite common among all subjects. It is

seen that noise disturbs the synchronization and the synchronization makes fre-

quent transition from one state to another. Finally we calculated the amount of

synchronization time for which the index was beyond 0.95 and studied how long

the synchronization lasted. In that case, the synchronization duration is propor-

tional to the ratio between synchronization time and the whole measurement time

1800 seconds, which was fixed for all the subjects. Therefore the synchroniza-

tion duration is equivalent to the percentage of respiratory periods that are in the

synchronization state in the whole measurement. Under this interpretation, the

difference of average respiratory period does not affect the result.

The results are shown in Fig. 8.4. The synchronization duration increases sig-

nificantly with age for females (p = 0.00) whereas it does not have any correlation

with age for males (p = 0.53).

8.3.2 The correlation of synchronization duration with HRV and
RRV

8.3.2.1 The average and total energy

Here we discuss the correlation between the logarithm of the synchronization du-

ration and the heart and respiratory rate. In this section, we used the logarithm

of synchronization duration because the synchronization duration itself does not

seem to have the linear relationship with the heart or respiratory rate while the

logarithm of synchronization duration does. The results are shown in the Fig. 8.5.

The logarithm of the synchronization duration has significant positive correlation

with the average respiratory rate both for males (r = 0.62, p = 0.00) and females

(r = 0.53, p = 0.00) and significant negative correlation with total wavelet energy

of HRV for males (r = −0.26 p = 0.05) and total wavelet energy of RRV both for

males (r = −0.37, p = 0.00) and females (r = −0.33, p = 0.03).

The correlation with average respiratory and synchronization duration could

be thought to come from the algorithm because the synchronization threshold is

proportional to the average respiratory rate and it is more difficult to keep the
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Fig. 8.3: An ECG signal during a time segment where R-peaks are marked (a), the
phases (mod 2π) of the respiration signal shown in (d) at the marked R-peaks
times in (A) during the time segment (b), the phases (mod 4π) of the respira-
tion signal shown in (d) at the marked R-peaks times in (a) during the time
segment (c), a respiratory signal during the time segment where the maxima are
marked (d), a synchrogram for 1:n synchronization during the whole measure-
ment (e), a synchrogram for 2:n synchronization during the whole measurement
(f), synchronization indices above 0.95 during the whole measurement where
1:3 is drawn in green and 2:7 in red (g) and the ratio between HRV and RRV
during the whole measurement where the two lines lie at the ratio 3.0 and 3.5,
which corresponds to 1:3 and 2:7 synchronization (h). All data are obtained
from the same subject as in Fig. 5.2.
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Fig. 8.4: The correlation between the total synchronization duration of the original data
and age for males (left, blue) and females (right, red).

synchronization state for the longer threshold. It is difficult to judge the synchro-

nization for people who have different respiratory rate. If we chose a fixed threshold

of, for example 30 seconds, the average respiratory rate will not affect the results

but it would be doubtful whether we could identify the 2:n synchronization reliably

for a person whose average respiratory period is more than 7.5 seconds. It is a

problem that we need longer time to judge synchronization state for the people who

have longer average respiratory periods to compare the degree of synchronization.

Indeed for the body it may be more difficult to maintain the stationary state for a

longer time. However, at least these results show that a smaller standard deviation

of respiration (for both genders) and a smaller standard deviation of heart rate

(only for males) produce a longer synchronization duration in the resting state of

healthy subjects. The synchronization study by Lotrič and Stefanovska [88] also

revealed that the standard deviation of the heart rate has a negative correlation

with the synchronization index

The result that a bigger standard deviation leads to shorter synchronization

epochs corresponds well to our picture that if the frequency fluctuates dramati-

cally, the parameters easily move outside the Arnold tongue, thus destroying the

synchronization.

Although we could not see any significant correlation between age and duration

of synchronization for males, the duration has a significant correlation with the

standard deviation of respiration, which is not significantly correlated with age.

The standard deviation of heart rate, which decreases significantly with age, is also

correlated with synchronization, but respiration seems to have bigger influence

on synchronization duration. For females, it is certain that respiration has a
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significant effect in causing the synchronization. There is a trend of the average

respiratory rate to increase with age for females although the correlation is not

significant (p = 0.09). The fact that the synchronization duration have logarithmic

sensitivity with the average respiratory rate supports the hypothesis that the trend

of the average respiratory rate for females is one of the reason of the increase in

synchronization duration with age. In any case, these results may indicate that

the synchronization is related both to the properties which are not related to

aging, such as the respiration, and to aging-related properties such as the standard

deviation of heart rate.
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Fig. 8.5: The correlation between the logarithm of the synchronization duration and the
average heart rate (a), the logarithm of the synchronization duration and the
average respiratory rate rate (b), between the logarithm of the synchronization
duration and the standard deviation of heart rate (c) and the logarithm of the
synchronization duration and the standard deviation of respiratory rate (d).

8.3.3 Surrogate data

The first point to be settled is whether the synchronization reflects the true car-

diovascular interaction or whether it is just noise. This problem was investigated

by Toledo et. al. [149] by using surrogate date. In the present study, we made



8. Cardiorespiratory interaction 96

surrogate data from the original signals and used them to calculate the duration of

‘synchronization’. Surrogate data are artificially generated data that mimic some

of the statistical properties of the data under study, but not the property that is

being tested for.

Surrogate data were methodologically introduced into time series analysis as

a method to test for nonlinearity [147]. The basic idea is to compute a nonlinear

statistic for the data under study and to do the same for an ensemble of realiza-

tions of surrogates that mimic the linear properties of the studied data. If the

computed statistics for the original data is significantly different from that ob-

tained from surrogates, one can infer that the data were not generated by a linear

process. Otherwise, the null hypothesis that a linear model fully explains the data

is accepted.

There are several ways to make surrogate data to meet the needs of the study.

For bivariate data, four types were proposed by Palus [107]:

• IID1 surrogate are realizations of mutually independent IID (independent

identically distributed) stochastic processes (white noise) with the same

mean, variance and histogram as the series under study. The IID surro-

gates are constructed by scrambling the original signal, i.e. the elements of

the original series are randomly permutated in temporal order and different

random permutation are used for the two components of the bivariate series.

• IID2 surrogates are realizations of IID stochastic processes (white noises),

which take into account possible cross dependencies between the two compo-

nents of the bivariate series. In each realization, the same random permuta-

tion is used for both components of the bivariate series. The IID surrogates

present the null hypothesis of mutually dependent white noise, i.e. the two

series are synchronized in a sense of mutual dependence given, e.g., by cross

correlations; but the specific phenomenon as well as other temporal struc-

tures are absent.

• FT1 surrogates are independently generated for each of the two components

in the bivariate data as a realization of linear stochastic process with the

same power spectra under the study. The FT1 surrogates are obtained by

computing the Fourier transform (FT) of the series, which is then reverted to
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the time domain, with unchanged magnitudes but randomized phases. The

FT1 surrogates realize the null hypothesis of two linear stochastic processes

which asynchronously oscillate with the same frequencies as the original se-

ries under study.

• FT2 surrogates are realizations of a bivariate linear stochastic process that

mimic individual spectra of the two components of the original bivariate se-

ries as well as their cross-spectrum. When constructing the FT2 surrogates,

not only spectra but also the differences between phases of the Fourier coeffi-

cients of the two series for particular frequency bins must be kept unchanged.

In this case, the same random number must be added to the phases of both

coefficients of the same frequency bin. The FT2 surrogates preserve some of

the synchronization, if present in the original series, which can be explained

by a bivariate linear stochastic process.

In our study, IID1 surrogates were derived from the original cardiac and respi-

ratory signals. Phases of the original signals were decided by the time of marked

events according to the Eq. (5.15). The periods between marked events were cal-

culated and permutated randomly. For example, if the time of marked events of

an original signal is [1, 2.5, 3.7, 5], the periods of original signals are [1.5, 1.2, 1.3].

Then these period are randomly permutated like e.g. [1.2, 1.3, 1.5] and the time

of marker events of surrogate is then [1, 2.2, 3.5, 5] and the phases are calculated

according to Eq. (5.15). Different randomizations were used for the cardiac and

respiratory signals. Then the index and duration of synchronization of surrogates

were calculated using the same algorithm as for the original data.

The results are shown in the Fig. 8.6. Surrogate data still have same apparent

synchronization durations even after being randomized. However, the duration

does not increase significantly with age (males p = 0.77; females p = 0.36) and the

correlation with age is lower than the results of the original time series for both

genders. This implies that the results of original data does not come only from

noise.

We compared the epochs of synchronization of the original time series and the

apparent epochs of synchronization in the surrogate time series for each gender.

The original time series have significantly longer synchronization epochs than the
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Fig. 8.6: The correlation between the total synchronization duration of the surrogate
data and age for males (left, blue) and females (right, red).

surrogate time series (males p = 0.00; females p = 0.00). This means that the

obtained synchronization is real, and not just because of noise.

8.4 Discussion

It was observed that the synchronization ratio was not constant but changed with

time. This is because the ratio of heart rate and respiratory rate fluctuate with

time as shown in Fig. 8.3h. It seems to be non-stationary as the heart rate and

respiratory rate. The synchronization ratio is not only 1:n but also 2:n. There

is the possibility that the ratio is m:n where m is more than three. However, it

is usually difficult to detect synchronization with higher m because it requires a

longer window for calculation and noise becomes larger. The result that females

have longer synchronization in older age may be related to the decrease in the stan-

dard deviation of HRV with age and the slight increase in the average respiratory

rate with age because of the logarithmic relationship. Another factor which affects

synchronization is the form of the coupling function Γ(ψ) = Γ12(ψ)− Γ21(−ψ) as

we discussed in section 8.1. There are studies about coupling direction [108] [121]

[122]. These methods were applied to the cardiorespiratory interaction and it was

reported that the coupling is not symmetrical but that the respiration drives the

cardiac system. The coupling direction fluctuates with time as the instant fre-

quency, which means that the form of the coupling function Γ(ψ) changes with

time during measurements as well as δω. It would be an interesting problem to

see how the coupling direction changes with age.

Our conclusion is that old females have longer synchronization periods and
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that more modulation of the heart rate and the respiratory rate leads to less syn-

chronization. The physiological reasons for longer synchronization of aged females

is still not clear.



9. CORRELATION BETWEEN DIFFERENT OSCILLATORY
COMPONENTS OBTAINED BY WAVELET ANALYSIS

In chapter 7, different oscillatory components were detected in HRV and blood

flow signals. Cardiorespiratory interaction has been studied most intensively in

all the combinations in terms of RSA or synchronization as it was mentioned in

the previous chapters. In this chapter, the correlation between wavelet absolute

energies and amplitudes from different physiological origins, which were calculated

in section 7.2.2, are presented to see the interaction between other combinations.

9.1 Results

There seem to be interactions between the oscillations from different physiological

origins which were discussed in section 7.2.1. These interactions appeared in cor-

relation between wavelet absolute amplitudes and wavelet absolute energy from

the different origins as shown in Fig. 9.1 and Fig. 9.3 for ACh and in Fig. 9.2

and Fig. 9.4 for SNP. The results of the correlation analysis are summarized in

Tab. 9.1, Tab. 9.2, Tab. 9.3 and Tab. 9.4.

As we discussed, wavelet energy represents the amplitude of oscillation. The

correlation between the absolute energies of oscillations from two different phys-

iological origins indicates that there is the correlation between the amplitudes of

the original oscillations. On the other hand, wavelet amplitude contains informa-

tion about amplitude and frequency variability. Therefore the correlation between

wavelet absolute amplitudes indicates that there is an interaction of amplitude

and energy. It has to be noted that only the correlation between wavelet absolute

amplitudes is not enough to judge whether the correlation comes from, amplitude

or frequency variability.

For example, if there is no correlation in wavelet absolute energy, but there is

in wavelet absolute amplitude, we could say that there is no amplitude interaction

but there is frequency (phase) interaction. If there is no correlation in wavelet
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absolute amplitude and there is in wavelet absolute energy, we could say that

there is amplitude interaction but there is no frequency (phase) interaction. If

there is correlation in both wavelet absolute amplitude and energy, we could say

that there is amplitude interaction and maybe something in frequency dynamics.

But in any case, it is an indirect evidence about frequency interaction, so further

more detailed study will be necessary in details. Here we introduce and summarize

only the main results.

All the combinations of different intervals have positive correlation values in

terms of both energy and amplitude. All the combinations except VI-I and VI-II

for the absolute energy of ACh have significant positive correlations. Most of the

combinations of the different intervals have stronger correlation in the absolute

amplitude than in the absolute energy, although V-I and IV-I for SNP are not the

case. This may indicate that there are both amplitude and phase interaction in

the most of different intervals.

The cardiac-respiratory correlation is high in all of the four figures. This means

that there is strong cardiorespiratory interaction also in the blood flow signals.

The slopes of the combinations related to the interval V and VI are steeper

for ACh than SNP since intervals V and VI are both endothelial-related and react

more to ACh than to SNP. The plots were done by using the same size of the

axes for ACh and SNP so that we can distinguish these difference between the two

substances. For ACh, the figures related to the endothelial activities have broader

distribution of points than for SNP.

Absolute energy of ACh
Interval VI V IV III II

I p = 0.10 p = 0.00 p = 0.00 p = 0.00 p = 0.00
II p = 0.13 p = 0.00 p = 0.00 p = 0.00
III p = 0.00 p = 0.00 p = 0.00
IV p = 0.00 p = 0.00
V p = 0.00

Tab. 9.1: Correlation between two intervals for absolute energy of ACh
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Fig. 9.1: The correlation between absolute energies in the intervals I and VI (a), I and
V (b), I and IV (c), I and III (d), I and II (e), II and VI (f) II and V (g), II
and IV (h), II and III (i), III and VI (j), III and V (k), III and IV (l), IV and
VI (m), IV and V (n) and V and VI (o) and for ACh.
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Fig. 9.2: The correlation between absolute energies in the intervals I and VI (a), I and
V (b), I and IV (c), I and III (d), I and II (e), II and VI (f) II and V (g), II
and IV (h), II and III (i), III and VI (j), III and V (k), III and IV (l), IV and
VI (m), IV and V (n) and V and VI (o) and for SNP.
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Absolute energy of SNP
Interval VI V IV III II

I p = 0.03 p = 0.00 p = 0.00 p = 0.00 p = 0.00
II p = 0.02 p = 0.00 p = 0.00 p = 0.00
III p = 0.00 p = 0.00 p = 0.00
IV p = 0.00 p = 0.00
V p = 0.00

Tab. 9.2: Correlation between two intervals for absolute energy of SNP

Absolute amplitude of ACh
Interval VI V IV III II

I p = 0.02 p = 0.00 p = 0.00 p = 0.00 p = 0.00
II p = 0.03 p = 0.00 p = 0.00 p = 0.00
III p = 0.00 p = 0.00 p = 0.00
IV p = 0.00 p = 0.00
V p = 0.00

Tab. 9.3: Correlation between two intervals for absolute amplitude of ACh

Absolute amplitude of SNP
Interval VI V IV III II

I p = 0.00 p = 0.00 p = 0.00 p = 0.00 p = 0.00
II p = 0.00 p = 0.00 p = 0.00 p = 0.00
III p = 0.00 p = 0.00 p = 0.00
IV p = 0.00 p = 0.00
V p = 0.00

Tab. 9.4: Correlation between two intervals for absolute amplitude of ACh
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Fig. 9.3: The correlation between absolute amplitudes in the intervals I and VI (a), I
and V (b), I and IV (c), I and III (d), I and II (e), II and VI (f) II and V (g),
II and IV (h), II and III (i), III and VI (j), III and V (k), III and IV (l), IV
and VI (m), IV and V (n) and V and VI (o) and for ACh.
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Fig. 9.4: The correlation between absolute amplitudes in the intervals I and VI (a), I
and V (b), I and IV (c), I and III (d), I and II (e), II and VI (f) II and V (g),
II and IV (h), II and III (i), III and VI (j), III and V (k), III and IV (l), IV
and VI (m), IV and V (n) and V and VI (o) and for SNP.
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9.2 Discussion

A lot of studies have been done for cardiorespiratory interaction such as cardiores-

piratory synchronization and RSA but not much for the interaction between the

other combinations. There is a report by Stefanovska et al. [134] that the respi-

ration may influence the myogenic activity. A subject were asked to breathe with

specific frequencies while the signals of blood flow as well as other cardiovascular

function were recorded. Then it was reported the frequency and wavelet amplitude

of the myogenic component changed with the respiratory frequency. Our results

showed that there are significant correlation in wavelet amplitude and energy be-

tween respiratory (interval II) and myogenic (interval III) components for both

ACh and SNP. This result also support that there is an interaction between res-

piratory and myogenic component. In this thesis, we observed strong correlations

between the other intervals, which indicates the existence of interaction. At this

stage, it is difficult to interpret what these results stand for in terms of the coupling

but they are useful to understand the interaction of the cardiovascular system and

improve the modelling.



10. CONCLUSIONS

Methods drawn from statistical physics and nonlinear dynamics have been ap-

plied to the analysis of cardiovascular time series with particular reference to the

identification of physiological processes associated with aging. It is important to

emphasize that all measurements on the subjects in order to reveal aging properties

were non-invasive. What we have observed is

1. The standard deviation of heart rate decreased significantly with age for both

males and females, consistent with previous studies [69, 123, 133, 152].

2. The total energy of HRV decreases with age because the variability which

comes from respiratory activities (interval II) and from myogenic activities

(interval III) decreases with age. These significant decrease with age of the

energy in total, interval II and III were also observed in [89]. We added the

low frequency interval VI newly to this thesis and observed that there is no

significant change in this interval. In [89], significant decreases in interval III

and IV were reported, which we did not observed in the present study. This

may be because the number of subjects was smaller. We found in this thesis

that females have stronger RSA than males in younger population, which

was not reported before.

3. The complexity of HRV decreased significantly with age within the range

of 10 to 50 seconds. The decrease arises because the ratio of the energy

of the slower oscillation of interval IV (neurogenic activities) over the faster

oscillation of interval III (myogenic activities) increases significantly with age.

This indicates that the neurogenic control of the heart rate becomes more

predominant than the myogenic control with increasing age. The decrease of

the complexity with age in HRV was reported in various other studies such

as [43, 143]. The difference between this thesis and the previous works is

the window size for calculation. We chose a window size according to the
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time scales decided by wavelet analysis. Thus we could identify physiological

reasons for the decrease of the complexity with age as the increase of the ratio

of the neurogenic oscillatory component over the myogenic component.

4. The complexity of blood flow measured with the two vasodilators ACh and

SNP increased significantly with age within the range of 1 to 200 seconds.

The increase arises because the ratio of the energy of the slower oscillation

of intervals VI and V (endothelial activities) over the faster oscillation of

interval I (cardiac activities) decreases significantly with age. There is a

significant gender difference in the complexity of blood flows with ACh. The

blood flows for females are less complex than those for males. We applied

the DFA method to blood flows with ACh and SNP, revealed the age- and

gender-related changes of the complexity and identified the physiological

reasons as the strength of the wavelet relative energy of the low frequency

oscillations.

5. The response to the endothelial-related vasodilator ACh of young females

is significantly higher than that of young males and aged females, whereas

there is no significant gender or aging difference for SNP. It was already

known that there is a decrease in endothelial-dependent vasodilation with

age and gender difference by using iontophoresis blood flow measurements

[36, 42, 27, 1]. We applied the wavelet transform to analyze the iontophoresis

blood flow signals and revealed age- and gender-related changes in oscillatory

dynamics for the first time. Our results indicate that the endothelial function

of females is higher than that of males, which may be connected with the

well-known fact that young females has lower cardiovascular risk compared

with aged females and males.

6. Oscillations at the cardiac frequency tend to become more dominant with

increasing age in the blood flow signals, measured both with ACh and SNP.

Combined with the conclusion 5, it might be concluded that the vessels

lose the ability to dilate by themselves through endothelial action with age

and the heart has to pump more strongly to circulate the necessary amount

of the blood in the body. The steady average flow may indicate a high

resistance of the vessels as well. This might cause heart problems or a high
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blood pressure. Thus we first mentioned age-related changes in the cardiac

oscillatory components in blood flows with ACh and SNP.

7. The duration of synchronization epochs increases significantly with age for

females. The logarithm of the synchronization duration has a significant

correlation with average respiratory rate and total energy of respiration for

both males and females, which means that the respiratory rate affects the

synchronization duration exponentially. On the other hand, only the total

energy for males has significant correlation with the synchronization dura-

tion in terms of the heart rate. There are a lot of studies which reported

synchronization in wide variety of subjects such as aneasthetized rats [136],

young healthy athletes [126, 127], infants [103], healthy adults [148, 88, 149]

and heart transplant patients [149]. This thesis first reported the effects of

aging on synchronization and the strong correlation between synchronization

duration and respiratory rate.

8. Correlations between different oscillatory components were observed in wavelet

absolute energy and amplitude in terms of various combinations of the inter-

vals. It was found out that the correlations are positive for all the combina-

tions of the different oscillatory components and that there is an interaction

in the amplitude and frequency for most of the combinations.

From all of our results, we conclude that aging is a factor which significantly

affects cardiovascular function, and that gender sometimes produces a significant

difference as well.

Two approaches to the cardiovascular signals are presented in this thesis. One

is based on coupled oscillators and the other is based on the statistical mechanics.

The oscillatory components detected by wavelet analysis (Chapter 7) and their sig-

nificant correlations in wavelet energy and amplitude (Chapter 9) indicate there are

interactions of frequency and amplitude between different oscillatory components.

The observation of cardio-respiratory synchronization demonstrates a property of

nonlinear coupled oscillators (Chapter 8). These results show a possibility that

the cardiovascular system may be represented by a set of coupled oscillators with

relatively few degrees of freedoms. But at the same time, in reality the system

is always exposed to noise from unpredictable sources and may contain a large
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number of degrees of freedom. In that case, the statistical approach seems to be

more useful. In Chapter 6, we introduced DFA. Although this statistical approach

is supposed to be a way to obtain the scaling of a system with a large degree of

freedom, this thesis showed that there is a relation between the results of DFA

and the six oscillatory components detected by wavelet. Scaling properties of a

coupled oscillators model with a relatively small degree of freedom (with noise)

should be studied further.
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[87] M.B. Lotrič, Couplings among subsystems that regulate blood flow, Ph.D.

thesis, University of Ljubljana, 1999.
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[108] M. Paluš and A. Stefanovska, Detection of coupling from phases of interact-

ing oscillators: An information-theoretic approach, Phys. Rev. E 67 (2003)

055201(R).

[109] J. Penaz, J. Roukenz, and H.J. vander Waal, Spectral analysis of some spon-

taneous rhythms in the circulation, in Byokibernetik, edited by H. Drischel

and N. Tiedt, (Karl Marx University, Lepizig, 1968), p.233.

[110] C.K. Peng, J. Mietus, J.M. Hausdorff, S. Havlin, H.E. Stanley and A.L.

Goldberger, Long-range anticorrelations and non-Gaussian behaviour of the

heartbeat, Phys. Rev. Lett. 70 (1993) 1343-1346.



Bibliography 122

[111] C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley and A.L.

Goldberger, On the mosaic organization of DNA sequences, Phys Rev E 49

(1994) 1685-1689.

[112] C.K. Peng, S. Havlin, H.E. Stanley and A.L. Goldberger, Quantification of

scaling exponents and crossover phenomena in nonstationary heartbeat time

series, Chaos 5 (1995) 82-87.

[113] H. Peng, V. Matchkov, A. Ivarsen, C. Aalkajær and H. Nilsson, Hypothesis

for the initiation of vasomotion,Circ. Res. 88 (2006) 810-815.
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