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Abstract

This paper describes the solution of the backward-type Kolmogorov equation (back-

ward method) as an alternative to the forward method to determine the probability

(P ) of a trace particle reaching a given region within a time � , which is of interest

in groundwater contamination investigation, such as pollution monitoring and con-

trolling. The backward-type Kolmogorov equation describing P was theoretically

derived under the assumption that the divergence of the velocity �eld is zero. We

here verify that this assumption is unnecessary and therefore the equation can be

used in general cases when various recharge/discharge sources in the ow equation

are considered. The backward method is validated by comparing its results with

that from the forward method. We �nd that boundary conditions must be properly

imposed in the backward method in order to obtain the same results as from the

forward method. The backward method is much more eÆcient than the forward

method.
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1 Introduction

In this paper we focus on the problem of calculating the probability (P ) of a

trace particle (pollutant) reaching a target region (such as the proximity of a

drinking well) within a time � , which is of interest in groundwater contamina-

tion investigation, such as pollution monitoring and controlling. Traditionally,

a problem like this is solved by the forward random walk particle tracking

[1,2]. According to the forward method, particles are dropped somewhere in

the domain, the path of each particle is calculated by superimposing to the

uid velocity �eld a random path, one then counts how many among them

reach the target region after a time � . The result is obviously an approximation

of the probability P . Repeating this procedure in many places in the domain,

the protection zone is de�ned by grouping the areas where the probabilities

for the particles to reach the target region are over a threshold value.

It is intuitively known that the probability for a particle to reach a region

within a certain time is described by the Kolmogorov backward equation

(KBE) with proper boundary conditions [3,4]. Indeed, this was theoretically

proved by Cai et al. [5] under the assumption that the divergence of the ve-

locity �eld is zero ( @vi
@xi

= 0). In this paper, we �rst theoretically shown that

the assumption is unnecessary and therefore the backward-type Kolmogorov

equation (KBE) derived by them can be used in general cases where various

recharge/discharge sources are considered, e.g. when rain recharge is modelled

through the source term in the two dimensional ow equation. We propose

a backward method, i.e. solving the KBE directly by �nite element methods.

The backward method is then validated by comparing its results with that
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from the forward method for both @vi
@xi

= 0 and @vi
@xi

6= 0 cases. Boundary condi-

tions are carefully examined in order to get consistent results between the two

methods. The backward method is more eÆcient than the forward method

because it can obtain P for the whole domain in a single calculation.

2 Theory

The particle (pollutant) concentration C(x; t), de�ned as mass of solute per

unit volume of uid at location x at time t, satis�es the following advection-

dispersion equation (ADE):

@C

@t
= �

@

@xi
(viC) +

@

@xi

 
Dij

@C

@xj

!
(1)

In equation (1), a repeated subscript in a product denotes a summation, xi are

components of coordinate vector x, vi are components of uid velocity vector

v, and Dij are elements of dispersion matrix D, which may be expressed as

follows:

Dij = (Dd + �
T
v)Æij + (�

L
� �

T
)
vivj
v

; (2)

where �
L
and �

T
are known as the longitudinal and transverse dispersivities,

respectively, Dd is the molecular di�usion coeÆcient, Æij is the Kronecker delta

and v is the magnitude of the velocity.

Consider a random walk particle with a drift vector a and a noise tensor B.

Let p(x; t j ~x; t0) be the conditional probability density, i.e. p(x)dx is the

probability to �nd the particle in the interval (x;x + dx) at t, given it was

in position ~x at time t0 (t > t0). It can be shown that p satis�es the forward
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Kolmogorov equation (3)

@p

@t
= �

@

@xi
(aip) +

@2

@xi@xj
(Bijp): (3)

Kolmogorov [6] stated the analogy between this equation and the advection-

dispersion equation (1), based on the derivation of the dispersion coeÆcient

from a random process [7]. The practical consequence is to allow to read con-

centrations calculated according to (1) in terms of probability densities or

vice versa [8]. In fact, the analogy between randomly moving particles and the

spreading of contaminants in reality is one of the appealing features of the for-

ward random walk method. It can be readily shown that a complete similarity

between the two equations is obtained under the following transforms:

Bij = Dij; (4)

ai = vi +
@Dij

@xj
: (5)

The transition probability density p is also governed by the backward Kol-

mogorov equation,

@p

@t0
= �ai

@p

@~xi
�Bij

@2p

@~xi@~xj
; (6)

which is the adjoint of the forward equation. In Eq. (6) ~x and t0 are inde-

pendent variables, and ai and Bij are functions of ~x and t0. This equation

gives the probability density to �nd the particle in position ~x at a past time

t0 (t0 < t), given its position x at time t.

Delineation of groundwater protection zones while accounting for dispersion

asks for calculating the probability P for particles injected at a certain position

x to reach a target region (e.g., the proximity of a drinking well, which may

be de�ned as a circle with a given radius centered on the well) within a certain

time � . This can be done by using the forward method. However the forward
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method is time-consuming since the calculation has to be performed for each

starting position, and hence it has to be repeated many times in order to

obtain the protection zone. Practically, the probability P is known intuitively

to be also described by the backward Kolmogorov equation with compatible

boundary conditions [3,4]. Under the assumption that the divergence of the

velocity �eld is zero ( @vi
@xi

= 0), Cai et al. [5] derived the equation for P . Indeed,

the equation happens to be a backward-type Kolmogorov equation

@P

@�
= (vi +

@Dij

@xj
)
@P

@xi
+Dij

@2P

@xi@xj
(7)

subject to the initial condition

P (x; 0) = 0; x 2 
 (8)

and the boundary condition

P (x; �) = 1; x 2 S1; (9)

where S1 denotes the boundary of the target region, which is treated as ab-

sorbing boundary in the forward method. The boundary condition expressed

by Eq. (9) is simply due to the de�nition of P .

In the following we will derive the equation for P without invoking the as-

sumption @vi
@xi

= 0. Under the transform (4) and (5), the equation (3) describing

the transient probability density p now reads

@p

@t
= �

@

@xi
(vip) +

@

@xi

 
Dij

@p

@xj

!
: (10)

Following the derivation procedure of Cai et al. [5], equation (10) is cast in

the form of the Fokker-Planck equation as follows:

@

@t
p(x; t j ~x; t0) +

@

@xi
Gi(x; t j ~x; t0) = 0; (11)

5



where each Gi is a component of the probability ux vector G. Comparing

equations (10) and (11), we obtain

Gi(x; t j ~x; t0) =

"
vi(x; t) +

@Dij(x; t)

@xj

#
p�

@

@xj
[Dij(x; t)p]: (12)

Let �p(x; ~x; �)dS(x) be the probability that one tracer particle initially located

at ~x at time t0, has reached dS(x) on boundary S1 before time t = t0 + � .

From the physical meaning of the probability ow G, we obtain

�p(x; ~x; �)dS(x)=
Z �

0

G(x; u+ t0 j ~x; t0) � dS(x)du

=
Z �

0

Gk(x; u+ t0 j ~x; t0)dSk(x)du; (13)

where dS(x) is the magnitude of vector dS(x), and dSk(x) are components

of dS(x). We now consider a special case, in which the ow velocity and the

dispersion matrix are independent of time. Using equations (13) and (12), we

obtain

@�p

@~xi
dS(x) =

Z �

0

"
vk(x) +

@Dkl(x)

@xl

#
@p

@~xi
�

@

@xl

"
Dkl(x)

@p

@~xi

#
dSk(x)du (14)

and

@2�p

@~xi@~xj
dS(x) =

Z �

0

"
vk(x) +

@Dkl(x)

@xl

#
@2p

@~xi@~xj
�

@

@xl

"
Dkl(x)

@2p

@~xi@~xj

#
dSk(x)du:

(15)

Introducing the operator F (�p) as

F (�p) =

"
vi(~x) +

@Dij(~x)

@~xj

#
@�p

@~xi
+Dij(~x)

@2�p

@~xi@~xj
; (16)

we then obtain from equations (14) and (15)

F (�p)dS(x)=
Z �

0

("
vk(x) +

@Dkl(x)

@xl

#
�

@

@xl
Dkl(x)

)

�

("
vi(~x) +

@Dij(~x)

@xj

#
@p

@~xi
+Dij(~x)

@2p

@~xi@~xj

)
dSk(x)du: (17)
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By using the fact that p(x; t0+u j ~x; t0) satis�es the following alternative form

of the Kolmogorov backward equation:

@p

@u
=

"
vi(~x) +

@Dij(~x)

@xj

#
@p

@~xi
+Dij(~x)

@2p

@~xi@~xj
; (18)

equation (17) then yields

F (�p)dS(x) =
Z �

0

("
vk(x) +

@Dkl(x)

@xl

#
@p

@u
�

@

@xl
Dkl(x)

@p

@u

)
dSk(x)du: (19)

Since v and D are independent of time, equation (19) can be equivalently

written as

F (�p)dS(x) =
Z �

0

@

@u
[Gk(x; u+ t0 j ~x; t0)dSk(x)]du (20)

by using the de�nition of Gk in equation (12). After using the following equiv-

alences: (a) G(x; t0 j ~x; t0) = 0; (b) Gk(x; t0 + � j ~x; t0)dSk(x) = @�p

@�
dS(x)

obtained from equation (13), the equivalence in equation (20) can be further

expressed as

F (�p)dS(x) = Gk(x; t0 + � j ~x; t0)dSk(x) =
@�p

@�
dS(x) (21)

The above equivalence shows that �p(x; ~x; �) also satis�es the Kolmogorov

backward equation, namely

@�p

@�
=

"
vi +

@Dij

@~xj

#
@�p

@~xi
+Dij

@2�p

@~xi@~xj
: (22)

The probability for tracer particle reaching anywhere on boundary S1 by time

� is given by

P (~x; �) =
Z
S1

�p(x; ~x; �)dS(x): (23)

From equations (22) and (23), it can be readily shown that P (~x; �) also satis�es

the Kolmogorov backward-type equation (7) with ~x replaced by x there. Eq.

(7) was derived by Cai et al. [5] under the assumption @vi
@xi

= 0. As far as we
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know, the assumption was adopted by the authors only because they started

from the convective form of the advection-dispersion equation (see equation (1)

of [5]) which is a special form of Eq. (1) in this paper under the assumption

of incompressible ow, and hence the transform (5) for complete similarity

between their Eq. (1) and the forward Kolmogorov equation (Eq.(3)) could

only be valid by invoking the assumption again. Since such an assumption

is not needed to obtain the complete similarity between our Eq. (1) (more

general) and the forward Kolmogorov equation (Eq.(3)) and it is not used

in the proof from Eq.(3) to Eq.(7) given above, we therefore verify that this

assumption is unnecessary and therefore the backward-type equation (7) can

be used for the case @vi
@xi

6= 0. We note that Eq. (7) is only valid when the ow

velocity and the dispersion matrix are independent of time, which is required

in the intermediate derivation step from Eq. (19) to Eq. (20). Otherwise,

additional integral terms would occur.

We propose to solve directly the backward-type Kolmogorov equation (7) by

�nite element methods. In practice, the equation is rewritten as

@P

@�
= vi

@P

@xi
+

@

@xi

 
Dij

@P

@xj

!
: (24)

The velocity �eld is �rst calculated from the ow equation, and then inserted

in (24). For steady horizontal (2D) ows in con�ned aquifers considered in the

next section, the ow equation is given by

@qi
@xi

=Q

qi=�BKij

@h

@xj
(25)

vi=
qi
B�

where qi is the integrated Darcy velocity, Q is the recharge/discharge source, h

8



is the hydraulic head, B is the thickness of the aquifer, � is the porosity andKij

are the elements of the hydraulic conductivity tensorK. Here the ow equation

(25) is solved by the Galerkin �nite element method and the equation (24) is

solved by the streamline-upwind-Petrov-Galerkin (SUPG) method. The whole

procedure will be denoted as the backward method.

3 Numerical example

In this section the proposed backward method is validated numerically by com-

paring its results with that from the standard forward method. Although the

hydraulic velocity �eld must be steady, the probability �eld may be calculated

in both steady and transient state.

Steady state On the boundary of the target region under consideration, a

probability P = 1 (�rst-type) is imposed for the backward method since

particles are yet in the region, while p = 0 is imposed there in the forward

method. On the absorbing boundaries, P = p = 0 (�rst-type) is imposed

for both forward and backward methods. On the boundaries where the

hydraulic ux exits in the forward model (enters in the backward model),

if the dispersive probability ux (second-type)

�Dij

@p

@xj
ni = 0

is imposed for the forward method, then, the total probability ux (third-

type)

�[Pvi +Dij

@P

@xj
]ni = 0

must be imposed in the backward method. On the boundaries where the

hydraulic ux enters in the forward model (exits in the backward model),
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the boundary conditions are opposite to the previous case. The above two

matching rules between the forward and backward boundary conditions is

intuitive and inspired by the same matching rules obtained by the adjoint

method [9]. On the impervious boundaries, the second-type boundary con-

dition

�Dij

@P

@xj
ni = 0

is imposed. The calculated P �eld is the probability for a particle to reach

the target region eventually.

Transient state Initials conditions are set to P = 0 everywhere. Imposing

the same boundary conditions as in steady state, the calculated P �eld

of time � describes the probability for particles to reach the target region

before � .

Multiple target regions Imposing P = 1 at more than one target region,

the calculated P �eld describes the probability for particles to reach one

of these regions, without discerning which one among them. This P �eld is

equal to the sum of the �elds calculated for each target region separately.

This has sense in steady or transient state.

To validate the backward method numerically, we here consider the two-

dimensional, rectangular, 800 m � 200 m con�ned aquifer shown in Figure

1. Flow is steady, and the ow boundaries are speci�ed head on the east and

west boundaries and no ow in the north and south boundaries, with ow

from west to east. A pumping well is located at (x; y) = (500m; 100m) and

pumps at a rate of Qw = 10m3=d. The target region associated with the well

is de�ned as a square of 20 m centered on the well. The aquifer thickness is

B = 1 m, and the transmissivity is T = 10�4m2=s. The molecular di�usion

coeÆcient is Dd = 10�9m2=s. The longitudinal and transverse dispersivity are
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Fig. 1. Aquifer geometry, boundary conditions, and protection zones calculated.

The point with symbol \W" denotes the pumping well location and the point with

number 1 denotes the observation point. The solid line and the dash line envelop

the protection zones corresponding to � = 365d obtained by the backward method

for Q = 0 and Q = 2� 10�4m/d, respectively.

�
L
= 10m and �

T
= 2m respectively. The aquifer porosity is � = 0:2.

We choose one point from the domain to compare the results from the for-

ward and backward methods. The point is located at (x; y) = (50m; 100m)

with the number 1 as shown in Figure 1. The results obtained by the two

methods are compared in Figure 2 for Q = 0 and Q = 2� 10�4m/d, respec-

tively. We �nd that, in both cases, the results from the backward method are

in excellent agreement with that from the forward method. This supports that

the two methods are equivalent for whatever @vi
@xi

. Not shown are the results of

the backward method with the boundary conditions disobeying the rules men-

tioned before, which are inconsistent with those from the forward method. This

suggests that the two methods are equivalent only with matching boundary

conditions. Needless to say, the backward method is much more eÆcient than

the forward method in the sense that it can obtain the entire time-dependent

protection zone with one simulation. As an example, the protection zone for

� = 365 d obtained by the backward method is shown in Figure 1 for Q = 0

and Q = 2 � 10�4m/d, respectively, where the protection zone is de�ned by
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Fig. 2. The probability P for the observation point calculated by the forward and

backward methods for Q = 0 and Q = 2� 10�4m/d, respectively.

choosing a threshold value, P = 0:1. The protection zone for Q = 2�10�4m/d

is smaller than that for Q = 0 due to the spatially uniform recharge, which

was also reported by others [10].

4 Conclusions

The backward method is presented to calculate the probability of a trace

particle reaching a target region within a given time and to delineate proba-

bilistic protection zones associated with the target region. The method and the

boundary conditions are validated by comparing the results with those from

the standard forward method. It has been shown theoretically and numerically

that the method works for more general problems where the assumption (the

divergence of the velocity �eld is zero) does not hold. The removing of the

assumption expands the application of the backward equation and therefore

is practically very important especially in the �eld of groundwater protection
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where various recharge/discharge sources (such as rain recharge) are often en-

countered. The method is simple and more eÆcient than the forward method.

It may be easily included in Monte-Carlo processes to address the probability

for a particle of contaminant to reach a target region also with respect for the

uncertainty on the physical parameters.
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