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Synopsis

In 1999, (")ttinger introduced a thermodynamically admissible reptation model incorporating chain

stretching, anisotropic tube cross sections, double reptation, and the convective constraint release -
mechanism. In this paper, we describe and use a new high-order Fokker—Planck-based numerical

method for the simulation of the Ottinger model in complex geometries. Evidence, in the case of
startup homogeneous flows, of the significant CPU time advantage (for comparable levels of
accuracy) of our method over a stochastic simulation [Fang et al. (2000)], is presented. For the

confined cylinder benchmark problem, differences in the drag behavior observed between the

éttinger model and those of Doi and Edwards (1978a, 1978b, 1978c) and Mead et al. (1998) are

explained in terms of double reptation and the differing relaxation spectra. © 2003 The Society of
Rheology. [DOI: 10.1122/1.1545440]

I. INTRODUCTION

Our concern in this paper is the accurate, yet cost-effective, simulation of “fast” flows
of melts and concentrated polymer solutions in complex geometries. By concentrated
polymer solutions we are referring to those solutions of polymers where faithful consti-
tutive modeling requires that interactions between polymers in their solution be taken into
account. In this context the best known coarse-grained description of the interaction of a
polymer molecule with the surrounding matrix is provided by so-called reptation models,
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originally introduced by de Gennes (1971) and extended by Doi and Edwards (1978a,
1978b, 1978¢) in three landmark papers of the late 1970s. In these models a polymer
molecule moves through a tube whose surface is formed by the surrounding polymers. In
the interests of tractability Doi and Edwards ignored the connectivity of the reptating
chain and thereby reduced the model to a single segment description. Furthermore, they
introduced the independent alignment assumption (IAA). Since after deformation the
polymer molecules in the Doi—~Edwards (DE) model retract instantaneously back to their
equilibrium length, stretching of polymer chains (or of their surrounding tubes) was
excluded. The prediction of excessive shear thinning in fast steady shear flows is one of
the unrealistic features of the DE theory. As explained in numerous papers [see, for
example those by Mead et al. (1998), Fang et al. (2000), and Peters et al. (2000b)], this
particular weakness is not overcome by building in a nonzero retraction time, and thus
allowing tube stretch: the polymers simply end up by orientating themselves along the
flow direction and the drag on them is reduced as a consequence. The crucial difference
between modern reptation theory [e.g., Marrucci (1996); Ianniruberto and Marrucci
(1996); Mead ez al. (1998)] and that of Doi and Edwards lies elsewhere: for sufficiently
fast flows proper account is taken in these models of a release of constraints by motion of
the members of the matrix that forms the tube around a given polymer chain. Thus, the
polymer is far freer to relax than would be the case by reptation alone. This convective
constraint release (CCR) mechanism suppresses the tendency of polymer chains to align
with a shear flow and occurs when polymers of the surrounding matrix move faster than
the polymer chain within is able to relax, i.e., for shear rates y > 7, I where T4 denotes
the reptation time.

In 1999 Ottinger introduced a thermodynamically admissible reptation model incor-
porating chain stretching, anisotropic tube cross sections, double reptation [Tsenoglu
(1987); des Cloizeaux (1988)], and the CCR mechanism. In addition, as with other
modern reptation models Ottinger avoided the IAA. The constraint release mechanisms
associated with double reptation and CCR were incorporated in a natural way into the
dissipative part of the new model. Two versions of the model were proposed: a “‘uni-
form” model where the chain contour label s was uninfluenced by the flow field so that
only uniform stretching of the chain could occur, and a “tuned” model where s was
rescaled by the total tube stretching rate. A year later Fang et al. (2000) used a stochastic
method to evaluate the uniform model in various transient and steady shear and exten-
sional flows by comparing the predictions of this model with experimental results [for a
solution of polystyrene in tricresyl phosphate, Kahvand (1995)] and with the predictions
of two other reptation models [Hua and Schieber (1998); Hua et al. (1999); Mead er al.
(1998)]. Anisotropic tube cross sections were not considered. In the shear flows the three
reptation models were seen to manifest similar behavior in many cases and the Ottinger
model was able to capture, at least qualitatively, the real polymer behavior. In a steady-
state uniaxial extensional flow Fang er al. observed the appearance of a low extensional
rate region 0.17, lT<es T, ~1 where the viscosity manifested extensional hardening. It
was thought at the time that this represented a difference in the extensional behavior with
that of the DE and Mead-Larson—Doi (MLD) models. This is now known not to be the
case [Hassager (2002)].
.. The purpose of this paper is twofold: the evaluation, for the first time, of the uniform
Ottinger (UO) model in a complex geometry and the showcasing of Fokker—Planck (FP)-
based numerical methods as a competitive alternative to stochastic methods for the simu-
lation of fast flows of melts and concentrated polymer solutions.

The basic idea of the micro~macro approach is to combine the usual numerical solu-
tion to the (macroscopic) conservation equations with a kinetic theory model for the
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polymeric contribution to the extra-stress tensor. Thus, closed-form differential or inte-
gral constitutiYe equations may be circumvented and Ito-type stochastic differential equa-
tions solvgd instead for Fhe conformations of the polymer molecules describing the
coarse-g?amed (mesoscopic-level) microstructure. Macroscopic quantities, for example
the elastic stress, may then be computed by averaging large ensembles of realizations
of the conformations [see the book of Ottinger (1996) for details]. Over the decade or
so that has elapsed since the pioneering work of Laso and Ottinger (1993) with the
CONNFFESSIT method, micro—macro simulations have become increasingly popular,
primarily because of the exciting possibilities that have opened up for incorporating more
of the essential physics of polymeric fluids into the kinetic theory models used in such
simulations. The Brownian configuration field method [Hulsen ez al. (1997); Ottinger
et al. (1997)] and the Lagrangian particle method [Halin ef al. (1998); Wapperom et al.
(2000)] define, in our opinion, the current state of the art. :

The starting point of FP-based methods is the equivalence that exists between a sto-
chastic differential equation and the FP equation that describes the distribution of the
stochastic process. Since the aim in view in the “micro” part of micro—macro methods is
usually to compute a macroscopic elastic stress, clearly one does not need to calculate the
trajectories of individual conformations, as is done in a CONNFFESSIT-type method, for
example. The determination of a configuration probability density function (pdf) is quite
sufficient for the computation of ensemble averages in configurational space of functions
of the polymer conformation, and thus for finding the macroscopic quantities of interest.
However, coolness to the idea of solving an equivalent FP equation for the polymeric
configuration pdf, at least in the case of a high-dimensional configurational space, has
been expressed in the literature [Ottinger (1996), Owens and Phillips (2002)], on the
grounds of computational cost.

Indeed, very little has been done to advocate FP-based methods as a convenient way
of computing a macroscopic elastic stress. Exceptions are the papers of Warner (1972)
and Fan (1985a, 1985b, 1985c) on steady-state shearing flows and small amplitude os-
cillatory shear flows of dumbbell models. Fan (1989a) also computed the material func-
tions for steady-state shear flow and uniaxial extensional flow of rigid rod-like molecular
suspensions. In part II of the paper, Fan (1989b) performed what, to our knowledge at
least, were the first computations in the published literature of complex flows using the
FP equation. In recent work by the MIT group [Armstrong et al. (1996); Nayak (1998);
Suen et al. (2002)] the discontinuous Galerkin method has been used for spatially dis-
cretizing the FP equation for dumbbell and DE models and a Daubechies wavelet basis
employed for representations in configurational space.

In Sec. Il we give a mathematical description of the three reptation models that will be
compared in low Deborah number flow past a confined cylinder in Sec. IV B 1. Section
111 is devoted to an exposition of our spectral/spectral element method for the discretiza-
tion of the conservation equations for mass and linear momentum, the evolution equation
for the tube stretch parameter N and the FP equation for the configuration pdf ¢. The
crucial element in the numerical algorithm is a time-splitting method for the equations for
N and i, permitting resolution first in configurational space and then in physical space. In
Secs. IV A | and IV A 2 we compare the results obtained using our FP-based method for
the UO model in startup homogeneous flows with those computed using the stochastic
method of Fang et al. (2000). A clear computational advantage in favor of the FP-based
approach is evidenced. In the last subsection the UO model is evaluated in a complex
flow for the first time. We consider the behavior of this model compared with that of the
single-mode DE model and Mead-Larson-Doi [Mead et al. (1998)] model in flow past a
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cylinder at low Deborah numbers, the data for the DE and MLD models being taken from
the paper of Peters er al. (2000b). Some conclusions follow.

Il. DESCRIPTION OF THE MODELS

The equations of continuity and of linear momentum for an incompressible polymer
solution in inertialess and isothermal flow are

V.v =0, (D
and
0= —Vp+nVv+V.r+f, | 2)

where v, p, and = denote, respectively, the velocity, pressure, and elastic stress fields. #,
in Eq. (2) is the viscosity of the Newtonian solvent and f is a body force (e.g., gravity).

Qur interest in this paper is the numerical simulation of melts and concentrated poly-
mer solutions in which the elastic contribution to the Cauchy stress is derivable from a
reptation model. Let us denote by u the unit orientation vector of a tube segment and by
s e[0,1] the normalized contour label of a polymer chain, such that s = 0 and s = 1
correspond to the head and tail, respectively, of the polymer chain. Then, a configuration
probability density function (wu,s,X,t) may be introduced, so that (u,s,X,f)duads is the
joint probability that at time ¢ a tube segment with position vector x has associated
orientation vector in the interval [w,u+du] and contains the part of the polymer chain
labeled in the interval [s,s+ds]. In this paper we describe three reptation models: the
DE model [Doi and Edwards (1978a, 1978b, 1978c)], the MLD model [Mead et al.
(1998)], and the UO model [Ottinger (1999)]. Unlike the DE model, the reptation models
of Mead et al. and éttinger allow for tube stretching and both incorporate CCR. Addi-
tionally, the UO model has two features not present in the MLD model: double reptation
[see Eq. (18) and the succeeding paragraph] and the possibility of incorporating anisot-
ropy in the tube cross sections. As with Fang er al. (2000), however, we make no use in
this paper of this last feature of Ottinger’s model.

A. Doi—-Edwards model

One of the most basic reptation models and the spawning mother of all the rest is the
original DE model [Doi and Edwards (1978a, 1978b, 1978c)] with the IAA. In this form
the configuration pdf is the solution to the FP equation

Dy d I | a1/ 3)
—_ = = —un) - K-uy -+ ) -
Dr on L ) v 'rrzfrd 757 (

where s denotes the transposed velocity gradient tensor (kij = dv;i/dx;), D/IDt is the
material derivative, and 7, is the reptation time, defined as the characteristic time for a
polymer chain to escape from its original tube. The differential operator d/du in Eq. (3)
includes only the derivatives tangent to the unit sphere. The boundary conditions for
s = 0 and s = | supplementing the FP equation (3) are

1
1//(u,.5‘,x,t) = 4—7—;5(|u|-1), s = 0,1, (4)

where & denotes the delta function. The elastic contribution 7 to the Cauchy stress is then
determined in the Doi~Edwards theory by

= 5G%S, (5)
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0 . . i ) )
where G is an elastic modulus, S = (uu) is the orientation tensor and (-) denotes an
ensemble average, defined for a function f = f(u,s) by

1
(f) = Lz OJB(O’])f(u,s)1/;(u,s,x,t)duds, (6)

B(0,1) being the surface of the unit sphere centered at the origin.

We note that the DE model can be written in equivalent form as an integral equation
for the orientation tensor S(#):

!
S(1) = L, _ m(et)Q[F(r,")]dr’, (7)
where m is the memory function, given for the DE model by
| 8 o 2k+1)%(¢—1'
m(tt') = mDE(r,t') = — E exp(—( A )), (8)
Ty k=0 Td

and Q is the deformation-dependent tensor defined in terms of the deformation gradient
tensor F(r,t") as follows:

9)

F ] ! * 4, , ! . !
Q(1,t') = (uu), = < (t,t")-u(r)F(t,t") -t )>
t’

1F(2,t")-u(r")|?

The subscript t” in Eq. (9) indicates that the orientation vector u in the ensemble average
was created at time t' according to the uniform distribution as in the boundary conditions
(4). The integration in Eq. (7) is performed along the particle paths. The DE simulations
of Peters et al. (2000b) using a deformation field method, the results of which are dis-
cussed in Sec. 1V B 1, were for a single-mode (sm) version of this model. In this case the
memory function is given by

mDEsm(Z‘,t') — _l_exp(“([—tl)>, (10)
Ta Td
and the corresponding FP equation by
P—(-/f = ~i-[(l—uu)-lc~ut/i]—-——1-—(t,b———l—). (11)
Dt au Ty 4

As mentioned already in the Introduction, although the predictions of the DE model
are in excellent agreement with experimental step-shear strain data, the model is severely
shear thinning in steady shear flow. Some more recent reptation models incorporate two
important improvements to the original DE model: tube stretching for flows faster than
the inverse of the Rouse time 7, for the relaxation of the polymer chain, and the CCR
mechanism for flows faster than the inverse of the reptation time 7 - Among such models
we cite ones by Marrucci (1996), lanniruberto and Marrucci (1996), Mead et al. (1998),
and the UO model [@ttinger (1999), Fang et al. (2000)]. In the following subsections we
recapitulate the essential mathematics of the latter two models.

B. Mead—Larson—Doi model

The MLD model is based on the model by Pearson et al. (1989), which is a simpliﬁeq
form of the Marrucci—Grizzuti extension of the DE model [Marrucci and Grizzuti
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(1988)]. The MLD model incorporates the effects of tube stretching and constraint re-
lease. Specifically, account is taken of tube stretching via a function A = N\ (x,7) defined
as I

A= —,
Ly
where L is the contour length of a polymer chain and Ly its equilibrium contour length.
A 1s incorporated into the expression for 7 as

7= 5GI\S, (12)

where S = (uu) is the orientation tensor, which is calculated through the integral equa-
tion (7) with the memory function specified below. The time rate of change of A\ is
governed by the balance between stretch due to the flow field and relaxation of the chain
within the tube. Constraint release effects are also taken into account, which gives the

equation
= 22 Sl)\l)] Sx()\l) (13)
A=—=Ak:S——(N\—1)——| Kk:S—— —1),
Dt Tg ( 2 A
where 7 is the longest Rouse time of the polymer chain.
In deriving the expression for the memory function, Mead et al. started from the
memory function of the single-mode DE model (10). The latter may be seen to satisfy

DEsm
Dm 1 i
——— DT e e nrlDE‘Srn, (14)
Dt T

with an effective relaxation time 7 = 7,;. By modifying 7 to take account of an extra
relaxation of orientation due to CCR, Mead et al. proposed a memory function that
satisfies

MLD \

Dm 1 1 A
—_——— = 5 + — KZS"‘”‘“ mMLD. (15)

Dt A T A A

Here, the reptation time 7, is multiplied by A2 to take account of the increase in the
reptation time produced as a result of the lengthening of the chain’s primitive path by the
flow.

C. Uniform 6ttinger model

The reptation models described by éttinger (1999) feature anisotropic tube cross
sections, chain stretching, double reptation, and CCR, while avoiding the IAA. In his
paper Ottinger discussed two versions of the model: a “uniform’ model where the con-
tour label s is uninfluenced by the flow (and thus only a uniform stretching of the chain
can occur), and a “tuned” model where s is rescaled by the total chain stretching rate. In
Part II of the paper, Fang et al. (2000) performed stochastic simulations of the uniform
model] for various shear and extensional flows, but made no use of anisotropy in the tube
cross sections. With an eye to the numerical results in Sec. IV of the present paper we
now briefly discuss the equations characterizing the UO model, as implemented by Fang
et al.

The model features a maximum allowable extension ratio Amax and the evolution
equation for the chain stretching ratio \ is
DA 1 (AN2=1)\2

A= — = Ac:S— — iy 16
Dt Ts MAmax—2?) (1o




FOKKER-PLANCK SIMULATIONS OF FAST FLOWS 541

The first term on the right—ha_nd side of Eq. (16) corresponds to affine deformation and
will be denotgd in Sec. IIl by A;on - The second term is a dissipative contribution, denoted
hereafter by Adissip -

The FP equation for the configuration pdf assumes the form

Dy ] 0 Nicei 1 Py o oy
L = [ uw) e ug] (St — —® +D— —
Dt o gs A v mT, 95’ du du’
(17)
where the drift velocity st = — 1/A[s—( 1/2)]xdissip and D is an orientational diffusion

coefficient. The second term on the right-hand side of Eq. (17) is a creation/destruction
term accounting for nonzero drift of configurations through the boundaries s = 0 and
s = 1. The boundary conditions for the FP equation (17) are the same as those in Eq. (4).
The physical significance of the terms in Eq. (17) is discussed by Ottinger (1999) and by
Fang et al. (2000). The orientational diffusion coefficient D in Eq. (17) may be defined as

1 1 j\dissi xd' i
D= ~-|&—— P _ Mdissip
6[ oy A — | | (18)

where H is a Heaviside function. 87 and &, are positive A-dependent parameters repre-
senting double reptation and the CCR mechanism, respectively. Double reptation is so
called because with &; = 1 there is an additional relaxation mechanism with the same
reptation time as in the original DE model. Following Fang ez al. (2000) we have chosen
81 = & = 1/\.

Finally, the elastic stress 7 is related to the orientation tensor § = (uu) by

0
= 5G
N 1— (NN ax)”

|
1+ S, (19)

and is the sum of a DE contribution [first term in the square parentheses of Eq. (19)] and
a contribution associated with chain stretching. We note in passing that as Nmax — ©
T — SGQJ}\ZS, which is the same as Eq. (12).

In the presentation of the results in Sec. IV we work with dimensionless variables,
here denoted with an asterisk, and defined by

< = WL, t* = t/rg, v* =vry/L, p* =plGy, and 7= TGS, (20)

where L represents a suitably chosen length scale.

In rewriting Egs. (1) and (2), (16) and (17), and (19) in terms of these dimensionless
variables, it may be shown easily that the only parameters that require prescription are the
maximum extension ratio A max » the ratio of the reptation time to the Rouse time 74/ 7,

. . . . 0
and the dimensionless solvent viscosity 77;." = N /GNTd-

Ill. NUMERICAL METHOD

One of the most efficient techniques that has been used up to now for numerical
simulation of reptation models in complex flows is the deformation field method [Peters
et al. (2000a); Hulsen et al. (2001)]. It is applied by van Heel et al. (1999) to the DE
model and by Peters et al. (2000b) to the MLD model. This method is based on the
integral representations (7) and (9) of the orientation tensor S(f). However, such a simple
representation does not exist for the UO model due to the presence of the second and
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third terms on the right-hand side of its FP equation (17). This makes impossible the
application of the deformation field method to the UO model.

An alternative is to use stochastic numerical methods, [see, for example, the book of
ottinger (1996)]. This approach is based on the equivalence of FP equations and stochas-
tic differential equations and was applied to the UO model by Fang ef al. (2000). How-
ever, only homogeneous flows were considered by these authors.

Very recently, Gigras and Khomami (2002) have combined the Brownian configura-
tion field method and the deformation field method to allow the simulation of advanced
reptation models such as the UO model. Their so-called adaptive configuration field
method was tested against the results of the Brownian dynamics simulations of Fang
et al. (2000) for several homogeneous flows and the results were found to be in excellent
agreement.

In the present paper we explore an alternative approach to those cited above: solving
directly the FP equation (17) using high-order methods. We shall show that this can be
much more efficient that stochastic methods in the case of homogeneous flows, and
moreover complex flows can also be investigated. The equations to solve in the UO
model are Eqgs. (1), (2), (16), and (17). This necessitates discretization in time and in both
configurational and physical space. A Galerkin method is used in configurational space
and a streamline-upwinded Petrov/Galerkin (SUPG) spectral element method in physical
space, as will be elaborated on in the subsections to follow.

A. Time-splitting scheme

We denote the evaluation of a field variable (v,p,7,\,¢) at time ¢ = jAt with a super-
script 7.7

The initial conditions (j = 0) are chosen as 7% = 0, A\ = 1, and ' = 1/47r. For
simplicity, we decouple the solution of the Stokes system (1) and (2) from the polymeric
stress calculations (16), (17), and (19). Thus, =/ appears as a source term evaluated at
time jA? in Eq. (2) and we solve the continuity-momentum pair for velocity v/ and
pressure p/:

V.v/ =0, (21)

ij—- 77SV2Vj =V.5/ (22)

Since the FP equation (17) contains derivatives in both configurational and physical
spaces, solving it in a completely implicit way would be prohibitively expensive. On the
other hand, it is better to treat the convective terms in physical space implicitly for
stability reasons. As a compromise, we propose splitting every time step into two half-
time steps, the first one (explicit) accounting for configurational space and the second one
(implicit) for physical space. Moreover, the first half-time step can be further split in NV,
smaller time steps to meet possible restrictions of Courant-Friedrichs-Lewy type. N, was
set equal to 10 for all the results presented in Sec. IV. All this leads to the following time
marching scheme:

¢ First half-time step:

Set N0 = \J and Y0 = ¥/ and calculate P for @ = 0,....N,— 1 via the for-
mulas

Aat 1)y e
At/N,

= (xcon + Xdissip) ( nd (e )s (23)
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¢j(a+1)_ l/,J'(a)
= () y j(a)

where Lgp refers to the Fokker—Planck operator appearing on the right-hand side of Eq.
(17). Then, set N T2 = \i(Na) gpd ¢j+1/2 = I WNa)

» Second half-time step

)\j—!- 1 _)\j+ 172

YT =, (25)
l/,j+1__l/,i+1/2 ' .
e +(v/. V)it = 0. (26)

The orientation tensor S/1 may be calculated from

Sj l(xt)——— 1 ? Wlxtueqo uécpuﬁqo'nﬁddd
’ s=0J0=0Jp=0 [x.2,u(0,¢),s]u(8, @)u( 8, ¢)si pdbds,
(27)

where u = sin 6 cos ¢e,+ sin 8 sin ge,, -+ cos e, . 7/t then follows from Eq. (19) and
the algorithm increments j By 1 and returns to the Stokes system (21) and (22).

B. Discretization in configurational space

A discrete approximation to the configurational pdf , expressing dependence on s and
on a generic point on the unit sphere in configurational space, may be written in the form

N,

1 Ny
usxn) = X B2 e nm(%0Ponam(0:0)Lels). (28)

n

In Eq. (28) <I>fl,m = P?(cos O[(1—i)cos me+i sin me] (i = 0,1) are spherical har-
monics defined in terms of the associated Legendre polynomials P’ and the spherical
polar coordinates @ and . L¢(s) is a degree N polynomial, defined on [0,1] by

Ly(s) = he(8), (29)

where £ = 25— 1 and

| 1-&)Py (9 30)
MO = TN Py G (&)

Here, Py () is the degree N, Legendre polynomial and the {fg}]ey — o are the Gauss—

Lobatto—Legendre (GLL) points [see the book of Canuto et al. (1988), for example]. h¢
is the €th Lagrange interpolating polynomial based on the GLL points and has the prop-
erty that he(€;) = &¢; j, ¢ = 0,.,N;. We note that only the spherical harmonics of even
order appear in Eq. (28). This is because ¢ is an even function of u.

Inserting Eq. (28) into the FP equation (17) for ¢ we now seek to simplify the terms
in the square parentheses appearing on the right-hand side of Eq. (17). It is shown by Fan
(19894a) that
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P m+2 n+2
' m.kr ket 4 1=i, k
—&l—l-[(l—uu)-muq);,m] = . =§n:1__2 j ___%_2 ay i [w;®j e+ (—1) (I), k ol

(31)

where the coefficients aZ’ Jk and the linear combinations of velocity gradients wf and v j

are (helpfully) supplied by the same author [See Tables 1-3 of the paper by Fan (1989a)].

The diffusion term is much easier. The spherical harmonics are the eigenfunctions of
the Laplace operator on the unit sphere; specifically,

_6’_. 9L nm = —n(n+1) ! (32)
au &u n,m:*
~ Using Egs. (28) and (31) and (32), we form the product of Eq. (17) with a test function
CI>2p 24(6,@)Li(s) i=01;p=0,..,N,; g =1i,..p;k=0,.,N) and integrate over

configurational space B(0,1) X[0,1]. The 1ntegral Wlth respect to s is evaluated using a
Gauss—Lobatto quadrature rule, and orthogonality of the spherical harmonics over B(0,1)
is exploited. The time- and configurational space-discretized equations corresponding to
Egs. (24) and (26) now, therefore, become

A/N — [y D) — i) (%]

p+1 g+1
2 2 : 2 -
= T Wy E 2 Zg %Zi[w n /f{(kaL m(x)'*'(_~ )IUZ:;ll/lfr)k n,m(x”
n=p—1lm=gqg—1
& ) i‘diwp ()
= 2 W, g0 Gioda()] Lals) = =L w0y
N,
e E P& (L(s),Li(s))y —2p(2p+1)w Dyl &) (33)
’ITZTd 0= l {.p.q L et N, Pl k ik,p.g- :
and
j+1/2
_[ 2 J’CI i,-/t;,]f q(x)]+(vj T -V )y k ,, q(x) = 0,

(34)
(=01, p=0,.N,, g=i,....p, k= 1..N;—1,

with i = m =< n < N, in the summation in the first term on the right-hand side of Eq.
(33). (-,-) n, denotes the (N +1) point GLL quadrature evaluation of the L? inner
product over [0,1]:

N

¥

("‘~U)NS = kZO wrtt (S (Sy),

where s, = (§¢+1)/2 and w; are quadrature weights.
Once we have the pdf in the form (28), the components of the orientation tensor S
= (uu) may be computed from the formulas
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NS
=] 1 1
Sy 477120 o (5%0,6,00~ 15%0,6,1,0 3%0,,1,1):

N

M
_ 1 L
Syy 477120 (540,600~ T5%0,6,10~ Wo0,,1.1)

Ny
— 1 2
Sz = 477120 w)(3%0,0,00 T 5%0.,1.0)

g Ns
So =5 2y e

the other components being zero in a flow parallel to the xy plane.

C. Discretization in physical space

Finally, we discretize Egs. (21), (22), (25), and (26) in physical space using a spectral
element method. This is done by choosing tensorized bases in real space for all dependent
variables—with the exception of the pressure~—consisting of polynomials of degree N in
each spatial variable. The pressure basis polynomials are chosen to be of degree 2 less in
each direction so as to ensure that the discrete problem is well posed [see Maday et al.
(1992)]. A discrete system of equations is set up using the Galerkin method for Eqs. (21)
and (22) and an Uzawa algorithm (block Gaussian elimination) is used to construct a
discrete Poisson-type problem for the pressure from Egs. (21) and (22). For details of the
implementation of the Uzawa algorithm in the viscoelastic context the reader is referred
to the paper of Owens and Phillips (1996), for example.

Equations (23) and (24) are solved separately at each collocation point. An SUPG
element-by-element spectral element method with constant upwinding factor, as detailed
by Chauviere and Owens (2001), is used to treat convection Eqgs. (25) and (26).

IV. RESULTS

A. Homogeneous flows of the UO model: Stochastic simulations [Fang et
al. (2000)] versus the Fokker—Planck method

The predictions of the UO model for homogenous shear and extensional flows are
described in detail by Fang et al. (2000). Here, we want to validate our numerical method
by comparing the results with those from the stochastic simulations of Fang er al. We also
want to investigate the efficiency of the two approaches. All CPU times quoted in Sec.
IV A are for a Pentium III 800 MHz machine and the parameters of the UO model are
taken to be Ayux = 21 and 74/73 = 50.
1. Startup shear flow

We report here the results for homogeneous startup shear flow. That is, we solve the
FP equation (17) coupled with Eq. (16) with the steady velocity field

v = (v,,0y,0,) = (¥,0,0). (35)

Figure | shows the relative errors for 7, after reaching the steady state w-ith the
FP-based method described in Sec. III for three different values of the dimensionless
shear rate y7; = {3,80,300}, taking the value computed on a finer grid (N, =.N s
= 40) as the exact one. Each data point in Fig. 1 is labeled first with the CPU time
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FIG. 1. Relative error for 7y for the simple shear flow (35) at three values of y7,; using N, = N, = 4, 8, 12,
16, 20, and 24, Each data point is labeled with the total CPU time in seconds and, in parentheses, the value of

vAt used. Final time = 100/%.

required to reach a final time of 100/, and second in parentheses, we indicate the
dimensionless time step YAt chosen. The choice of the time step was made by perform-
ing a run at yAr = 0.02 and (if necessary) dividing this successively by 2, 4, ..., etc.,,
until convergence was achieved. We see that the scheme manifests exponential conver-
gence. However, as is to be expected, the rate of convergence gets lower with increasing

Y7d -

0.3

AN
T~

™~ 0.2
\\ S

™1 0.1

/

-0.6

<1

FIG. 2. Pdf 4 as a function of «, and uy ats = 0.5 for the simple shear flow (35) at y7,4 = 3 computed with
N, = N, = 12
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T2

FIG. 3. Pdf 4 as a function of uy and uy, at s = 0.5 for the simple shear flow (35) at y74 = 800 computed with
N, = N, = 10.

The reason for this becomes clear if we compare the solutions for the pdf ¢ at the
shear rates 74 = 3 and 800 shown in Figs. 2 and 3, respectively, where i is plotted as
a function of u, and u, at s = 0.5 for the steady state, i.e.,  evaluated at s = 0.5 on the
upper hemisphere poiﬂted to by u is projected onto the unit disk. We see that the solution
in Fig. 2 is very smooth, but that that in Fig. 3 has two spikes that can be captured
accurately only on a sufficiently refined mesh.

Not surprisingly, our FP method is particularly advantageous in comparison with the
stochastic simulations of Fang et al. (2000) at low shear rates. We compare the respective

TABLE I Convergence of our FP method for the simple shear flow (35) at y74 = 3. Final time 100/7.

Ny Ny VAL Tyy |A Tyl Ty CPU time (seconds)
4 4 0.02 0.509716873089292 3.6Xx1073 0.16

8 8 0.02 0.511583481828495 6.0x10"10 0.75

12 12 0.01 0.511583481521587 6.5x10 13 5.4

16 16 10.005 0.5115834815210698 3.6x107 13 27

20 20 0.0025 0.511583481521067 3.6x107 13 113

24 24 0,00125 0.511583481521072 3.5%10713 527

28 28 0.000625 0.511583481521099 3.0x10713 2535

40 40 1.5625% 104 0.511583481521253 ~ 34161
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TABLE II. Convergence of the stochastic simulations of Fan et al. (2000) for the
y74 = 3. Final time 100/7.

LOZINSKI ET AL.

simple shear flow (35) at

Neample® Nbjock JAt ey S7yy [ATyy/ 7yl CPU time (seconds)
10000 10 0.04 0.5073 2.7%x1073 8.4x1073 604

10000 10 0.02 0.5097 4.3%x1073 3.6x1073 1166

10000 10 0.01 0.5103 3.6x1073 2.4%1073 2320

10000 100 0.04 0.5074 8.7x 1074 8. 1x1074 6054

10000 100 0.02 0.5091 1.4x10—3 4.8%10—3 11672

10000 100 0.01 0.5104 1.2x1073 2.3%x1073 23225

®In the work of Fang et al. the simulations were performed in Npj,q4 independent blocks, in each of which
Nsampie trajectories of the stochastic processes u and s were allowed to propagate. See Fang er al, (2000),

CPU times at y7; = 3 in Tables I and II. In Table I we show the computed values of
Txy » the absolute relative errors IATxy/ ’T'xy, (assuming the solution computed with N,
= N = 40 to be exact), and the CPU times for our method. In Table IT we supply the

FIG. 4. Evolution of Txy for the startup simple shear flow (35) at YTy =
numerical method with N, = N, = M and At =
Nsample = 10000, Npjock = 2, and Ay =

indicated.

o-®
.-
o

.........................

--------------------------

...........................

FP 8 (12 sec)

— — — — FP 12 (44 sec)
——— FP 16 (110 sec)

Stochastic (1724 sec)

tk,

8OO, FP M stands for the FP-based
0.005/7y. The stochastic simulation was implemented with
0.01/%. The CPU times on a Pentium 111 800 MHz machine are also
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FIG. 5. Relative error for Ny for the uniaxial extensional flow (36) at three values of &7, using N, = N
= 4, 8, 12, 16, 20, 24 and 28. Each data point is labeled with the total CPU time in seconds and, in
parentheses, the value of éAt used. Final time = 50/e.

values of 7, computed with the method of Fang et al. (2000) and averaged over the final

200 time steps, the standard deviations 8Ty, over the same time interval, the absolute
relative errors |A 7y, /7yy| (again, assuming that our FP solution computed with N,
= N, = 40 is exact), and the CPU times. We see that both methods give approximately
the same results, but that our FP method can be thousands of times faster for the same
level of accuracy. As an example, in the FP shear flow calculation with N, = Ny = 4
detailed in Table I, only 0.16 CPU seconds were taken to compute a solution having a
relative error in the shear stress 7y of 3.6 10~ 3. The vast majority of this time (99.9%)
was consumed performing the iterations (23) and (24) and the remaining time mainly
with the construction of the coefficient matrix for the FP operator in Bq. (24). For the
same level of accuracy it may be seen from Table II that 1166 CPU seconds were
required by the Fang et al. stochastic algorithm to reach the same final time of 100/7y. The
reason for the significant difference in CPU time between the two methods is that reduc-
tion of the variance in the stochastic algorithm requires that Ngample ¥ Nplock be chosen
sufficiently large and accuracy demands that At be chosen sufficiently small.

What is less evident is that our method can be more efficient than the stochastic
simulation technique even at the high shear rate yr4 = 800, as may be seen from Fig. 4.
Although relatively high values for N, and N, are needed in order to match the “deter-
ministic” solution with the stochastic one, our method gives about a 15-fold gain in CPU
time.

2. Uniaxial extensional flow

We report here the results for homogeneous startup uniaxial extensional flow with a
velocity field of the form
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FIG. 6. Pdf « for the uniaxial extensional flow (36) at é7, = 3 computed with N, = N, = 12,

v = (vx,vy,vz) = (—€éx/2,— €y/2,€z). (36)

Figure 5 shows the relative errors for the normal stress difference Ny = 7,.— 7y after
reaching the steady state (final time 50/€) with the FP-based numerical method for three
different values of the dimensionless extensional rate €7, = {3,80,300}. “Exact’ solu-
tions for these three extensional rates were calculated with N, = N, = 40. In a similar
manner to Fig. 1, each data point in Fig. 5 is labeled first with the CPU time required to
reach a final time of 50/€ and then, in parentheses, the dimensionless time step €At
chosen.

The scheme again converges exponentially fast but, of course, the convergence rate
decreases with increasing €r,;. We are able to demonstrate even more clearly than in the
previous subsection why this should be so. i/ is plotted in Figs. 6 and 7 for éry = 3 and
300 as a function of # and s (the solution for i does not depend on ¢ in this extensional
flow since the velocity field is invariant to rotation about the z axis). We see that the
solution at €74, = 300 has sharp boundary layers at s = 0 and 1, which a mesh of N,

= Ny = 12 is unable to resolve adequately; numerical oscillations being the result.
Increasing the resolution in configurational space to N,, = N, = 50 captures the bound-
ary layers satisfactorily, as shown in Fig. 8. However, our method is at least as efficient
as the stochastic simulation for the same accuracy level as may be seen from Fig. 9.
Reasonable agreement is found in the steady state values of N| at é7, = 300 predicted
by run ““c” of the FP method and run “‘f” of the stochastic method of Fang et al. (2000).
Having said this, whereas run “‘c” required just 437 CPU seconds, the stochastic calcu-
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FIG. 7. Pdf ¢ for uniaxial extensional flow (36) at é75 = 300 computed with N, = Ny = 12.

!

X
N
I

FIG. 8. Pdf ¢ for uniaxial extensional flow (36) at €74 = 300 computed with N, = Ny = 50.
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FIG. 9. Evolution of Ny for the startup uniaxial extensional flow (36) at ér,; = 300 with a zoom on steady
state regime. (a) FP-based simulation with N, = N, = 24, Ar = 0.0025/&, CPU time 109 seconds; (b) the
same with N, = N; = 28, CPU time 284 seconds; (c) the same with N, = N, = 32, CPU time 437 seconds;
(d) stochastic simulation with Ngymple = 10000, Npjoer = 2, Az = 0.02/é, CPU time 107 seconds; (e) the
same with At = 0.002/¢, CPU time 1063 seconds; and (f) the same with Ar = 0.0002/¢. CPU time 10 609 s.
All CPU times quoted are for a Pentium III 800 MHz machine.

lation took 10 609 seconds using the same hardware. Although the convergence of both
the FP and stochastic approaches is rather slow in the case of large extensional rates, the
CPU time is always less for our method than for the stochastic one.

To facilitate comparisons of the computational cost for different levels of configura-
tional mesh resolution for both the startup shear flow (35) and the uniaxial extensional
flow (36), we have computed the CPU time per time step for each of the values of N u

= N selected in Figs. 1 and 5. These results are presented in graphical form in Fig. 10
on a log—log scale and indicate that the CPU requirement increases in both cases no more
rapidly than O(Nf).

B. Two-dimensional flow past a confined cylinder

Having validated our numerical method for startup shear flow and extensional flow in
Secs. IV A 1 and IV A 2, we now wish to evaluate, for the first time, the UO model in a
complex flow. For this we choose the benchmark problem of flow past a confined cylin-
der (see Fig. 11) with a cylinder radius to half-channel ratio of R/H = 0.5. The cylinder
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FIG. 10. CPU time (seconds) per time step for the simple shear flow (35) and the startup uniaxial extensional
flow (36) vs the configurational resolution N

radius R is chosen as the characteristic length scale with respect to which the spatial
variables are nondimensionalized [see Eq. (20)] and a Deborah number De for this flow
is defined as

De = U* = : (37)

UTd
R

FIG. 11. Flow past a confined cylinder: Schematic of flow geometry. The cylinder has radius R and the
half-channel width is H.
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FIG. 12. Flow past a confined cylinder: Non-dimensionalized solvent (7}_‘.'51_\.'\./(.1';\),) and elastic (7'\,\,/(;'(,:,)
contributions to the xx component of the Cauchy stress tensor along the axis of symmetry and on the cylinder
surface (— [ < x/R < 1) for UO model at De = ().6. 77,,/(“}2/7,, = (.05, B = 0,N, = Ny = 4 and N = [0,

where U is the mean velocity in the inflow/outflow section of the channel. For all the
calculations presented here we have chosen N\ ,,x = 2! and 7,/7¢ = 50. Unless other-
wise indicated in a figure caption, the discretization in configurational space was chosen
as N, = Ny = 14. The flow domain was decomposed into 30 spectral elements and,
unless indicated otherwise, degree N = 10 polynomials in both spatial directions were
used for the representation of all dependent variables with the exception of the pressure.
Upstream and downstream channel lengths of 50 cylinder radii were chosen and periodic
boundary conditions for all the field variables except the pressure were applied (the
pressure is periodic up to addition by a linear [unction).

1. Comparison of UO model with DE and MLD models [Peters et al. (2000b)] at
low Deborah numbers

Direct comparisons of the UO results with those obtained for the single-mode DE
model [Doi and Edwards (1978a, 1978b, 1978c¢)] and the MLD model [Mead et al.
(1998)] over long time intervals are not possible using our FP method-—in neither case is
there a diffusion term in u in the FP equation, provoking numerical instabilities at modest
Deborah numbers. However, we are able to compare our results at De = (.3 and 0.6 with
those obtained for these two models by Peters et al. (2000b), who used a deformation
field method [Peters er al. (2000a)] and the same value as above for 7,/7, .

Throughout this subsection, for both our results and those of Peters et af., the dimen-
sionless solvent viscosity 77;k is set equal to 0.05. At a Deborah number of 0.6, the
viscous stresses play an important but not yet dominant role, as may be seen from Fig.
12, where both the elastic and viscous contributions to the xx component of the Cauchy
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FIG. 13. Flow past a confined cylinder: Comparison of stretch parameter A along the cylinder wall for MLD
model] [Peters ¢f «f, (2000b)] and UO model. Dashed curves: De = 0.3, Solid curves: De = 0.6.
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FIG. 14. Flow past o confined cylinder: Comparison of dimensionless dl‘{:lg l’orce- for DE and MLD models
[Peters et al. (2000b)]) and UO model at De = 0.3, L denotes the length of the cylinder.
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FIG. 15. Flow past a confined cylinder: Comparison of dimensionless drag force for DE and MLID models
[Peters ef al. (2000b)] and UO model at De = 0.6. L denotes the length of the cylinder.

stress are plotted along the axis of symmetry and on the cylinder surface. Figure 13
shows that at Deborah numbers of 0.3 and 0.6 the departure from unity of the stretch
parameter \ for the UO and MLD models on the cylinder surface is very small (less than
59, difference between the maximum and equilibrium values for the MLD model) with
the stretch in the UO model even smaller than that of the MLD model. The extra con-
tribution to the elastic stress due to chain stretching is, therefore, expected to be com-
paratively small and the stress-orientation tensor relations (12) and (19) essentially col-
lapse to that of the DE model (5). This does not mean that the drags on the cylinder
computed with the three models will be even approximately the same, however. Cer-
tainly, and the same was observed by Peters et al. (2000b), low Deborah numbers, and a
solvent viscosity 7y = 0.0SG?\,frd tend to mask the difference between the single-mode
DE model and the MLD model. However, as may be observed from Figs. 14 and 15 a
slightly higher steady-state drag is found at De = 0.3 and 0.6 with the MLD model than
for the single-mode DE model, due to the small amount of tube stretching. We remark
here that the drags computed by Peters er al. (2000b), and presented in Figs. 4 and 6 of
their paper, were for only half a cylinder [Peters (2002)]. Accordingly, we have doubled
all their drag values in our discussion of the results.

Clearly, the explanation for the significant difference visible in Figs. 14 and 15 be-
tween the computed steady-state drag values for the UO model and the other two models
must lie other than in the amount of tube stretch present. The key to the explanation lies
in a comparison of the FP equations (11) and (17) for the single-mode DE and UO
models. With X =~ 1, Agigip =~ 0, and a noteworthy difference in this case between the
two FP equations is seen to be the presence of the diffusion term ( 81/674)d/ da- s/ du in
Eq. (17). This double reptation term in the UO model introduces an additional relaxation
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FIG. 16. Flow past a confined cylinder: Nondimensionalized stress 7,/ G?V along the axis of symmetry and on
the cylinder surface (—1 = x/R = 1) for UO model at De = 0.6. 7, = 0, N, = Ny = 10. Solid curve:
ﬁ/(?(,z,m = (1.5, At/ = 0,005, and N, = 25. Dashed and dotted curve: B/G%‘Td = 1, At/74 = 0.01, and
N = 50,

mechanism for the polymer chains and results in a primitive relaxation time a half that of
the DE model. Chains in the UO model have the possibility of escaping their tubes more
quickly than those in the single-mode DE model. Hence, they may escape high orienta-
tion with the flow field and as a consequence normal stresses are lower and so is the drag.
As the flow rate is increased (going from Fig. 14 to 15) with 7, unaltered, both sets of
drag values increase in magnitude, but those for the DE and MLD models remain larger
than that for the UO model.

2. Computation for zero solvent viscosity: flow of a melt

Simulations of the UO fluid in the case of a zero solvent viscosity necessitates modi-
fication of the numerical treatment of the linear momentum equation (22). As a generali-
zation of the approach adopted in the previous subsection we now introduce a variant of
the discrete elastic-viscous split-stress gradient (DEVSS-G) scheme of Liu et al. (1998)
in the form

Vpl—(p+ BV = V.[7-BG " '+6 7], (38)

where 3 is a viscosity term. G is a continuous second-order tensor, which is obtained by
filtering the velocity gradient tensor Vv in each spectral element using an exponential
filter [see Majda et al. (1978)] and then replacing the component values on elemental
interfaces by the average values computed there from the adjoining elements. We note
that the addition of the elliptic stabilization terms on both sides of Eq. (38) does not
modify the continuous linear momentum equations, and furthermore, that in the limit
B — 0 we recapture our original scheme (22).
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FIG. 17. Flow past a confined cylinder: Non-dimensionalized stress 7 / G(,f, along the axis of symmetry and on
the cylinder surface (— 1 < x/R = 1) for UO model at De = 0.6, 7y = 0 and N, = Ny = 14,

In validation of our numerical method for zero solvent viscosity, we present in Figs.
16 and 17 some results of convergence studies at De = 0.6. In Fig. 16 profiles of 7, (the
most sensitive component of the elastic stress) along the axis of symmetry and on the
cylinder surface are shown. We see that choosing two different values of 8 has little
effect on the computed elastic stress, with only a small discrepancy visible near the peak
value on the cylinder surface. Convergence with spatial mesh refinement (N = 8, 10, and
12) is evident from Fig. 17 and convergence with refinement in configurational space
may be deduced by comparing the N = 10 plots from Figs. 16 and 17. The nondimen-
sionalized drag, being an integrated quantity (and, therefore, averaged and smoothed, in
some sense) is considerably less sensitive than the components of the elastics stress to
changes in the resolution in configurational and real space, and this is apparent from Fig.
18 where for 7, = 0 very close agreement at all times is seen between simulations on a
coarse (N, = Ny = N = 10) and a fine (N, = N, = 14, N = 12) mesh.

Having established the reliability of our DEVSS-G scheme., we now proceed to con-
sider the effects on the drag, chain stretch, and Cauchy stress of selecting 7, to be zero
(melt) or nonzero (concentrated polymer solution). Consistent with our observations from
Figs. 13—15 that chain stretching effects on the elastic stress are comparatively small, we
note from Fig. 18 that a nonzero solvent viscosity results in a higher drag on the cylinder
than in the zero solvent viscosity case but that this must be due to the viscous stresses
rather than to chain contour stretching. This assertion is substantiated in Fig. 19 where for
both zero and nonzero solvent viscosities the maximum stretch on the cylinder is less
than 6% of the equilibrium value.
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FIG. 18. Flow past a confined cylinder: Dimensionless drag force for UO model at De = 0.6. Solid curve:
Ny /C}'R,'r‘, = (0,05, B = 0, Dashed and dotted curves: n; = 0, B/ G%’T’d = 1, For the nonzero solvent viscosity
results and the 7, = 0 fine mesh computation N, = Ny = 14 and N = 12. For the »; = 0 coarse mesh
computation N, = Ny = N = 10. L denotes the length of the cylinder.
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FIG. 19 Flow past a confined cylinder: Stretch pm ameter A on the cylinder surface for U0 modcl at De = 0.6.
Ny = = 14, and N = 10. Thick curve: 7 /CINTd = 0.05, B = 0. Fine curve: 7, = 0, B/GNfrd = 1.
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V. CONCLUSIONS

In this paper, we have described a new high-order FP-based method for the numerical
simulation of the UO model [Ottinger (1999)] in complex flows. Double reptation and
differences in the relaxation spectra play key roles in explaining differences observed in
the drag behavior between the UO model and those of Doi and Edwards (1978a, 1978b,
1978¢) and Mead et al. (1998) in the confined cylinder benchmark problem.

The method is found to be significantly cheaper (for the same level of accuracy) than
the stochastic method of Fang et al. (2000) in startup homogeneous flows. The compara-
tive cheapness of our method should make it a suitable candidate for simulating three-
dimensional flows and for use with models having higher-dimensional configurational

spaces.
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