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Abstract— We consider communication over the binary erasure
and the binary additive white gaussian noise channels usingfixed
linear block codes and also appropriate ensembles of such codes.
We show concentration of the magnetization over the channel
realizations and also over the code ensembles. The result has
various implications. For the binary erasure channel, the result
implies the concentration of the fraction of bits in error over the
randomness in both noise and code realization, and that of the bit
error probability under MAP decoding over the code ensemble.
For both channels it implies concentration of the generalized
EXIT function over code ensembles. Finally our results partly
show that there is no replica symmetry breaking.

I. I NTRODUCTION AND MAIN RESULTS

Magnetization plays an important role in statistical mechan-
ics [7] and proving its concentration is of interest. It is also
important in communications due to its relation to various
quantities which appear in the maximum a posteriori (MAP)
decoding analysis of linear codes. In most relevant models in
statistical mechanics or communications, the magnetization is
believed to concentrate. But proving this fact is not trivial
because it involves a bound on the second derivative of a
free energy, and this quantity is not uniformly bounded (with
respect to system size) at phase transition thresholds.

Recent convergence of statistical physics and communica-
tion has resulted in the application of various formal methods
from statistical physics like the replica method, cavity method
to the coding problem [3], [4], [5]. The communication system
is interpreted a random spin system and the replica method
is applied to predict the performance. It is conjectured that
this method yields correct results [5] and has been proved
exact in some cases [11]. However proving the correctness
of the replica or cavity methods is very difficult in general
[7]. Even though the results in this paper do not prove any of
these conjectures, they have been motivated by proofs of some
of their aspects. In particular, as explained later they partly
justify the (often accepted) assumption of absence of replica
symmetry breaking for the coding problem with symmetric
channels.

Our main result (theorem 1.1) is valid for general fixed
linear codesC of length n, and this is the main setting of
the paper. This theorem basically states that, for a given
linear code, for almost all values of the noise parameter, the
magnetization concentrates on its average over the channel

output realizations. By minor modifications in the proofs one
can also obtain the corresponding statements for the standard
parity check and generator matrix code ensembles. We note
that the results cover the case of LDPC and LDGM ensembles
but are not limited to low density ensembles.

We consider communication through a binary memoryless
symmetric (BMS) channel with input{±1} and transition
probability densitypY |X(y|x). The input to the channel is a
codewordx = (x1, x2, . . . , xn) from a codeC and the output
is y = (y1, y2, . . . , yn). Let hn denote the per-bit conditional

entropyn−1H(X | Y ). Let li = 1
2 log

pY |X (yi|x=+1)

pY |X (yi|x=−1) be the
received half-loglikelihood for bitxi and letl = (l1, . . . , ln).
The a posteriori distribution can be written as

p(x|y) =
1{x∈C}e

P

i
lixi

∑

x 1{x∈C}e
P

i
lixi

(1)

where1{x∈C} is the code constraint. We denote by〈·〉, the av-
erage w.r.t the measurep(x|y). Since the channels considered
are symmetric we can assume the transmission of all-one code
word and the distribution ofl is the distribution induced from
such a transmission. The expectation with respect to the later
is calledEl[·]. We define the partition functionZ as

Z =
∑

x

1{x∈C}e
P

i
lixi (2)

and the magnetization as

m =
1

n

n
∑

i=1

xi. (3)

We have the following main result whose implications are
explained in the next section.

Theorem 1.1:Consider communication over a BEC(ǫ),
where ǫ is the erasure probability or a BAWGNC(ǫ) where
ǫ2 is the noise variance. There exists a finite positive constant
c possibly depending onδ, a, b and independent ofn such that
for any linear block code of lengthn,

∫ b

a

dǫEl

[

〈|m − El[〈m〉]|〉
]

≤ c(δ)

n
1
8

where [a, b] ∈ (0, 1) for BEC and [a, b] ∈ (0,∞) for
BAWGNC.



Remark 1.1:For some code ensemblesC which include
standard parity check and generator matrix ensembles, LDPC
ensembles and LDGM ensembles, we can show the same
statement withEl replaced byEC,l. In particular, by dominated
convergence it follows that for Lebesgue almost everyǫ > 0

lim
n→∞

EC,l

[

〈|m − EC,l[〈m〉]|〉
]

= 0 (4)

The statement holds for almost everyǫ because it cannot be
valid at phase transition thresholds. In fact one expects that
the phase transition thresholds are isolated points so thatthe
statement should hold for allǫ away from these points.

II. I MPLICATIONS OF CONCENTRATION OF

MAGNETIZATION

Fraction of bits in error. Consider the BEC and letPe(l)
denote the fraction of bits in error for a given channel output
realizationl,

Pe(l) =
1

2
(1 − 〈m〉)

This formula is valid for the BEC because a bitxi is either
decoded correctly or not decoded, which implies〈xi〉 ∈ {0, 1}
(for more general channels the right hand side has to be
replaced by1

n

∑n
i=1

1
2 (1 − sgn〈xi〉) with sgn(0) = 0). The

theorem implies concentration of the fraction of errors over
its average which is nothing else than the bit MAP error
probability,

Pe =
1

2
(1 − El[〈m〉])

This follows by bounding

El

[

|〈m〉 − El〈m〉|
]

≤ El〈|m − El〈m〉|〉
By the remark after the theorem the bit MAP error probability
further concentrates on its average over the code ensemble
EC [Pe].

GEXIT function.Another quantity related to magnetization is
the Generalized EXIT (GEXIT) function introduced in [1], [2],
for transmission over BMS channels using LDPC codes. Their
motivation was primarily to elucidate the relationship between
the belief propagation (BP) and MAP decoding and provide
upper bound to the MAP threshold. One wishes to know
that the GEXIT function concentrates because this implies
the upper bound for almost every code in the ensemble. In
[2] the concentration is proved assuming that its derivative is
uniformly bounded (away from thresholds). For BEC(ǫ) and
BAWGNC(σ), we have the following formulas for the GEXIT
function,

BEC: h′
n(ǫ) =

dhn

dǫ
=

ln 2

ǫ
(1 − El[〈m〉])

BAWGNC: h′
n(ǫ) =

dhn

dσ
= ǫ−3(1 − El[〈m〉])

For these two channels we see that the magnetization is in
some sense a more fundamental quantity that underlies the
GEXIT function. Theorem 1.1 and (4) implylimn→∞ EC |h′

n−
EC [h′

n]| = 0.

Absence of replica symmetry breaking.Some random spin
systems are believed to exhibit the phenomenon of replica
symmetry breaking. In the present context this would mean
that in the large block length limit the posterior measure
becomes a convex combination of large number (exponential
in the block length) of extremal measures. A criterion that
signals such a phenomenon can be formulated thanks to the
overlap parameter

q =
1

n

n
∑

i=1

x
(1)
i x

(2)
i (5)

where the superscript is called the replica index and means
that we take two independent samples of(x1, ..., xn). When
the replica symmetry is broken the overlap parameter has
a non trivial distribution [13]. LetPm(x) = EC,l〈1{m=x}〉,
Pq(x) = EC,l〈1{q=x}〉1,2, where 〈·〉1,2 denotes the product
measurep(x(1) | y)·p(x(2) | y) for the same output realization
of y. For any BMS channel and any linear block code, we have
the Nishimori identity [4]

Pm(x) = Pq(x) (6)

Thus concentration ofm is equivalent to concentration ofq so
that the distribution of the overlap parameter remains a trivial
delta function.

III. PROOF OFTHEOREM 1.1 FOR THEBEC

To prove the theorem we first bound the fluctuation|〈m〉−
El〈m〉|. For this we define the following perturbated partition
function

Z(λ) =
∑

x

1{x∈C}

n
∏

i=1

elixi

2 cosh li
eλ

P

i
xi (7)

where λ > 0. Note that atλ = 0 we recover the original
partition function. Let

pλ(x|y) = Z(λ)−11{x∈C}

n
∏

i=1

elixi

2 cosh li
eλ

P

i
xi .

Let 〈·〉λ denote the average w.r.t the measurepλ(x|y). We
define the free energyf(λ) = 1

n lnZ(λ) and the average free
energy

F(λ) =
1

n
El[lnZ(λ)] (8)

Note thatf(λ) depends also on the values ofl and F(λ)
depends on the channel parameterǫ through the distribution
of l which are i.i.d. asǫδ0 + (1 − ǫ)δ∞.

It is easy to see that〈m〉λ is equal tof ′(λ) (the derivative
of f(λ) w.r.t λ). Therefore proving the concentration off ′(λ)
implies the concentration of〈m〉λ. For this we first need to
prove the concentration off(λ). This follows from martingale
arguments. More precisely, we have

Lemma 3.1:For anyν > 0,

P {|f(λ) −F(λ)| ≤ ν} ≥ 1 − 4e
− nν

2

8(ln 2)2



Proof: Let the noise realization be{l1, l2, . . . , ln}. Con-
sider the following martingale:

Xi = Eln
i+1

[f(λ)|li1] (9)

where l
j
i denotes the noise vectorli, . . . , lj . From standard

arguments

|Xi+1 − Xi| ≤ max
li+1

∣

∣Eln
i+2

[f(λ)|li+1
1 ] − Xi

∣

∣

≤ max
li+1,l′

i+1

∣

∣Eln
i+2

[f(λ)|li+1
1 ] − Eln

i+2
[f(λ)|li1, l′i+1]

∣

∣

Since the noise loglikelihoods can take values in{0,∞},
the maximum is attained forli+1 6= l′i+1. Therefore a small
calculation shows

|Xi+1 − Xi| ≤
1

n
|Eln

i+2
[ln(1 + 〈xi+1〉λ,li+1=0)]|

By Griffiths-Kelly-Sherman inequalities [12] we have0 ≤
〈xi+1〉λ,0 ≤ 1 and hence|Xi+1 − Xi| ≤ 1

n ln 2. Since
X0 = El[f(λ)], Xn = f(λ), using Azuma’s inequality we
get the lemma.

Remark 3.1:To prove (4) we need to prove the analog
of this lemma with El replaced byEC,l. But this easily
follows by combining the above argument with [5] where the
concentration ofF(λ) on EC [F(λ)] is proved. The rest of the
proof below is identical whether we useEl or EC,l.

Using convexity off(λ) andF(λ) with λ we bound the
the fluctuation〈m〉λ as follows.

Lemma 3.2:For any0 < δ < λ and anyν > 0 we have

|〈m〉λ−El〈m〉λ| ≤
2ν

δ
+

∫ λ+δ

0

dλ
d2F(λ)

dλ2
(10)

with probability 1 − 16e
− nν

2

8(ln 2)2

Proof: Considerλ > 0 and 0 < δ < λ. Note that we
have

〈m〉λ =
df(λ)

dλ
, El〈m〉λ =

dF(λ)

dλ
(11)

From the convexity off(λ) andF(λ), we get

df(λ)

dλ
− dF(λ)

dλ
≤ dF(λ + δ)

dλ
− dF(λ)

dλ

+
1

δ
{f(λ + δ) −F(λ + δ)} − 1

δ
{f(λ) −F(λ)}

From Lemma 3.1 we have

|f(λ + δ) −F(λ + δ)| ≤ ν and |f(λ) −F(λ)| ≤ ν

with probability greater than1 − 8e
− nν

2

8(ln 2)2 . Therefore,

df(λ)

dλ
− dF(λ)

dλ
≤ 2ν

δ
+

∫ λ+δ

λ

dλ
d2F(λ)

dλ2

with probability greater than1−8e
− nν

2

8(ln 2)2 . Sinced2F(λ)
dλ2 ≥ 0

we get

df(λ)

dλ
− dF(λ)

dλ
≤ 2ν

δ
+

∫ λ+δ

0

dλ
d2F(λ)

dλ2

Using similar arguments as before, with probability greater

than1 − 8e
− nν

2

8(ln 2)2

df(λ)

dλ
− dF(λ)

dλ
≥ −2ν

δ
−

∫ λ+δ

0

dλ
d2F(λ)

dλ2

The proof is completed by combining the last two inequalities
with (11).

Proof of Theorem 1.1.We relate the fluctuation of〈m〉 to 〈m〉λ
by

El

∣

∣〈m〉 − El〈m〉
∣

∣ ≤ El

∣

∣〈m〉 − 〈m〉λ
∣

∣ + |El

(

〈m〉λ − 〈m〉
)∣

∣

+ El

∣

∣〈m〉λ − El〈m〉λ
∣

∣ (12)

From convexity off(λ) we have〈m〉λ − 〈m〉 ≥ 0 for every
codeC and noise realizationl. Therefore we can replace the
first term in (12) byEl[〈m〉λ]−El[〈m〉]. Using (11),

∣

∣m
∣

∣ ≤ 1
and Lemma 3.2 we get

El

∣

∣〈m〉 − El〈m〉
∣

∣

≤ 3

∫ λ+δ

0

d2F(λ)

dλ2
dλ +

2ν

δ
+ 16e

− nν
2

8(ln 2)2 (13)

where we used the fact thatd
2F(λ)
dλ2 ≥ 0 to obtain

∫ λ+δ

0
d2F(λ)

dλ2 ≥
∫ λ

0
d2F(λ)

dλ2 . Differentiating the average free
energy twice,

d2F(λ)

dλ2
=

1

n

∑

i,j

El

(

〈xixj〉λ − 〈xi〉λ〈xj〉λ
)

Using the above equality along with Lemma 3.3 of [10], the
second derivative w.r.tλ can be related to the second derivative
w.r.t ǫ as

d2F(λ)

dλ2
≤ 1 + 4

d2F(λ)

dǫ2
(14)

Substituting the bound (14) in (13) and integrating overǫ ∈
[a, b] ⊂ (0, 1),

∫ b

a

dǫEl

∣

∣〈m〉 − El〈m〉
∣

∣

≤ 3(λ + δ) + 12

∫ λ+δ

0

dλ

∫ b

a

dǫ
d2F(λ)

dǫ2
+

2ν

δ
+ 16e

− nν
2

8(ln 2)2

The first derivative ofF(λ) w.r.t ǫ can be bounded as

∣

∣

∣

dF(ǫ)

dǫ

∣

∣

∣
=

∣

∣

∣

1

n

n
∑

i=1

El\li [ln(1 + 〈xi〉λ,li=0)]
∣

∣

∣
≤ ln 2

where the inequality follows from〈xi〉λ,li=0 > 0. Therefore
the integral of the double derivative ofF(λ) can be bounded
by 2 ln 2. Takeδ =

√
ν andλ = 2

√
ν to get

∫ b

a

dǫEl

∣

∣〈m〉 − El〈m〉
∣

∣

≤ √
ν(11 + 72 ln 2) + 16e

− nν
2

8(ln 2)2



The proof is completed by substitutingν = n− 1
4 along with

the following concentration result from [10]
∫ b

a

dǫEl〈|m − 〈m〉|〉 ≤ O
( 1

n
1
8

)

�

IV. PROOF OFTHEOREM 1.1 FOR BAWGNC

Here we closely follow the approach developed in [9] for
communication using Code Division Multiple Access. Note
that the analysis developed for BEC does not apply here
because the system is not ferromagnetic(li 6≥ 0).

We parametrize the channels with their SNR= 1
ǫ2 , where

ǫ is the noise variance. Under the assumption of all-one
codeword, the half log-likelihoods are distributed asli ∼
N ( 1

ǫ2 , 1
ǫ2 ). Therefore, the average free energy can be defined

as

F̃(u) =
1

n
El[ln

∑

x

1{x∈C}e
√

u
P

i
lixi+u

P

i
xi ]

whereu = 1
ǫ2 and li ∼ N (0, 1). Note that SNR comes out

explicitly in the expression of free energy which is not the
case for BEC. This enables us to work without any additional
variable likeλ which was introduced in the case of the BEC.
We define the following perturbated partition function,

Z(u) =
∑

x

1{x∈C}e
√

u
P

i
lixi+u

P

i
xi−

√
u

P

i
|li| (15)

whereli ∼ N (0, 1). The free energy corresponding to this par-
tition function isf(u) = 1

n lnZ(u) and its average is denoted
F(u) = El[f(u)]. Note the extra perturbation

√
u

∑

i |li| in
this expressions whose reason will become clear later. The
idea is to use the concentration of first derivative off(u) to
prove the concentration of magnetization.

As in the case of the BEC we first need to prove the
concentration of the free energy. The proof relies on a general
concentration theorem for suitable Lipschitz functions ofmany
Gaussian random variables [6], [7]. In the version that we
use here we need functions that are Lipschitz with respect to
the Euclidean distance. More precisely we say that a function
f : R

M → R is a Lipschitz function with constantLM if for
all (y, z) ∈ R

M × R
M

|f(y) − f(z)| ≤ LM‖y − z‖

When another distance is used the function will still be
Lipschitz but one has to carefully keep track of the possibly
qualitatively differentM dependence.

Theorem 4.1:[7] Let Y1, ..., YM be M independent identi-
cally distributed Gaussian random variables with distribution
N (0, v2) and letf : R

M → R be Lipschitz with respect to
the Euclidean distance, with constantLM . Thenf satisfies

P[|f(y1, ..., yM ) − E[f(y1, ..., yM )]| ≥ t] ≤ 2e
− t

2

2v2L2
M

Lemma 4.1:For anyν > 0 we have,

P[|f(u) −F(u)| ≥ ν] = 2e−
nν

2

8u

Proof: Here we use concentration of measure properties
of gaussian random variables. For this we use the Lipschitz
property off with respect tol. For a given codeC and channel
realizationsl, let f(l) be the free energyf(u). Let l1, l2 be
two channel realizations. Then

|f(l1) − f(l2)| =
1

n
ln〈e

√
u

P

i
(l1i−l2i)xi−

√
u

P

i
(|l1i|−|l2i|)〉2

≤ 2
√

u

n

∑

i

|l1i − l2i|

≤ 2
√

u√
n

√

∑

i

(l1i − l2i)2 (16)

Using Theorem 4.1, we get the lemma.

The perturbation term
√

u
∑

i |li| in (15) has been chosen
carefully so that the following holds,

Lemma 4.2:f(u) is convex inu.

Proof: We simply evaluate the second derivative and
show it is positive.

df(u)

du
= 〈L(x)〉u − 1

2
√

u

∑

i

|li|

where we have defined

L(x) =
1

n

1

2
√

u

∑

i

lixi +
1

n

∑

i

xi

Differentiating again,

d2f(u)

du2
=

1

n

〈 −1

4u3/2

∑

i

lixi

〉

u
+

1

4u3/2n

∑

i

|li|

+ n(〈L(x)2〉u − 〈L(x)〉2u) ≥ 0 (17)

The quantityL(x) turns out to be very useful and satisfies two
concentration properties.

Lemma 4.3:For any[a, b] ⊂ (0,∞) fixed,
∫ b

a

duE

〈
∣

∣

∣
L(x) − 〈L(x)〉u

∣

∣

∣

〉

u
= O

( 1√
n

)

Proof: From equation (17), we have
∫ b

a

duE

〈(

L(x) − 〈L(x)〉u
)2〉

u
≤

∫ b

a

du
1

n

d2

du2
F(u)

≤ 1

n

(

| d

du
F(a) − d

du
F(ǫ)|

)

= O
( 1

n

)

In the very last equality we use that the first derivative ofF
is bounded foru ≥ ǫ. Using Cauchy-Schwartz inequality we
obtain the lemma.

Lemma 4.4:For any[a, b] ⊂ (0,∞) fixed,
∫ b

a

duE

∣

∣

∣
〈L(x)〉u − E〈L(x)〉u

∣

∣

∣
≤ O

( 1

n
1
4

)



Proof: From convexity off(u) with respect tou (lemma
4.2) we have for anyδ > 0,

d

du
f(u) − d

du
F(u) ≤ d

du
F(u + δ) − d

du
F(u)

+
1

δ
{f(u + δ) −F(u + δ)} − 1

δ
{f(u)−F(u)}

A similar lower bound holds withδ replaced by−δ. Now
from lemma 4.1 we know that the first two terms areO(n− 1

2 ).
Thus from the formula for the first derivative in the proof of
lemma 4.2 and the fact that the fluctuations of1

n

∑n
i=1 |li| are

O(n− 1
2 ) we get

E

∣

∣

∣
〈L(x)〉u − E〈L(x)〉u

∣

∣

∣
≤ c

δ
√

n
+

d

du
F(u + δ) − d

du
F(u)

for some positive constantc. We will chooseδ = n− 1
4 . Note

that we cannot assume that the difference of the two derivatives
is small because the first derivative of the free energy is
not uniformly continuous inn (as n → ∞ it may develop
jumps at the phase transition points). The free energy itself is
uniformly continuous (because of convexity). For this reason
if we integrate with respect to u, we get

∫ b

a

duE

∣

∣

∣
〈L(x)〉u − E〈L(x)〉u

∣

∣

∣
≤ O

( 1

n
1
4

)

Proof of Theorem 1.1 for BAWGNC.Combining the concen-
tration lemmas we get

∫ b

a

duE〈|L(x) − E〈L(x)〉u|〉u ≤ O
( 1

n
1
4

)

For any functiong(x) such that|g(x)| ≤ 1, we have
∫ b

a

du|E〈L(x)g(x)〉u − E〈L(x)〉uE〈g(x)〉u|〉u

≤
∫ b

a

duE〈|L(x) − E〈L(x)〉u|〉u

More generally the same thing holds if one takes a function
depending on many replicas such asg(x(1), x(2)) = q12. Here
q12 is equal to theq defined in (5). The subscript denotes
the replica indices involved in the overlap parameter. Using
integration by parts formula with respect toli,

E〈L(x)q12〉u = E

〈 1

n

1

2
√

u

∑

i

lixiq12

〉

u
+ E〈mq12〉u

=
1

2
E〈(1 + q12)q12〉u − 1

2
E〈(q13 + q14)q12〉u + E〈mq12〉u

=
1

2
E〈(1 + q12)q12〉u =

1

2
E〈m + m2〉u (18)

where in the last two equalities we used the Nishimori identity
(6). By a similar calculation,

E〈L(x)〉uE〈q12〉u =
1

2
E〈1 − q12 + 2m〉uE〈q12〉u

=
1

2
(E〈m〉 + (E〈m〉)2) (19)

From equations (18) and (19), we get
∫ b

a

duE〈(m − E〈m〉u)2〉u ≤ O
( 1

n
1
4

)

Using Cauchy-Schwartz inequality we get the result.
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