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Abstract— We consider communication over the binary erasure output realizations. By minor modifications in the proofson
and the binary additive white gaussian noise channels usinfixed  can also obtain the corresponding statements for the stnda
linear block codes and also appropriate ensembles of such des. | parity check and generator matrix code ensembles. We note

We show concentration of the magnetization over the channe
realizations and also over the code ensembles. The result $ia that the results cover the case of LDPC and LDGM ensembles

various implications. For the binary erasure channel, the esult but are not limited to low density ensembles.

implies the concentration of the fraction of bits in error over the We consider communication through a binary memoryless
randomness in both noise and code realization, and that of tabit  symmetric (BMS) channel with inpuf+1} and transition
error probability under MAP decoding over the code ensemble probability densitypy|X(y|x). The input to the channel is a

For both channels it implies concentration of the generalied d dr — f dec and th tout
EXIT function over code ensembles. Finally our results paty ~COUEWOrdz = (21,22, ..., 2,) from a codeC and the outpu

show that there is no replica symmetry breaking. isy = (y1,¥2,--.,Yn). Lt h, denote the per-bit conditional
entropyn 'H(X | Y). Letl; = %log% be the
o . . o received half-loglikelihood for bit:; and letl = (14, ...,1,).

Magnetization plays an important role in statistical meeha|o 5 posteriori distribution can be written as
ics [7] and proving its concentration is of interest. It isal
important in communications due to its relation to various plzly) =
guantities which appear in the maximum a posteriori (MAP) = Yo ]l{lec}ezwvlizi
dec.od.mg anaIyS|s.of linear codeg. Iq most relevant m.O(.ﬂ?lSv'vhere]l{mec} is the code constraint. We denote By, the av-
statistical mechanics or communications, the magnetizas z . .

. ; . ! _._erage w.r.t the measuggz|y). Since the channels considered
believed to concentrate. But proving this fact is not tiivia . = o

o Lo are symmetric we can assume the transmission of all-one code

because it involves a bound on the second derivative of a

) o . word and the distribution of is the distribution induced from
free energy, and this quantity is not uniformly bounded Kwit L . :

. o such a transmission. The expectation with respect to tlee lat
respect to system size) at phase transition thresholds.

o . .is calledE,[]. We define the partition functiod as
Recent convergence of statistical physics and communica- -

tion has resulted in the application of various formal meho 7 = Z l{wec}ezilimi 2)
from statistical physics like the replica method, cavitythoel z
to the coding problem [3], [4], [5]. The communication syate and the magnetization as
is interpreted a random spin system and the replica method .
is applied to predict the performance. It is conjectured tha m— 1 in_ 3)
n
=1

I. INTRODUCTION AND MAIN RESULTS

1y, > lixs
— (1)

this method yields correct results [5] and has been proved

exact in some cases [11]. However proving the correctn . . L
. . : i . e have the following main result whose implications are

of the replica or cavity methods is very difficult in general . . )

[7]. Even though the results in this paper do not prove any 8%<pla|ned in the next section.

these conjectures, they have been motivated by proofs of somTheorem 1.1:Consider communication over a BEG(

of their aspects. In particular, as explained later theytlparwhere e is the erasure probability or a BAWGNE(where

justify the (often accepted) assumption of absence of gaplie? is the noise variance. There exists a finite positive comstan

symmetry breaking for the coding problem with symmetrig possibly depending o#\ a, b and independent of such that

channels. for any linear block code of length,
Our main result (theorem 1.1) is valid for general fixed b 5
linear codesC of length n, and this is the main setting of / dely [(|m — By[(m)]])] < c(l)
a B B ns

the paper. This theorem basically states that, for a given
linear code, for almost all values of the noise parameter, tvhere [a,b] € (0,1) for BEC and [a,b] € (0,00) for
magnetization concentrates on its average over the chanBAWGNC.



Remark 1.1:For some code ensembl&s which include Absence of replica symmetry breakingome random spin
standard parity check and generator matrix ensembles, LDBYStems are believed to exhibit the phenomenon of replica
ensembles and LDGM ensembles, we can show the sasyenmetry breaking. In the present context this would mean
statement wittE; replaced byt ;. In particular, by dominated that in the large block length limit the posterior measure
convergence it follows that for Lebesgue almost every 0  becomes a convex combination of large number (exponential

i in the block length) of extremal measures. A criterion that
nh—>Holo Ec,;[(lm - EC,le)H)] =0 ) signals such a phenomenon can be formulated thanks to the

The statement holds for almost evenpecause it cannot be Overlap parameter

valid at phase transition thresholds. In fact one expeds th 1 W @)

the phase transition thresholds are isolated points sotlleat == le z; (5)
statement should hold for adl away from these points. i=1

where the superscript is called the replica index and means
that we take two independent samples(ef, ..., z,,). When

the replica symmetry is broken the overlap parameter has
Fraction of bits.in error Cpnsider the BEC and lef(l) a non trivial distribution [13]. LetP,,(2) = Eci(1mes}),
denote the fraction of bits in error for a given channel outpy (1) = Ec(1{4—z})1,2, Where (-); o denotes the product

Il. IMPLICATIONS OF CONCENTRATION OF
MAGNETIZATION

realization., 1 measure(z!) | y)-p(z'? | y) for the same output realization
P.(l)==(1—{(m)) of y. For any BMS channel and any linear block code, we have
2 20 .
_ ] ) o the Nishimori identity [4]
This formula is valid for the BEC because a bit is either
decoded correctly or not decoded, which implies) € {0,1} P (z) = Py(z) (6)

(for more general channels the right hand side has to

replaced by% S 1(1 — sgn(z;)) with sgn(0) = 0). The lilﬁus concentration o is equivalent to concentration @fso

Jn Lai=12 . . that the distribution of the overlap parameter remains\aatri
theorem implies concentration of the fraction of errors IOV& o1ta function

its average which is nothing else than the bit MAP error

probability, I1l. PROOF OFTHEOREM1.1FOR THEBEC
p_ 1(1 _Ey[(m)]) To prove the theorem we first bound the fluctuatjom) —
c 2 L E;(m)|. For this we define the following perturbated partition
This follows by bounding function
E -E <Em-E _ €7 AT,
2 [1(m) — Eym)[] < Ey(jm — Ey(m))) 2(3) = Z 1ipee) 1:1 T W)

By the remark after the theorem the bit MAP error probability
further concentrates on its average over the code ensemfigere A > 0. Note that atA = 0 we recover the original
Ec[P]. partition function. Let

GEXIT function.Another quantity related to magnetization is 1 o elit

the Generalized EXIT (GEXIT) function introduced in [1]][2 pazly) = Z(N) " Ligecy H 2 coshl;

for transmission over BMS channels using LDPC codes. Their =1

motivation was primarily to elucidate the relationshipweén Let (), denote the average w.r.t the measpsgz|y). We
the belief propagation (BP) and MAP decoding and providiefine the free energy(\) = L In Z()) and the average free
upper bound to the MAP threshold. One wishes to knoanergy

that the GEXIT function concentrates because this implies 1

the upper bound for almost every code in the ensemble. In FO) = ~EflnZ()] (8)
[2] the concentration is proved assuming that its derieats/

uniformly bounded (away from thresholds). For BEC&nd Note thatf(A) depends also on the values bfand 7(})
BAWGNC(c), we have the following formulas for the GEXIT depends on the channel parametehrough the distribution

eAZizi_

function of [ which are i.i.d. asdy + (1 — €)co.
’ dh 102 It is easy to see thatm), is equal tof’(A) (the derivative
BEC: hl(e) = —= = n_(l — Ey[(m))) of f(\) w.r.t \). Therefore proving the concentration $f()\)
d‘ff € implies the concentration ofm),. For this we first need to
BAWGNC: 1/ (e) = d_” = 3(1 = E[(m)]) prove the concentration ¢f(\). This follows from martingale
o L

arguments. More precisely, we have

For these two channels we see that the magnetization is in

some sense a more fundamental quantity that underlies thé€mma 3.1:For anyv > 0,

GEXIT function. Theorem 1.1 and (4) implim,, .o Ec|h,, — _w?
Ec[h,]| = 0. P{If(N) = FO)| < v} > 1— ™ 507



Proof: Let the noise realization bfl1,lo,...,l,}. Con-
sider the following martingale:
Xi=Epp | [FOOI] )

where lz denotes the noise vectdy, ...,
arguments

| Xit1

l;. From standard

- Xi| < max }Elglﬁ OO -

— K, [FOON 1y ]|

Xi|

< max ]Eln f(A)|z;'+1]
l7,+1 l
Since the noise loglikelihoods can take values{in oo},
the maximum is attained fof;,; # /i, ,. Therefore a small
calculation shows

1
[Xir = Xil < —[Bip, ,[In(1 + (Zit1)r102=0)]]
By Griffiths-Kelly-Sherman inequalities [12] we have <
(ziv1)r0 < 1 and hence|X;; 1 — X;] 1In2. Since

get the lemma. ]

Remark 3.1:To prove (4) we need to prove the analog

of this lemma withE; replaced byE.,;. But this easily

X, = f(\), using Azuma’s inequality we

Using similar arguments as before, with probability greate
thanl — 8¢~ sn2)?

df(\) _dFQ) 2w /W d}\dQ}'()\)
dX a6 N2

The proof is completed by combining the last two inequaditie
with (11). [ |

Proof of Theorem 1.MVe relate the fluctuation dfn) to (m)
by
Ey|(m) — Ey{m)| < Eq|(m) —
+ Byl (m)x — Er(m)s|
From convexity off(\) we have(m), — (m) > 0 for every
codecC and noise realization Therefore we can replace the

first term in (12) byE;[(m),] — Eq[(m)]. Using (11),|m| < 1
and Lemma 3.2 we get

m)x| + [Er((m)x — (m))]

(12)

EL|<m> — IEL<m>|
A6 g2 2
d ./T(/\) 2v __nv- _
< d _ 1 8(In 2)2 13
< 3/0 e A+ 5 + 16e (13)

follows by combining the above argument with [5] where the

concentration ofF(\) on E¢[F())] is proved. The rest of the where we used the fact that"Z Q)

proof below is identical whether we ugg or E¢ ;.
Using convexity of f(A) and F()) with A we bound the
the fluctuation(m), as follows.

Lemma 3.2:For any0 < § < A and anyv > 0 we have

2w M 2F(N)
_ <=
[ —Butmn| < F + [ g

(10)

ny2
with probability 1 — 16e 30n2?
Proof: ConsiderA > 0 and0 < § < \. Note that we
have

(m)x = %;\)a Ey(m)x = %(A/\) (11)
From the convexity off (A) and F()), we get
df(\)  dF(N) < dF(A+6)  dF(N)
dX ax  — dX dX
+3 O+ = FO+0)) - 5 L) - F)}
From Lemma 3.1 we have
[fA+8) = FA+d)<v and [f(A)-FN)|<v

nv2
with probability greater than — 8¢ 3»27 . Therefore,

A+0 2
df(\)  dF() _ +/ nEFX)
dX dX s s N2
with probability greater than 8¢ B2 Since% >0
we get
A+0 2
) _dFN) _ 2w +/ ALY

X 5 X2

> (0 to obtain

d\2
- dzdj;(zf) > L L7 | Differentiating the average free
energy twice,
PFEQN) 1

N2 n Z]Ei«xz‘xﬁ)\ — (zi)a(zj)r)

Using the above equality along with Lemma 3.3 of [10], the
second derivative w.rx can be related to the second derivative
W.I.t € as

d*F(N\) d>F(N\)
dN\? de?
Substituting the bound (14) in (13) and integrating oves
[a,b] C (0,1),

/ dey|m) — Ey(m)|

A+ 2w

d?
<3(\+9)+ 12/ dX € F) + — 4+ 16e 8(1n2)2
0 a dE 1)

<144 (14)

The first derivative ofF(\) w.r.t e can be bounded as

‘ dF(e)
de

1
= ‘E ZEl\lv [111(1 + <Ii>)\,li:0)] <In2
=1

where the inequality follows fromjz;)x ;,—0 > 0. Therefore
the integral of the double derivative gf(\) can be bounded
by 2In2. Takeé = /v and A = 2,/v to get

b
/ deEL|<m> — EL<m>|

77.1/2
< V(114 72In2) + 16e s0n2)?



The proof is completed by substituting= ni along with Lemma 4.1:For anyrv > 0 we have,

the following concentration result from [10] P{|f(u) — F(u)| > o] = 2 2
u) — w)| > v|=2e 8u

b 1 Proof: Here we use concentration of measure properties
/a deBy(jm — (m)]) < O(n_g) of gaussian random variables. For this we use the Lipschitz
property of f with respect td. For a given cod€ and channel
realizationsl, let f(I) be the free energy(u). Let l;,l, be

IV. PROOF OFTHEOREM1.1FORBAWGNC two channel realizations. Then

1 e S (e
Here we closely follow the approach developed in [9] forlf (1)) — f(ly)| = = In(eV™ 2Zilbimleorivud (bl —liD),

communication using Code Division Multiple Access. Note g\/ﬂ
that the analysis developed for BEC does not apply here < TZIZU — la]
because the system is not ferromagnétic? 0). i
We parametrize the channels with their SNRZ;, where < 2Vu Z(l —lyi)? (16)
e is the noise variance. Under the assumption of all-one ~ Jn AR
codeword, the half log-likelihoods are distributed s~ ) ’
N(Z%,%). Therefore, the average free energy can be definkl§ing Theorem 4.1, we get the lemma. u

as The perturbation term/u ", |I;| in (15) has been chosen
];(u) - lE [lnz 1 eﬁzilimﬁuzizi] carefully so that the following holds,
— L {zec} . )
x Lemma 4.2:f(u) is convex inu.

whereu = 4 andl; ~ N(0,1). Note that SNR comes out Proof: We simply evaluate the second derivative and

explicitly in the expression of free energy which is not thghow it is positive.

case for BEC. This enables us to work without any additional df (u) 1
variable like \ which was introduced in the case of the BEC. o (L(Z))u — i Z |Li
We define the following perturbated partition function,

where we have defined

1
x L(E)—Em;li!ﬂﬁ‘gztﬁ'
wherel; ~ N (0, 1). The free energy corresponding to this pary

. Do . . ifferentiating again,
tition function is f(u) =  In Z(u) and its average is denoted 929

F(u) = Ey[f(u)]. Note the extra perturbatioy/u PORIARN df(u) _ l< -1 lexz> 41 Sl
this expressions whose reason will become clear later. The du? n\dud/? & u o dud/n &
idea is to use the concentration of_ flrs_t derivative fgf:) to n({L(2)%)e — (L)) > 0 (17)
prove the concentration of magnetization.
As in the case of the BEC we first need to prove the u

concentrat!on of the free energy. Th_e propf reI|es_ ona gﬂneﬁ-he quantityL(z) turns out to be very useful and satisfies two
concentration theorem for suitable Lipschitz functionsnainy concentration properties.
Gaussian random variables [6], [7]. In the version that we
use here we need functions that are Lipschitz with respect to,emma 4.3:For any|a, b] C (0, c0) fixed,
the Euclidean distance. More precisely we say that a functio 1
)=o)
u n

b
f:RM — R is a Lipschitz function with constant ,; if for / duE<’L(g) —(L(z))u
Proof: From equation (17), we have

all (y,z) € RM x RM

|f(y) = f2)] < Lumlly — 2] bd (r . 0 _ bd e
When another distance is used the function will still be / Y <( (2) =« (£)>“) >u —/a Y du? ()

Lipschitz but one has to carefully keep track of the possibly ‘ 1 ( d d

qualitatively differentM dependence. . @f(a) B @f(eﬂ) - O(ﬁ)

Theorem 4.1[7] Let Y, Y be M independent identi- In the very last equality we use that the first derivativefof
cally distributed Gaussian random variables with distiiu is bounded foru > e. Using Cauchy-Schwartz inequality we

N(0,v%) and letf : R™ — R be Lipschitz with respect to obtain the lemma. u
the Euclidean distance, with constait,;. Then f satisfies Lemma 4.4:For any|a, b] C (0, c0) fixed,

<o( %)

+2

ot b
P (1, ynr) — B (1, o pan)l] 2 1) < 2677 P [ B, - Ee @)




Proof: From convexity off (u) with respect tau (lemma From equations (18) and (19), we get

4.2) we have for any > 0, b 1
d d d d / duE((m — E{m).)?), < O(T)
o fw) = = F(u) < = Flu+8) = —F(u) “ e
u 1“ u % Using Cauchy-Schwartz inequality we get the result.
+ 5wt 0) = Flut )} = <{f(u) - F(u)}

A similar lower bound holds withy replaced by—d. Now  The work of S. Kudekar has been supported by a grant
from lemma 4.1 we know that the first two terms &€n"2).  from the Swiss national Science Foundation number 200020-
Thus from the formula for the first derivative in the proof of113412. The work of S. Korada is supported by NCCR-MICS,

lemma 4.2 and the fact that the fluctuationsiof 7, |l;| are g center supported by the Swiss National Science Foundation
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O(n~7) we get

E|(L(@)}u — E(L(2)}u d

d
f(u+5) T

—5¢— — F(u)
for some positive constant We will choosed = n~1i. Note
that we cannot assume that the difference of the two devasti 2]
is small because the first derivative of the free energy is
not uniformly continuous im (asn — oo it may develop
jumps at the phase transition points). The free energyfisel [3]
uniformly continuous (because of convexity). For this mras
if we integrate with respect to u, we get
1
(5)

LUwWMmm

Proof of Theorem 1.1 for BAWGNCombining the concen- [g]
tration lemmas we get

[ 1@ B < 0 )

a

For any functiong(z) such thatjg(z)| < 1, we have

(1]

—E(L(z))u

9]

b
/dwmu@m@n—E@@»ﬂw@»wu
s/dwmu@—wugmm

[4] A. Montanari,

under grant number 5005-67322.
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More generally the same thing holds if one takes a functidt8] M. Mézard, G. Parisi, M. Virasoro;Spin lass Theory and Beyond”

depending on many replicas suchg@s", z(?) = ¢5. Here
q12 is equal to theg defined in (5). The subscript denotes
the replica indices involved in the overlap parameter. gsin
integration by parts formula with respect &g

1 1
:E<—— lizs > E y
n2\/UXZ: Tiq12 u+ (mqi2)

lIE((l + q12)q12)u —

E<L(£)Q12>u

1
SE((q13 + q14)q12)w + E(maqi2)u

2 2
1 1
= §E<(1 + qi2)q12)u = §E<m +m?), (18)

where in the last two equalities we used the Nishimori idgnti
(6). By a similar calculation,

1
5E<1 = q12 +2m) E{q12)n

() + (E(m))?)

E(L(z))uE{q12)u

(19)
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