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Abstract—We consider communication over binary-input
memoryless output-symmetric channels using low-densityarity-
check codes under MP decoding. The asymptotic (in the length
performance of such a combination for a fixed number of
iterations is given by density evolution. It is customary todefine
the threshold of density evolution as the maximum channel
parameter for which the bit error probability under density
evolution converges to zero as a function of the iteration nober.

In practice we often work with short codes and perform a
large number of iterations. It is therefore interesting to consider
what happens if in the standard analysis we exchange the orde
in which the blocklength and the number of iterations diverge
to infinity. In particular, we can ask whether both limits giv e the
same threshold.

Although empirical observations strongly suggest that the
exchange of limits is valid for all channel parameters, we limit
our discussion to channel parameters below the density ewol
tion threshold. Specifically, we show that under some suitdb
technical conditions the bit error probability vanishes bdow the
density evolution threshold regardless of how the limit is aken.

|. INTRODUCTION

A. Motivation

A necessary condition for the computation graphs of dépth
to all nodes form trees is that the number of iterations dags n
exceedclog(n), wherec is a constant that only depends on
the degree distribution. (For(@, r) regular degree distribution
pair a valid choice ofc is ¢(1,r) oa(=1) [3].) In
practice, this condition is rarely fulfilled: stanéard bktengths
measure only in the hundreds or thousands but the number of
iterations that have been observed to be useful in practine c
easily exceed one hundred.

Consider therefore the situation where we fix the block-
length but let the number of iterations tend to infinity, ,i.e.
we consider the limitlimy_,, E[P,(G, ¢, ¢)]. Now take the
blocklength to infinity, i.e., consider

lim élim E[P,(G, ¢, 0)]. 2

What can we say about (2) and its relationship to (1)?
Consider the belief propagation (BP) algorithm. It was
shown by McEliece, Rodemich, and Cheng [4] that one can
construct specific graphs and noise realizations so that the
messages on a specific edge either show a chaotic behav-
ior or converge to limit cycles. In particular, this means

Consider transmission over a binary-input memorylesgat the messages do not converge as a function of the

output-symmetric (BMS) channel using a low-density parityiteration. For a fixed length and a discrete channel, the
check (LDPC) code and decoding via a message-passing (MB@inber of graphs and noise realizations is finite. Therefore
algorithm. We refer the reader to [1] for an introductiont@t if for single graph and noise realization the messages do
standard notation and an overview of the known results. It jgt converge as a function dof then it is likely that also
well known that, for good choices of the degree distributionm,_,  E[P,(G, ¢, ¢)] does not converge as a function 6f
and the MP decoder, one can achieve rates close to the gapagihless by some miracle the various non-converging parts ca
of the channel with low decoding complexity [2]. cel). Let us therefore considéim sup, .. E[P;(G, ¢, /)] and
The standard analysis of iterative decoding systems assumg inf, .., E[P,(G, ¢, £)]. What happens if we increase the
that the blocklengthri’ is large (tending to infinity) and that blocklength and considelim,, .. limsup, . E[Py(G, ¢, £)]
a fixed number of iterations is performed. As a consequenegdlim,, .. liminf, ., E[Py(G, €, £)]?
when decoding a given bit, the output of the decoder only Assume that the given combination (of the channel family
depends on a fixed-size local neighborhood of this bit argl thind the decoder MP) has a threshold in the following sense:
local neighborhood is tree-like. This local tree propentylies  for the given channel family characterized by the real value
that the messages arriving at nodes are conditionally indsaramete there exists a value™ so that for all0 < e < €"°
pendent, significantly simplifying the analysis. To detegven the DE limit (1) is 0, whereas for alle > € it is strictly
the performance in this setting, we track the evolution @& thpositive. Although empirical observations strongly susjgbat
message-densities as a function of the iteration. Thisgs®cthe exchange of limits is valid foall channel parameters
is calleddensity evolutiof{DE). Denote the probability of bit we limit our discussion to channel parameters below the DE
error of a codes after/ iterations byP; (G, ¢, £), wheree is the  thresholde"®. In this case DE promises bit error probabilities
channel parameter. Then DE compulies,, ... E[P,(G, ¢, £)]. that tend to zero.
If we now perform more and more iterations then we get a Instead of considering the simple exchange of limits one
limiting performance corresponding to can consider joint limits where the iteration is an arbigraut
increasing function of the blocklength, i.e., one can coeisi

lim lim E[F} (G, ¢, £)]. D) Jimg, o E[P}®(G,€,£(n))]. Although our arguments extend
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to this case, for the sake of simplicity we restrict oursselveof bad check nodes, and hence must share many check-node
to the standard exchange of limits discussed above. Furthegighbors with variables i8,. Suppose thaB, andB,., are

we restrict ourselves to regular ensembles. All the diffiesl sufficiently small and that the graph has large expansioenTh
encountered in the analysis are already contained in tlsis. cahe number of common check-node neighbor&pfaind 5, ;

can not be too large (since otherwise the expansion would
be violated). This limits the maximum relative size Bf

Consider a MP algorithm with message alphalbdt As- with respect to3,. In other words, oncd3, has reached a
sume that the algorithm is symmetric in the sense of [1][Degufficiently small size (so that the expansion argumentsbean
inition 4.81, p. 210], so that for the purpose of analysis #pplied), the number of errors quickly converges to zerdwit
is sufficient to restrict our attention to the all-one codevo further iterations. In order to achieve good bounds the abov
assumption. argument has to be refined, but it does contain the basic idea

The tools we develop can be applied to a variety of MBf why large expansion helps.
decoders. To be concrete, we discuss below a few interesting@dn the other hand, if variable nodes have small degrees, then
examples. In the following, by reliability of a messageve the received values play a dominant role and can no longer
mean its absolute valug|. This means that the messagg be ignored. As a consequence, for small degrees expansion
and . have the same reliability. arguments no longer suffice by themselves.

Definition 1 (Bounded MS, BP Decoders)he bounded  Why are we using expansion arguments if we are interested
min-sum (M3M)) decoder ancdboundedbelief propagation in standard LDPC ensembles? It is well known that such
(BP(M)) decoder, both with parametet/ € R*, are codes are good expanders with high probability [5]. More
identical to the standard min-sum and belief propagatigrecisely, we say that & (r) bipartite graph is aifl, r, o, y)-
decoder except that the reliability of the messages emiijed left expander if all variable node seis$ of size |V| < an
the check nodes is bounded fd before the messages areéhave at leasty1|V| check-node neighbors. It is not hard to
forwarded to the variable nodes. ¢ see thaty can not be larger tham — %; take a check node
and draw its computation graph of heightLet V be the set
of variable nodes contained in this subgraph. Fet 1 this
subgraph contains+r(1—1) check nodes and andvariable

Let us now show that for codes with sufficient expansionodes. For deptld, the number of check and variables nodes
the exchange of limits is indeed valid below the DE decodingte r<1*1>li“1<r;1>“1 and rﬂ*if_(i:i_)“r_ The expansion of
threshold. : 1-1)*(x—1)f 1 - :

FQ-1) " (r—1) -1
Burshtein and Miller were the first to realize that expansiosnuch a subgraph is at mog w1y and it rapidly

arguments can be applied not only to the flipping algorith Prverges tdl_% ?y E[:goosing_f Itargerand Iar(g);er. Stérggis;nfgly,
but also to show that certain MP algorithms have a fixed errgt’, &0 7 < 1 — 1, N€re exists am(_y_) > 8, such that Tor
correcting radius [5]. Although their results can be app”esufflmently largen with high probability a random graph is

directly to our problem, we get somewhat stronger statemer?tnl_(lt’r’O":);lef.ttﬁ)(pandegl that h | iable d
by using the expansion in a slightly different manner. etus start with ensemples that have large variab'e degrees

The advantage of using expansion is that the argume;:me k,(,ey t_o what follows is to find a proper definition of a
od” pair of message subsets.

applies to a wide variety of decoders and ensembles. On t9QoC " P '

nzgative side, the argument can only be applied to ensemble efinition 2 (Good Mes_sage Subset5pr a fixed (1, r)-

with large left degree. Why do we need large left degrei}ggljlar ensemble and a f'xed“ MP (,J’Ieco_der,ﬂet) <B=1,

to prove the result? There are two reasons why a mess QSUCh th%ﬁ@ -1 < N. A "good” pair of subsets of\1

emitted by a variable node can be bad (let bad mean incarre}) strength” 3 is a pair of s_ubset{;GW Ge) so that )

This can be due to the received value, or it can be due to a if 5(l—1) of the (1 —1) incoming messages at a variable

large number of bad incoming messages. If the degree of the Node belong toG, then the outgoing message on the

variable node is large then the received value plays only a _remalnlngedge|s inGe

minor role (think of a node of degre&00; in this case the « if all the (r — 1) incoming messages at a check node

received value has only a limited influence on the outgoing Pelong toG. then the outgoing message on the remaining

message and this message is mostly determined bydhe _edge|s in Gy _ _

incoming messages). Suppose that the left degree is lagye an if (1 —1) +1 of all 1 incoming messages belong @,

ignore therefore for a moment the received message. In this then thevariableis decoded correctly

case large expansion helps for the following reason. We denote the probability of the bad message/setG, after
Consider a fixed iteratiod. Let B, denote the set of bad ¢ iterations of DE bypé?d o

variable nodes in iteratiord (the set of variable nodes thatAs we will see shortly, for most of the decoders the s@ts

emit bad messages in iteratiéhn Perform one further round of andG. can be chosen to be equal (but the BP(decoder is

MP. In the next iteration the only check nodes which send bad interesting case wher@, # G.).

messages are those connectedtoTherefore, for a variable  Theorem 3 (Expansion and Bit Error Probability):

to belong toB,;1, it must be connected to a large numbe€onsider an LDPQG,1,r) ensemble, transmission over a

B. Definition and Notations

II. SUFFICIENT CONDITIONS BASED ON EXPANSION
ARGUMENTS




BMS(¢) channel, and a symmetric MP decoder. Assume thanger dominant once DE has reached small error probagsiliti
this combination has a threshold under DE, caliit. Let 3 This can be achieved by ensuring that the input alphabet is
be the strength of the good message subset. 4f 1 and if smaller than the message alphabet. Let us give a few examples

for somee < €' we havepé‘;j) =0 then here.
L Example 7 (M&) Decoder): Consider (1 > 5,r) code
- MP _ ’
nlinéohinbup]E'-DPC(”’lvr)[Pb (6,60 =0. () and fix M = 5. Let the channel log likelihoods belong to

The proof idea is somewhat different from the one used [A-1,1]. It is easy to check that in this case we can choose
[5]. We first perform a small number of iterations to bring they, = G. = [4,5] and that it has strength < %. Therefore,
error probability down to a small value. But rather than agki if the probability of the bad message set goe$ tander DE,
that the error probability decreases to zero by performingthen according to Theorem 3 the limits can be exchanged. If
sufficient number of further iterations, we only requirettita instead we consideil > 7,r) theng < % Hence, according
stays small. The payoff for this less stringent requirenient to Theorem 4 the block error probability tends@o O
that the necessary conditions are less stringent as wed. Th Example 8 (BP10) Decoder):Let 1 = 5 andr = 6 and
following theorem is more in the spirit of [5]. fix M = 10. Let the channel log likelihoods belong to
Theorem 4 (Expansion and Block Error Probability): [~1,1]. We claim that in this case the message subset pair
Consider an LDP(z,1,r) ensemble, transmission over ag, = [9,10],G. = [16,41] is good with strength = %. This
BMS(e) channel, and a symmetric MP decoder. Assume thedn be seen as follows: If all the incoming messages to a check
this combination has a threshold under DE, cal"it. Let 3 node belong t@., then the outgoing message is at leasg9,
be the strength of the good message subset. 4f 1= and which is mapped down to0. Suppose that at a variable node
if for somee < " we havepé‘;j) =0 then at least3(= 8(1—1)) out of the4 incoming messages belong
o " to G,. In this case the reliability of the outgoing message is
Jim hﬁgPELDPCWﬂLr) [P (G, e, 0)] = 0. 4 at leastl6 = 3 x 9 — 10 — 1. The maximum reliability is
As in Theorem 3 we first perform a fixed number of iterationg1. Moreover, if all the incoming messages belongzpthen
to bring down the bit error probability below a desired levelthe variable is decoded correctly. Therefore if the proligbi
We then use Theorem 5, a modified version of a theoreofi outgoing messages from check nodes bein{in0] goes
by Burshtein and Miller [5], to show that for a graph withto 1 in the DE limit then from Theorem 3, the limits can be

sufficient expansion the MP algorithm decodes the whoéxchanged. O
block correctly once the bit error probability is sufficignt It is clear that Theorems 3 and 4 apply to an infinite
small. variety of decoders. But in all these cases the requireclbai

Theorem 5 ([5]): Consider an (1,r,«,v)-left expander. node degrees are rather large. In the next section we discuss
Assume that) < g < 1 such thatg(l — 1) € N and that an alternative method which can sometimes be applied to
Bl < 2y — 1. Letng < £n. If at some iteration/ the ensembles with low variable-node degrees.
number of bad variable nodes is less thanthen the MP
algorithm will decode successfully. I11. SUFFICIENT CONDITION BASED ONBIRTH-DEATH
Discussion: Theorem 4 has a stronger implication (the block PROCESS
error probability tends to zero as a function of the itematio A. Main Result and Outline
assuming the bit error probability has reached a suffigientl
small value) than Theorem 3 (here we are only guaranteg
that the bit error probability stays small once it has redchgn
a sufficiently small value). But it also requires a consitiégra
stronger condition.

Let us now apply the previous theorems to some exampl

Example 6 (BSC and GalB Algorithm[or this algorithm
M = {-1,+1}. Pick G, = G. = {+1}. Assume that the
received value (via the channel) is incorrect. In this case

least [(1 —1)/2] + 1 of the (1 — 1) INCOMING MESSAYES | amma 9 (Exchange of LimitsConsider transmission
should be good to ensure that the outgoing message is 9904, the BSC() using random elements from the = 3,)-

and at least[(1 — 1)/2] + 2 of the 1 incoming messages ; ;
should be good to ensure that the variable is decoded c:tyrrecrtegu'ar ensemble and decoding by the GalB algorithm. If

LGalB
Therefore,5 = % If the probability of the bad €< e then
message set goes in the DE limit, then from Theorem lim lim sup E[P**(G, €, £)] = 0,
3 the limits can be exchangedif-1 > 1+[(1—1)/2], i.e., 0 oo
for 1 > 5 and from Theorem 4, the block error probabilitywhere ¢-°*® is the smallest parameterfor which a solution
goestozeroifi —2>1+[(1—-1)/2],i.e,forl>7. ¢ to the fixed point equation
The key to applying expansion arguments to decoders with a - 1o a(e—1)
continuous alphabet is to ensure that the received valeascar r=el-(1-2)"") " +el-(1-2) )

s we have mentioned before, if the left degree is small

n the received value retains a large influence on emitted
essages regardless of the number of iterations. In this cas
expansion arguments no longer suffice to prove our desired
result. As a representative example let us therefore censid
e case oft = 3. Although the results below can be
extended to more general scenarios, we limit the subsequent
discussion to the Gallager decoding algorithm B (GalB). All
fhe complications are already present for this case.



| rate | ESha | 6GaIB | 6LGalB

Z 095 T =035 T =~01068 | =0031 an actgal impleme.ntation. For the purpose of analysis it is
5104 | ~01461 | ~0.06119 | = 0.0506 convenient to consider amsynchronouschedule.
6] 05 | ~0.11002 | =0.0394 | =~ 0.0336 For a given graphG, and channel realizatiorE, let
TABLE | M(G,E, () denote the set of marked variables at the end of
THRESHOLD VALUES FOR SOME DEGREE DISTRIBUTIONS the process assuming that the initial set of marked edgégis t
set of bad edges aftérrounds of LGalB. LetM (G,E, () =
|IM(G,E,£)|. It is not hard to see that for any > ¢,
o Pi%*®(G,e,0') < Eg[M(G,E, {)]/n.
exists in(0, €. E Witness
Example 10:Table | shows thresholds far = 4,5, 6. For '
the (1 = 3, = 6) degree distribution we havé®*® ~ 0.0336. It remains to bound[) (G, E, £)]. The difficulty in analyz-
This is slightly smaller than, but comparable ¢ ~ 0.0394. ing the marking process lies in the fact that after) iterations
O the set of starting edges for the marking process depends on
Due to space constraints we do not present the proof in detijie noise realization as well as the graph. Our aim therefore
But we will discuss the ideas behind the main steps. is to reduce this correlated case to the uncorrelated case by
sequence of transformations. As a first step we show how to
B. All-One Codeword Assumption get rid of the correlation with respect to the noise realmat

Fix 0 < ¢ < €% We prove that for everyy > 0 there Consider a fixed graphli. Assume that we have performed
exists an?z(a ¢) so thatlimsup, _ E[PS*(G, ¢, ()] < o for ¢ iterations of LGalB. For each edgethat is bad in the/-th

n > n(a, ¢). Without loss of generality we can assume that tHEEration we construct a “witness.” A witness feris a subset
all-one codeword was sent. Therefore, the mesdagjgnifies ©f the computation tree of heiglitfor e consisting of paths
in the sequel @orrect message, whereas! implies that the that carry bad messages. We construct the witness reclyrsive

message ifncorrect starting withe. Oriente from check node to variable node.
At any point in time while constructing the witness assaatiat
C. Linearized Gal B to e we have a partial witness that is a tree with oriented

The analysis is simplified considerably tipearizing the edges. The initiall such pa_rtial witness ds One step_in the
decoding algorithm in the following way. Define tHen- construction consists of taking a leaf edge of the partiah@ss

earized Gallager BLGalB) algorithm. The LGalB algorithm and to “grow it out” according to the following rules. -

has the same processing rules at the variable nodes as the Gal|f an edge enters a variable node th_at has an Incorrect
algorithm. At check nodes, however, an outgoing messa elveq value then add tisenallest(according to some flx.ed

is —1 (incorrect) if any of the incoming messages is1 . ut arbnrgry or(_jer on the set of edggs) edge that carries an
(incorrect). It is not difficult to check that the error priikity incorrect incoming message to the witness and continue the

of LGalB is an upper bound on the error probability for GalgProcess along this edge. The added edge is directed _from
Note thate'*® as given in Lemma 9 is the DE threshold’a”able node to check node. If an edge enters a variable
corresponding to LGalB node that has a correct received value then add both incoming
We will prove that for évery{) < ¢ < ¢ and everya > 0 edges to the witness and follow the process along both edges.
there exists am/(a, ¢) S0 thatlim su E[Piss (G, ¢, )] < (Note that in this case both of these edges must have carried
o for n > n(a, ) ’ Pe—oo Bl B bad messages.) Again, both of these edges are directed from
- e variable to check node. If an edge enters a check node then

D. Marking Process choose the smallest incoming edge that carries an incorrect
The marking process allows us (i) to consider asyn- message and add it to the witness. Continue the process along
gp YN this edge. The added edge is directed from check to variable

chronousversion of LGalB (i.e., the schedule of the com-

putation is no longer important) and (ii) ensures that we aPeOde' Continue the process until depthFig. 1 shows an

) . ) . : example forl = 3, r = 4, and/ = 2. Denote the union of
dealing with a monotone increasing function.

. . . all witnesses for all edges that are bad in thth iteration
More precisely, we split the process into two phases: 9

i . . o \%ey W(G,E, ¢). We simply call itthe witnessThe witness is a
start with LGalB for/(p) iterations to get the error probability it of the graph that on its own explains why the set of bad

belowp; we then continue the marking process associated wR@ ftep | . is bad
an infinite number of further iterations of LGalB. This meang ges afle fierations Is bad.
' How large isW? The larger/, the fewer bad edges we

that we mark any varlablt_a that is bad n at least one iterat r>‘<pect to see in iteratioh On the other hand, the size of the
¢ > {(p). Clearly, the union of all variables that are bad

at least one point in timé > £(p) is an upper bound on the itness for each bad edge grows as a functiof &ortunately

. b f iables that bad at .Pne can show that the first effect dominates and that the size
irgsgnmciminntlijrrr?e er of vaniables that are bad at any speméﬁ; the witness vanishes as a function of the iteration number

The standardscheduleof the LGalB is parallel, i.e., all F- Randomization
incoming messages (at either variable or check nodes) are\ witnessW consists of two parts, (i) the graph structure
processed at the same time. This is the natural schedule d6nV and (ii) the channel realizations of the variables/in
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Fig. 1. Construction of the witness for a bad edge. Teek variables

of initially bad edges (at the start of the marking process)
is perfectly tree-like. This means that two bad edges never
converge on the same variable node in their future. In this
case the only bad messages emitted by a variable node are
due to bad received values, but these received values can be
thought of being chosen independently from the rest of the
process. It follows that the whole marking process can be
modeled as a birth and death process. When we grow out
an edge then with probability we encounter a variable with

a bad received value. In this case, the variable emits bad
messages along its two outgoing edges and those in return
each creater — 1 bad outgoing messages at the output of

represent channel errors. The part of the tree wldink edges represent the their connected check nodes. In other words, with prokgbili
witness, thethick edges, including both dark and grey, represent the bad gne pad edge is transformed IQI' _ 1) bad edges With

messages in the past iterations.

By some abuse of notation we wri@ also if we refer only
to the graph structure or only to the channel realizations.

Fix a graphG and a witnessV, W C G. Let &y denote
the set of all error realizationg that give rise toW, i.e.,
W(G,E,¢) = W. Clearly, for allE € &,y we must have
W C E. In words, on the set of variables fixed by the witness
the errors are fixed by the witness itself. Therefore, théover
E that create this witness differ only @\)V. As a convention,
we define&sy =0 if W Z G.

Let &,y denote the set of projections &k )y onto the
variables inG\W. LetE’ € &, ¢~ Think of E" as an element

probability 1 — e the process along the particular edge dies. By
the stability condition of the LGalB decod®fr —1)c*@® < 1.
We conclude that the expected number of newly generated
children is strictly less than for e < €*®. Therefore the
corresponding birth and death process dies with probghilit
Since in general the expansion of the local neighborhood is
not perfectly tree-like, the above argument has to be extgnd
to account for this. But the gist of the argument remains the

IV. CONCLUSION

We have shown two approaches for solving the problem
of limit exchange below the DE threshold. The first one,
based solely on the expansion property of the graph, helps

of {0, 1}I"\WI, where0 denotes a correct received value anéh proving the result for a large class of MP decoders but

1 denotes an incorrect received value. In this wéy,,, is a
subset of{0, 1}/6\WI,

only if the degree is relatively large. To prove the result
for smaller degrees one has to include the role of channel

This is important:&; ,,, has structure. We claim that, if realizations. The second approach accomplishes this ire som

E' € &,y then&y,y, also containst., i.e., it contains all
elements of{0,1} that are smaller tham’ with respect to
the natural partial order ofi0, 1}/5\WI. More precisely, if the
noise realizatiore’ € & ,,, gives rise to the witnesgy then

converting any incorrect received valueihto a correct one
will also give rise toW. The proof of the following lemma

cases. In this paper we only considered channel parameters
below the DE threshold. But the regime above this threshold
is equally interesting and important. One important ajgtien

of proving the exchange of limits in this regime is the finite-
length analysis via a scaling approach since the computatio
of the scaling parameters heavily depends on the fact tigt th

relies heavily on this property. By some abuse of notatieh, lexchange is permissible.

M(G,E, W), be the marking process with the edges/ihas
the initial set of bad edges.
Lemma 11 (Channel Randomizatiohix G and letWW C

G. LetEg/ [] denote the expectation with respect to the chanr®

realizationsE’ in G\W. Then
Eg/ [M(Ga (Wa E/)v W)]]-{E/Egéw}]

< Ep[M (G, (W,E), W)Ee [Lpee; 1] (5)
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