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Abstract— We consider communication over binary-input
memoryless output-symmetric channels using low-density parity-
check codes under MP decoding. The asymptotic (in the length)
performance of such a combination for a fixed number of
iterations is given by density evolution. It is customary todefine
the threshold of density evolution as the maximum channel
parameter for which the bit error probability under density
evolution converges to zero as a function of the iteration number.

In practice we often work with short codes and perform a
large number of iterations. It is therefore interesting to consider
what happens if in the standard analysis we exchange the order
in which the blocklength and the number of iterations diverge
to infinity. In particular, we can ask whether both limits giv e the
same threshold.

Although empirical observations strongly suggest that the
exchange of limits is valid for all channel parameters, we limit
our discussion to channel parameters below the density evolu-
tion threshold. Specifically, we show that under some suitable
technical conditions the bit error probability vanishes below the
density evolution threshold regardless of how the limit is taken.

I. I NTRODUCTION

A. Motivation

Consider transmission over a binary-input memoryless
output-symmetric (BMS) channel using a low-density parity-
check (LDPC) code and decoding via a message-passing (MP)
algorithm. We refer the reader to [1] for an introduction to the
standard notation and an overview of the known results. It is
well known that, for good choices of the degree distribution
and the MP decoder, one can achieve rates close to the capacity
of the channel with low decoding complexity [2].

The standard analysis of iterative decoding systems assumes
that the blocklength ‘n’ is large (tending to infinity) and that
a fixed number of iterations is performed. As a consequence,
when decoding a given bit, the output of the decoder only
depends on a fixed-size local neighborhood of this bit and this
local neighborhood is tree-like. This local tree property implies
that the messages arriving at nodes are conditionally inde-
pendent, significantly simplifying the analysis. To determine
the performance in this setting, we track the evolution of the
message-densities as a function of the iteration. This process
is calleddensity evolution(DE). Denote the probability of bit
error of a codeG afterℓ iterations byPb(G, ǫ, ℓ), whereǫ is the
channel parameter. Then DE computeslimn→∞ E[Pb(G, ǫ, ℓ)].
If we now perform more and more iterations then we get a
limiting performance corresponding to

lim
ℓ→∞

lim
n→∞

E[Pb(G, ǫ, ℓ)]. (1)

A necessary condition for the computation graphs of depthℓ
to all nodes form trees is that the number of iterations does not
exceedc log(n), wherec is a constant that only depends on
the degree distribution. (For a(l, r)-regular degree distribution
pair a valid choice ofc is c(l, r) = 2

log(l−1)(r−1) , [3].) In
practice, this condition is rarely fulfilled: standard blocklengths
measure only in the hundreds or thousands but the number of
iterations that have been observed to be useful in practice can
easily exceed one hundred.

Consider therefore the situation where we fix the block-
length but let the number of iterations tend to infinity, i.e.,
we consider the limitlimℓ→∞ E[Pb(G, ǫ, ℓ)]. Now take the
blocklength to infinity, i.e., consider

lim
n→∞

lim
ℓ→∞

E[Pb(G, ǫ, ℓ)]. (2)

What can we say about (2) and its relationship to (1)?
Consider the belief propagation (BP) algorithm. It was

shown by McEliece, Rodemich, and Cheng [4] that one can
construct specific graphs and noise realizations so that the
messages on a specific edge either show a chaotic behav-
ior or converge to limit cycles. In particular, this means
that the messages do not converge as a function of the
iteration. For a fixed length and a discrete channel, the
number of graphs and noise realizations is finite. Therefore,
if for single graph and noise realization the messages do
not converge as a function ofℓ, then it is likely that also
limℓ→∞ E[Pb(G, ǫ, ℓ)] does not converge as a function ofℓ
(unless by some miracle the various non-converging parts can-
cel). Let us therefore considerlim supℓ→∞ E[Pb(G, ǫ, ℓ)] and
lim infℓ→∞ E[Pb(G, ǫ, ℓ)]. What happens if we increase the
blocklength and considerlimn→∞ lim supℓ→∞ E[Pb(G, ǫ, ℓ)]
and limn→∞ lim infℓ→∞ E[Pb(G, ǫ, ℓ)]?

Assume that the given combination (of the channel family
and the decoder MP) has a threshold in the following sense:
for the given channel family characterized by the real valued
parameterǫ there exists a valueǫMP so that for all0 ≤ ǫ < ǫMP

the DE limit (1) is 0, whereas for allǫ > ǫMP it is strictly
positive. Although empirical observations strongly suggest that
the exchange of limits is valid forall channel parametersǫ,
we limit our discussion to channel parameters below the DE
thresholdǫMP. In this case DE promises bit error probabilities
that tend to zero.

Instead of considering the simple exchange of limits one
can consider joint limits where the iteration is an arbitrary but
increasing function of the blocklength, i.e., one can consider
limn→∞ E[P MP

b (G, ǫ, ℓ(n))]. Although our arguments extend



to this case, for the sake of simplicity we restrict ourselves
to the standard exchange of limits discussed above. Further,
we restrict ourselves to regular ensembles. All the difficulties
encountered in the analysis are already contained in this case.

B. Definition and Notations

Consider a MP algorithm with message alphabetM. As-
sume that the algorithm is symmetric in the sense of [1][Def-
inition 4.81, p. 210], so that for the purpose of analysis it
is sufficient to restrict our attention to the all-one codeword
assumption.

The tools we develop can be applied to a variety of MP
decoders. To be concrete, we discuss below a few interesting
examples. In the following, by reliability of a messageµ we
mean its absolute value|µ|. This means that the message−µ
andµ have the same reliability.

Definition 1 (Bounded MS, BP Decoders):The bounded
min-sum (MS(M)) decoder andboundedbelief propagation
(BP(M)) decoder, both with parameterM ∈ R

+, are
identical to the standard min-sum and belief propagation
decoder except that the reliability of the messages emittedby
the check nodes is bounded toM before the messages are
forwarded to the variable nodes. ♦

II. SUFFICIENT CONDITIONS BASED ON EXPANSION

ARGUMENTS

Let us now show that for codes with sufficient expansion
the exchange of limits is indeed valid below the DE decoding
threshold.

Burshtein and Miller were the first to realize that expansion
arguments can be applied not only to the flipping algorithm
but also to show that certain MP algorithms have a fixed error
correcting radius [5]. Although their results can be applied
directly to our problem, we get somewhat stronger statements
by using the expansion in a slightly different manner.

The advantage of using expansion is that the argument
applies to a wide variety of decoders and ensembles. On the
negative side, the argument can only be applied to ensembles
with large left degree. Why do we need large left degrees
to prove the result? There are two reasons why a message
emitted by a variable node can be bad (let bad mean incorrect).
This can be due to the received value, or it can be due to a
large number of bad incoming messages. If the degree of the
variable node is large then the received value plays only a
minor role (think of a node of degree1000; in this case the
received value has only a limited influence on the outgoing
message and this message is mostly determined by the999
incoming messages). Suppose that the left degree is large and
ignore therefore for a moment the received message. In this
case large expansion helps for the following reason.

Consider a fixed iterationℓ. Let Bℓ denote the set of bad
variable nodes in iterationℓ (the set of variable nodes that
emit bad messages in iterationℓ). Perform one further round of
MP. In the next iteration the only check nodes which send bad
messages are those connected toBℓ. Therefore, for a variable
to belong toBℓ+1, it must be connected to a large number

of bad check nodes, and hence must share many check-node
neighbors with variables inBℓ. Suppose thatBℓ andBℓ+1 are
sufficiently small and that the graph has large expansion. Then
the number of common check-node neighbors ofBℓ andBℓ+1

can not be too large (since otherwise the expansion would
be violated). This limits the maximum relative size ofBℓ+1

with respect toBℓ. In other words, onceBℓ has reached a
sufficiently small size (so that the expansion arguments canbe
applied), the number of errors quickly converges to zero with
further iterations. In order to achieve good bounds the above
argument has to be refined, but it does contain the basic idea
of why large expansion helps.

On the other hand, if variable nodes have small degrees, then
the received values play a dominant role and can no longer
be ignored. As a consequence, for small degrees expansion
arguments no longer suffice by themselves.

Why are we using expansion arguments if we are interested
in standard LDPC ensembles? It is well known that such
codes are good expanders with high probability [5]. More
precisely, we say that a (l, r) bipartite graph is an(l, r, α, γ)-
left expander if all variable node setsV of size |V| ≤ αn
have at leastγl|V| check-node neighbors. It is not hard to
see thatγ can not be larger than1 − 1

l
; take a check node

and draw its computation graph of heightℓ. Let V be the set
of variable nodes contained in this subgraph. Forℓ = 1 this
subgraph contains1+r(l−1) check nodes and andr variable
nodes. For depthℓ, the number of check and variables nodes
are r(l−1)ℓ+1(r−1)ℓ−l

lr−l−r
and r(l−1)ℓ(r−1)ℓ−r

lr−l−r
. The expansion of

such a subgraph is at most1
l

r(l−1)ℓ+1(r−1)ℓ−l

r(l−1)ℓ(r−1)ℓ−r
and it rapidly

converges to1− 1
l

by choosingℓ larger and larger. Surprisingly,
for any γ < 1 − 1

l
, there exists anα(γ) > 0, such that for

sufficiently largen with high probability a random graph is
an (l, r, α, γ)-left expander.

Let us start with ensembles that have large variable degrees.
The key to what follows is to find a proper definition of a
“good” pair of message subsets.

Definition 2 (Good Message Subsets):For a fixed (l, r)-
regular ensemble and a fixed MP decoder, letβ, 0 < β ≤ 1,
be such thatβ(l − 1) ∈ N. A “good” pair of subsets ofM
of “strength” β is a pair of subsets(Gv, Gc) so that

• if β(l−1) of the(l−1) incoming messages at a variable
node belong toGv then the outgoing message on the
remainingedgeis in Gc

• if all the (r − 1) incoming messages at a check node
belong toGc then the outgoing message on the remaining
edgeis in Gv

• if β(l−1)+1 of all l incoming messages belong toGv,
then thevariable is decoded correctly

We denote the probability of the bad message setM\Gv after
ℓ iterations of DE byp(ℓ)

bad. ♦

As we will see shortly, for most of the decoders the setsGv

andGc can be chosen to be equal (but the BP(M ) decoder is
an interesting case whereGv 6= Gc).

Theorem 3 (Expansion and Bit Error Probability):
Consider an LDPC(n, l, r) ensemble, transmission over a



BMS(ǫ) channel, and a symmetric MP decoder. Assume that
this combination has a threshold under DE, call itǫMP. Let β
be the strength of the good message subset. Ifβ < 1 and if
for someǫ < ǫMP we havep

(∞)
bad = 0 then

lim
n→∞

lim sup
ℓ→∞

ELDPC(n,l,r)[P
MP
b (G, ǫ, ℓ)] = 0. (3)

The proof idea is somewhat different from the one used in
[5]. We first perform a small number of iterations to bring the
error probability down to a small value. But rather than asking
that the error probability decreases to zero by performing a
sufficient number of further iterations, we only require that it
stays small. The payoff for this less stringent requirementis
that the necessary conditions are less stringent as well. The
following theorem is more in the spirit of [5].

Theorem 4 (Expansion and Block Error Probability):
Consider an LDPC(n, l, r) ensemble, transmission over a
BMS(ǫ) channel, and a symmetric MP decoder. Assume that
this combination has a threshold under DE, call itǫMP. Let β
be the strength of the good message subset. Ifβ < l−2

l−1 and

if for some ǫ < ǫMP we havep
(∞)
bad = 0 then

lim
n→∞

lim sup
ℓ→∞

ELDPC(n,l,r)[P
MP
B (G, ǫ, ℓ)] = 0. (4)

As in Theorem 3 we first perform a fixed number of iterations
to bring down the bit error probability below a desired level.
We then use Theorem 5, a modified version of a theorem
by Burshtein and Miller [5], to show that for a graph with
sufficient expansion the MP algorithm decodes the whole
block correctly once the bit error probability is sufficiently
small.

Theorem 5 ([5]): Consider an (l, r, α, γ)-left expander.
Assume that0 ≤ β ≤ 1 such thatβ(l − 1) ∈ N and that
β l−1

l
≤ 2γ − 1. Let n0 ≤ α

lr
n. If at some iterationℓ the

number of bad variable nodes is less thann0 then the MP
algorithm will decode successfully.
Discussion: Theorem 4 has a stronger implication (the block
error probability tends to zero as a function of the iteration,
assuming the bit error probability has reached a sufficiently
small value) than Theorem 3 (here we are only guaranteed
that the bit error probability stays small once it has reached
a sufficiently small value). But it also requires a considerably
stronger condition.

Let us now apply the previous theorems to some examples.
Example 6 (BSC and GalB Algorithm):For this algorithm

M = {−1, +1}. Pick Gv = Gc = {+1}. Assume that the
received value (via the channel) is incorrect. In this case at
least ⌈(l − 1)/2⌉ + 1 of the (l − 1) incoming messages
should be good to ensure that the outgoing message is good
and at least⌈(l − 1)/2⌉ + 2 of the l incoming messages
should be good to ensure that the variable is decoded correctly.
Therefore,β = ⌈(l−1)/2⌉+1

l−1 . If the probability of the bad
message set goes to0 in the DE limit, then from Theorem
3 the limits can be exchanged ifl−1 > 1+ ⌈(l− 1)/2⌉, i.e.,
for l ≥ 5 and from Theorem 4, the block error probability
goes to zero ifl− 2 > 1 + ⌈(l− 1)/2⌉, i.e., for l ≥ 7. ♦

The key to applying expansion arguments to decoders with a
continuous alphabet is to ensure that the received values are no

longer dominant once DE has reached small error probabilities.
This can be achieved by ensuring that the input alphabet is
smaller than the message alphabet. Let us give a few examples
here.

Example 7 (MS(5) Decoder): Consider (l ≥ 5, r) code
and fix M = 5. Let the channel log likelihoods belong to
[−1, 1]. It is easy to check that in this case we can choose
Gv = Gc = [4, 5] and that it has strengthβ ≤ 3

4 . Therefore,
if the probability of the bad message set goes to0 under DE,
then according to Theorem 3 the limits can be exchanged. If
instead we consider(l ≥ 7, r) thenβ ≤ 1

3 . Hence, according
to Theorem 4 the block error probability tends to0. ♦

Example 8 (BP(10) Decoder): Let l = 5 and r = 6 and
fix M = 10. Let the channel log likelihoods belong to
[−1, 1]. We claim that in this case the message subset pair
Gv = [9, 10], Gc = [16, 41] is good with strengthβ = 3

4 . This
can be seen as follows: If all the incoming messages to a check
node belong toGc, then the outgoing message is at least14.39,
which is mapped down to10. Suppose that at a variable node
at least3(= β(l−1)) out of the4 incoming messages belong
to Gv. In this case the reliability of the outgoing message is
at least16 = 3 × 9 − 10 − 1. The maximum reliability is
41. Moreover, if all the incoming messages belong toGv then
the variable is decoded correctly. Therefore if the probability
of outgoing messages from check nodes being in[9, 10] goes
to 1 in the DE limit then from Theorem 3, the limits can be
exchanged. ♦

It is clear that Theorems 3 and 4 apply to an infinite
variety of decoders. But in all these cases the required variable
node degrees are rather large. In the next section we discuss
an alternative method which can sometimes be applied to
ensembles with low variable-node degrees.

III. SUFFICIENT CONDITION BASED ON BIRTH-DEATH

PROCESS

A. Main Result and Outline

As we have mentioned before, if the left degree is small
then the received value retains a large influence on emitted
messages regardless of the number of iterations. In this case
expansion arguments no longer suffice to prove our desired
result. As a representative example let us therefore consider
the case ofl = 3. Although the results below can be
extended to more general scenarios, we limit the subsequent
discussion to the Gallager decoding algorithm B (GalB). All
the complications are already present for this case.

Lemma 9 (Exchange of Limits):Consider transmission
over the BSC(ǫ) using random elements from the(l = 3, r)-
regular ensemble and decoding by the GalB algorithm. If
ǫ < ǫLGalB then

lim
n→∞

lim sup
ℓ→∞

E[P GalB
b (G, ǫ, ℓ)] = 0,

where ǫLGalB is the smallest parameterǫ for which a solution
to the fixed point equation

x = ǭ(1 − (1 − x)r−1)2 + ǫ(1 − (1 − x)2(r−1))



r rate ǫ
Sha

ǫ
GalB

ǫ
LGalB

4 0.25 ≈ 0.2145 ≈ 0.1068 ≈ 0.0847

5 0.4 ≈ 0.1461 ≈ 0.06119 ≈ 0.0506

6 0.5 ≈ 0.11002 ≈ 0.0394 ≈ 0.0336

TABLE I

THRESHOLD VALUES FOR SOME DEGREE DISTRIBUTIONS.

exists in(0, ǫ].
Example 10:Table I shows thresholds forr = 4, 5, 6. For

the(l = 3, r = 6) degree distribution we haveǫLGalB ≈ 0.0336.
This is slightly smaller than, but comparable to,ǫGalB ≈ 0.0394.
♦

Due to space constraints we do not present the proof in detail.
But we will discuss the ideas behind the main steps.

B. All-One Codeword Assumption

Fix 0 ≤ ǫ < ǫLGalB. We prove that for everyα > 0 there
exists ann(α, ǫ) so thatlim supℓ→∞ E[P GalB

b (G, ǫ, ℓ)] < α for
n ≥ n(α, ǫ). Without loss of generality we can assume that the
all-one codeword was sent. Therefore, the message1 signifies
in the sequel acorrect message, whereas−1 implies that the
message isincorrect.

C. Linearized Gal B

The analysis is simplified considerably bylinearizing the
decoding algorithm in the following way. Define theLin-
earized Gallager B(LGalB) algorithm. The LGalB algorithm
has the same processing rules at the variable nodes as the GalB
algorithm. At check nodes, however, an outgoing message
is −1 (incorrect) if any of the incoming messages is−1
(incorrect). It is not difficult to check that the error probability
of LGalB is an upper bound on the error probability for GalB.
Note that ǫLGalB as given in Lemma 9 is the DE threshold
corresponding to LGalB.

We will prove that for every0 ≤ ǫ < ǫLGalB and everyα > 0
there exists ann(α, ǫ) so thatlim supℓ→∞ E[P LGalB

b (G, ǫ, ℓ)] <
α for n ≥ n(α, ǫ).

D. Marking Process

The marking process allows us (i) to consider anasyn-
chronousversion of LGalB (i.e., the schedule of the com-
putation is no longer important) and (ii) ensures that we are
dealing with a monotone increasing function.

More precisely, we split the process into two phases: we
start with LGalB forℓ(p) iterations to get the error probability
belowp; we then continue the marking process associated with
an infinite number of further iterations of LGalB. This means
that we mark any variable that is bad in at least one iteration
ℓ ≥ ℓ(p). Clearly, the union of all variables that are bad at
at least one point in timeℓ ≥ ℓ(p) is an upper bound on the
maximum number of variables that are bad at any specific
instance in time.

The standardscheduleof the LGalB is parallel, i.e., all
incoming messages (at either variable or check nodes) are
processed at the same time. This is the natural schedule for

an actual implementation. For the purpose of analysis it is
convenient to consider anasynchronousschedule.

For a given graphG, and channel realizationE, let
M(G, E, ℓ) denote the set of marked variables at the end of
the process assuming that the initial set of marked edges is the
set of bad edges afterℓ rounds of LGalB. LetM(G, E, ℓ) =
|M(G, E, ℓ)|. It is not hard to see that for anyℓ′ ≥ ℓ,
P LGalB

b (G, ǫ, ℓ′) ≤ EE[M(G, E, ℓ)]/n.

E. Witness

It remains to boundE[M(G, E, ℓ)]. The difficulty in analyz-
ing the marking process lies in the fact that afterℓ(p) iterations
the set of starting edges for the marking process depends on
the noise realization as well as the graph. Our aim therefore
is to reduce this correlated case to the uncorrelated case bya
sequence of transformations. As a first step we show how to
get rid of the correlation with respect to the noise realization.

Consider a fixed graphG. Assume that we have performed
ℓ iterations of LGalB. For each edgee that is bad in theℓ-th
iteration we construct a “witness.” A witness fore is a subset
of the computation tree of heightℓ for e consisting of paths
that carry bad messages. We construct the witness recursively
starting withe. Orient e from check node to variable node.
At any point in time while constructing the witness associated
to e we have a partial witness that is a tree with oriented
edges. The initial such partial witness ise. One step in the
construction consists of taking a leaf edge of the partial witness
and to “grow it out” according to the following rules.

If an edge enters a variable node that has an incorrect
received value then add thesmallest(according to some fixed
but arbitrary order on the set of edges) edge that carries an
incorrect incoming message to the witness and continue the
process along this edge. The added edge is directed from
variable node to check node. If an edge enters a variable
node that has a correct received value then add both incoming
edges to the witness and follow the process along both edges.
(Note that in this case both of these edges must have carried
bad messages.) Again, both of these edges are directed from
variable to check node. If an edge enters a check node then
choose the smallest incoming edge that carries an incorrect
message and add it to the witness. Continue the process along
this edge. The added edge is directed from check to variable
node. Continue the process until depthℓ. Fig. 1 shows an
example forl = 3, r = 4, and ℓ = 2. Denote the union of
all witnesses for all edges that are bad in theℓ-th iteration
by W(G, E, ℓ). We simply call it the witness. The witness is a
part of the graph that on its own explains why the set of bad
edges afterℓ iterations is bad.

How large isW? The largerℓ, the fewer bad edges we
expect to see in iterationℓ. On the other hand, the size of the
witness for each bad edge grows as a function ofℓ. Fortunately
one can show that the first effect dominates and that the size
of the witness vanishes as a function of the iteration number.

F. Randomization

A witnessW consists of two parts, (i) the graph structure
of W and (ii) the channel realizations of the variables inW .



Fig. 1. Construction of the witness for a bad edge. Thedark variables
represent channel errors. The part of the tree withdark edges represent the
witness, thethick edges, including both dark and grey, represent the bad
messages in the past iterations.

By some abuse of notation we writeW also if we refer only
to the graph structure or only to the channel realizations.

Fix a graphG and a witnessW , W ⊆ G. Let EG,W denote
the set of all error realizationsE that give rise toW , i.e.,
W(G, E, ℓ) = W . Clearly, for all E ∈ EG,W we must have
W ⊆ E. In words, on the set of variables fixed by the witness
the errors are fixed by the witness itself. Therefore, the various
E that create this witness differ only onG\W . As a convention,
we defineEG,W = ∅ if W 6⊆ G.

Let E ′
G,W denote the set of projections ofEG,W onto the

variables inG\W . Let E′ ∈ E ′
G,W . Think of E′ as an element

of {0, 1}|G\W|, where0 denotes a correct received value and
1 denotes an incorrect received value. In this way,E ′

G,W is a
subset of{0, 1}|G\W|.

This is important:E ′
G,W has structure. We claim that, if

E
′ ∈ E ′

G,W then E ′
G,W also containsE′≤, i.e., it contains all

elements of{0, 1} that are smaller thanE′ with respect to
the natural partial order on{0, 1}|G\W|. More precisely, if the
noise realizationE′ ∈ E ′

G,W gives rise to the witnessW then
converting any incorrect received value inE′ to a correct one
will also give rise toW . The proof of the following lemma
relies heavily on this property. By some abuse of notation, let
M(G, E,W), be the marking process with the edges inW as
the initial set of bad edges.

Lemma 11 (Channel Randomization):Fix G and letW ⊆
G. Let EE′ [·] denote the expectation with respect to the channel
realizationsE′ in G\W . Then

EE′ [M(G, (W , E′),W)1{E′∈E′

G,W
}]

≤ EE′ [M(G, (W , E′),W)]EE′ [1{E′∈E′

G,W
}]. (5)

Discussion: The operational significance of this lemma is that
in order to upper bound the size of the marking process we
are free to consider the noise realization outside the witness
to be independent of the witness.

G. Back to Expansion

Now where we have randomized the channel values we can
use expansion arguments to deal with the dependence on the
graph. The basic idea is simple. Assume that the neighborhood

of initially bad edges (at the start of the marking process)
is perfectly tree-like. This means that two bad edges never
converge on the same variable node in their future. In this
case the only bad messages emitted by a variable node are
due to bad received values, but these received values can be
thought of being chosen independently from the rest of the
process. It follows that the whole marking process can be
modeled as a birth and death process. When we grow out
an edge then with probabilityǫ we encounter a variable with
a bad received value. In this case, the variable emits bad
messages along its two outgoing edges and those in return
each creater − 1 bad outgoing messages at the output of
their connected check nodes. In other words, with probability
ǫ one bad edge is transformed to2(r − 1) bad edges. With
probability1−ǫ the process along the particular edge dies. By
the stability condition of the LGalB decoder2(r−1)ǫLGalB ≤ 1.
We conclude that the expected number of newly generated
children is strictly less than1 for ǫ < ǫLGalB. Therefore the
corresponding birth and death process dies with probability 1.

Since in general the expansion of the local neighborhood is
not perfectly tree-like, the above argument has to be extended
to account for this. But the gist of the argument remains the
same.

IV. CONCLUSION

We have shown two approaches for solving the problem
of limit exchange below the DE threshold. The first one,
based solely on the expansion property of the graph, helps
in proving the result for a large class of MP decoders but
only if the degree is relatively large. To prove the result
for smaller degrees one has to include the role of channel
realizations. The second approach accomplishes this in some
cases. In this paper we only considered channel parameters
below the DE threshold. But the regime above this threshold
is equally interesting and important. One important application
of proving the exchange of limits in this regime is the finite-
length analysis via a scaling approach since the computation
of the scaling parameters heavily depends on the fact that this
exchange is permissible.
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