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Préface 

Le béton fibré à ultra-hautes performances (BFUHP) est un nouveau matériau dont les 
caractéristiques mécaniques sont très supérieures à celles du béton ordinaire : sa résistance à la 
compression est environ 6 fois plus élevée et se rapproche ainsi de celle de l’acier alors que sa 
résistance à la traction est environ 4 fois plus élevée que celle d’un béton ordinaire. Malgré ces 
caractéristiques, l’utilisation de ce matériau pour des structures nouvelles reste limitée. Ceci à cause 
du coût considérable du matériau, parce que les solutions structurales adaptées à ses caractéristiques 
spécifiques restent encore partiellement à développer et du fait que les méthodes de 
dimensionnement du béton armé ordinaire ne s’y appliquent pas nécessairement. 

L’ajout d’une grande quantité de fibres, facteur important dans l’augmentation du coût, ne permet 
qu’une augmentation très limitée de la résistance à la traction. Il assure par contre une augmentation 
considérable de la capacité de déformation du matériau, qui peut devenir déterminante dans des 
structures hyperstatiques de faibles dimensions (aspect souvent évoqué, mais jusqu’ici peu considéré 
dans les travaux théoriques sur le comportement structural des éléments en BFUHP). 

Dans la thèse de Mlle Spasojević, le comportement des éléments minces non armés est étudié dans 
l’optique de la construction des ponts et des passerelles. Le choix de ces ouvrages d’art découle du 
fait que ce nouveau matériau performant semble surtout s’imposer pour des applications où les 
exigences tant mécaniques qu’en matière de durabilité sont élevées. 

L’étude de Mlle Spasojevic se concentre sur le comportement et la résistance des éléments fléchis en 
BFUHP, isostatiques et hyperstatiques, ainsi que sur les dalles. Les résultats des approches 
analytiques de Mlle Spasojević, vérifiés par deux séries expérimentales sur poutres et sur dallettes 
minces, permettent de comprendre l’influence de la taille des éléments sur leur résistance et leur 
capacité de déformation à la rupture. Sur cette base, l’applicabilité des méthodes de 
dimensionnement plastique aux éléments minces en BFUHP est analysée de façon rigoureuse, ce qui 
constitue une contribution significative vers un dimensionnement simple et sûr de tels éléments. 

Le comportement des dalles de roulement est complété par l’étude de leur résistance au 
poinçonnement, un mode de rupture qui limite souvent la résistance des dalles de roulement des 
ponts en béton armé. Les résultats de l’étude, supportés par une série d’essais conduite dans le cadre 
de cette thèse, montrent une application prometteuse de la théorie de la fissure critique et peuvent 
servir pour l’estimation pratique de la résistance au poinçonnement des dalles en BFUHP. 

Une synthèse des concepts développés pendant la thèse permettent finalement à Mlle Spasojević
d’envisager des applications possibles du BFUHP au domaine des ponts et passerelles. 

Lausanne, avril 2008      Prof. Dr Aurelio Muttoni 
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Abstract 

The present research represents a theoretical and experimental contribution to the understanding of 
the structural behaviour of elements made of ultra-high performance fibre-reinforced concrete 
(UHPFRC).  

UHPFRC is investigated as an advanced cementitious material offering particular potential in 
innovative bridge design. The optimised material composition results in high compressive strength 
and non-negligible tensile strength and ductility, provided by multi-microcracking. This allows 
significant tensile forces to be sustained by elements in bending even without the use of ordinary 
reinforcement. Thanks also to the material’s resistance to environmental degradation, very thin 
structural elements can be constructed.  

This research focuses primarily on the bending behaviour and design of thin UHPFRC beams and 
slabs. Punching-shear is also investigated as a possible failure mode of thin UHPFRC slabs. One of 
the main differences between other concretes and UHPFRC is that the latter requires mechanical 
models capable of taking tensile behaviour into account for rational structural application. Analytical 
and numerical models are developed in this study to simulate the non-linear bending response of 
UHPFRC beams and slabs. This permits the assessment of element behaviour at service states and 
prediction of failure loads. Theoretical research on both bending and punching-shear failure is 
supported by experimental research on beams and slabs made of BSI® UHPFRC with 2.5 % volume 
of 20-mm long steel fibres.  

The analytical model for beams in bending takes both material multi-microcracking and macrocrack 
propagation with tensile softening into consideration. Multi-microcracking is modelled as a pseudo-
plastic tensile behaviour, while the macrocrack is simulated based on the assumptions of the 
fictitious crack model. The results are in good agreement with experimental data and simulations 
obtained from a developed finite element model. Using theoretical results and experimental data it is 
demonstrated that pre-peak behaviour and bending strength are mainly governed by multi-
microcracking. The propagation of the macrocrack provides only a minor additional contribution to 
bending strength, but, in the case of thin beams, plays an important role in providing ductility in 
bending. Theoretical results demonstrate that, due to the presence of pronounced pseudo-plastic 
deformations, size effect on bending strength is much less significant for UHPFRC than for other 
quasi-brittle materials, which corresponds to experimental observations. It is however shown that, 
even if the pseudo-plastic phase is less pronounced, thin elements develop behaviour similar to that 
of elements with high pseudo-plastic tensile deformations, owing to the low stress decrease in tensile 
softening. Nonetheless, in the absence of pseudo-plastic tensile deformations, the behaviour of thick 
elements approaches that of typical quasi-brittle materials, with a more pronounced size effect.  

In the case of thin statically indeterminate beams and slabs, it is shown that a high level of tensile 
ductility can allow sufficient internal force redistribution to occur, leading to a significant increase in 
load-bearing capacity. Moreover, high rotations can be sustained after cracking while almost 
constant bending strength is maintained, resulting in a plastic-like behaviour. It is demonstrated that 
the theory of plasticity can thus be applied: a formulation is proposed to predict the resistant plastic 
moment, enabling easy estimation of the bending failure load for thin elements. The analysis results 
show good agreement with test results for slabs of different thicknesses. However, due to the 
remarkable size effect on ductility in bending, the rotation capacity of UHPFRC elements thicker 
than approximately 100 mm is limited, and the theory of plasticity does not apply.  

Experimental and theoretical research on the punching-shear failure of thin UHPFRC slabs 
demonstrates the influence of structural parameters on achieved shear resistance. A proposal is made 
for considering fibre contribution in shear resistance as a structure-dependent parameter, relating the 
critical shear crack opening to slab rotation. This approach results in more accurate predictions for 
thin elements with larger deformations as compared to current code predictions that overestimate 
resistances for such elements. 
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With a view to the structural application of UHPFRC in bridge design, the concept of ribbed deck 
slab is studied. Based on the theoretical and experimental results it is demonstrated that thin 
UHPFRC slabs (40-60 mm) without ordinary reinforcement can be effectively used in this concept: 
sufficient bending and punching-shear resistances to locally applied traffic loads can be ensured. 
With prestressed ribs, UHPFRC ribbed slabs attain high load-bearing capacity, while structural dead 
weight is significantly decreased. This concept could open up new vistas in the design of new 
structures and offers effective possibilities for the structural repair or widening of existing bridges.     

Keywords: ultra-high performance fibre-reinforced concrete (UHPFRC), beam, slab, thin elements, 
structure, bridge, ribbed deck, bending, punching, design, plastic analysis, cracking, tensile 
hardening, tensile softening, bending strength, ductility, size effect 
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Résumé

La recherche théorique et expérimentale effectuée dans le cadre de cette thèse apporte une 
contribution à la compréhension du comportement structurel des éléments en béton fibré à ultra 
hautes performances (BFUHP/UHPFRC).  

Le BFUHP est étudié en qualité de matériau cimentaire avancé, qui offre des possibilités spécifiques 
pour l’innovation dans le domaine de la conception des ponts. La composition optimale du matériau 
entraine une haute résistance à la compression ainsi qu’une résistance et une ductilité non 
négligeables en traction, grâce à la microfissuration.  Cela permet de reprendre des efforts de traction 
significatifs dans les éléments fléchis, même en absence d’armatures ordinaires. Grâce aussi à la 
durabilité du matériau vis-à-vis de la dégradation environnementale, des éléments de structures très 
minces peuvent être ainsi réalisés. 

Cette recherche se concentre principalement sur le comportement et sur le dimensionnement en 
flexion de poutres et dalles en BFUHP sans armature ordinaire. Le poinçonnement est également 
investiguée en tant que possible mode de rupture. Une différence importante par rapport aux autres 
types de béton réside dans le fait que, pour une utilisation structurale rationnelle du BFUHP, des 
modèles mécaniques qui tiennent compte de son comportement en traction sont nécessaires. Dans 
cette recherche, des modèles analytiques et numériques sont développés pour simuler la réponse non 
linéaire en flexion des poutres et dalles en BFUHP. Cela permet de décrire le comportement des 
éléments à l’état limite de service, mais aussi de prévoir leur charge de rupture. La recherche 
théorique, aussi bien pour la flexion que pour le poinçonnement, s’appuie sur les résultats d’essais en 
laboratoire sur poutres et dalles réalisées avec le BFUHP BSI®, contenant 2.5 % en volume de fibres 
métalliques, avec une longueur de 20 mm.

Le modèle analytique pour les poutres fléchies tient compte de la multi-microfissuration du matériau 
ainsi que de la propagation d’une macro-fissure avec un comportement adoucissant en traction. La 
multi-microfissuration est idéalisée avec un comportement pseudo-plastique en traction, alors que la 
macro-fissure est modélisée selon les hypothèses du modèle de la fissure fictive. Les résultats sont en 
bonne concordance avec les données expérimentales ainsi qu’avec les résultats des modélisations 
numériques effectués par la méthode des éléments finis. En se basant sur les résultats théoriques et 
expérimentaux, il a été possible de démontrer que la multi-microfissuration gouverne le 
comportement avant-pic et la résistance flexionnelle. La propagation de la macro-fissure n’apporte 
qu’une contribution mineure à la résistance flexionnelle mais, dans les éléments minces, elle joue un 
rôle important pour le développement d’un comportement ductile en flexion. Les résultats théoriques 
montrent que, grâce à la présence de déformations pseudo-plastiques significatives, l’effet d’échelle 
sur la résistance en flexion est beaucoup moins important pour le BFUHP que pour les autres 
matériaux quasi-fragiles, conformément aux résultats expérimentaux. Même si la phase pseudo-
plastique est peu importante, les éléments minces peuvent développer une résistance et une ductilité 
similaires à celles développées par un matériau qui a de grandes déformations pseudo-plastiques. 
Cela est possible grâce à la diminution lente et progressive des contraintes dans la phase 
adoucissante. Néanmoins, en absence de déformations pseudo-plastiques, le comportement des 
éléments épais approche le comportement typique des matériaux quasi-fragiles, avec un effet 
d’échelle plus important. 

Dans le cas de poutres hyperstatiques et de dalles, il est montré que la ductilité en traction peut 
permettre une redistribution significative des efforts internes dans les éléments minces, avec une 
augmentation importante de la résistance ultime et le développement d’un comportement similaire à 
un mécanisme plastique. De plus, de grandes rotations peuvent se développer après fissuration tout 
en gardant un moment résistant de flexion presque constant. La théorie de la plasticité peut ainsi être 
appliquée pour prédire la capacité portante des poutres et des dalles minces. La définition d’une 
approche pour prédire le moment résistant plastique permet d’estimer de manière aisée la charge de 
rupture en flexion. Les résultats de l’analyse concordent avec les résultats d’essais sur dalles de 
différentes épaisseurs. Cependant, à cause de l’effet d’échelle important qui existe sur la ductilité en 
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flexion, la capacité de rotation est limitée pour les éléments en BFUHP épais (>100 mm), et la 
théorie de la plasticité ne s’applique pas. 

La recherche expérimentale et théorique sur la rupture au poinçonnement des dalles minces en 
BFUHP démontre l’influence des paramètres structuraux sur la résistance à l’effort tranchant. En 
reliant l’ouverture de la fissure critique pour l’effort tranchant à la rotation de la dalle, une 
proposition est faite pour permettre de tenir compte de la contribution des fibres à la résistance à 
l’effort tranchant en fonction de paramètres dépendant de la structure. Pour les éléments minces et 
très déformables, cette approche permet une prédiction plus précise et plus prudente que celle 
obtenue avec les normes existantes.  

Dans le cadre d’une application structurale du BFUHP pour le dimensionnement des ponts, le 
concept de dalle nervurée est étudié. Sur la base des résultats théoriques et expérimentaux, il est 
démontré que des dalles minces en BFUHP (40-60 mm) sans armatures ordinaires peuvent être 
utilisées selon ce même concept structural, car elles fournissent une résistance à la flexion et au 
poinçonnement suffisante pour reprendre les charges de trafic appliqués localement et pour les 
transmettre aux porteurs principaux. Avec des nervures précontraintes, les dalles nervurées en 
BFUHP peuvent offrir une grande résistance tout en réduisant significativement le poids propre de la 
structure. Ce concept est intéressant pour la réalisation de nouvelles structures, mais aussi dans le 
cadre de la réhabilitation et de l’élargissement de structures existantes.  

Mots-clefs: béton fibré à ultra-hautes performances (BFUHP), poutre, dalle, éléments minces, 
structure, pont, dalle nervurée, flexion, poinçonnement, dimensionnement, analyse plastique, 
fissuration, comportement durcissant en traction, comportement adoucissant en traction, résistance 
flexionnelle, ductilité, effet d’échelle 
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Riassunto 

La ricerca teorica e sperimentale effettuata nell’ambito di questa tesi fornisce un contributo alla 
comprensione del comportamento strutturale degli elementi in calcestruzzo fibro-rinforzato ad 
altissime prestazioni (ultra high performance fibre reinforced concrete, UHPFRC).

L’UHPFRC è studiato in quanto materiale cementizio innovativo, capace di offrire possibilità di 
innovazione specifiche nell’ambito della concezione dei ponti. La composizione ottimale del 
materiale gli conferisce una resistenza alla compressione elevata e, allo stesso tempo, una resistenza 
ed una duttilità non trascurabili in trazione, grazie alla microfessurazione. Negli elementi inflessi ciò 
permette di riprendere sforzi di trazione considerevoli, anche in assenza di armature tradizionali. 
Grazie anche alla durabilità del materiale nei confronti dell’aggressività ambientale, è possibile 
realizzare elementi strutturali di spessore molto contenuto. 

Questa ricerca si concentra principalmente sul comportamento e sul dimensionamento in flessione di 
travi e piastre in UHPFRC senza armature tradizionali. Il punzonamento è altresì analizzato, quale 
possibile modalità di rottura. Una differenza importante rispetto ad altri tipi di calcestruzzo risiede 
nel fatto che, per un uso strutturale efficace dell’UHPFRC, sono necessari modelli meccanici che 
tengano in considerazione il suo comportamento in trazione. Modelli di tipo analitico e numerico 
sono stati sviluppati nell’ambito di questa ricerca per simulare la risposta non lineare in flessione di 
travi e piastre in UHPFRC. Grazie a tali modelli è possibile descrivere il comportamento degli 
elementi in stato di servizio, ma anche prevederne il carico di rottura. Tanto per la flessione quanto 
per il punzonamento, la ricerca teorica è sostenuta dai risultati di prove di laboratorio su travi e 
piastre realizzate in BSI®, un particolare tipo di UHPFRC rinforzato con il 2.5 % in volume di fibre 
metalliche di lunghezza pari a 20 mm.

Il modello analitico di trave inflessa considera sia la fase di multi-microfessurazione in trazione del 
materiale sia la propagazione di una fessura macroscopica con comportamento tensione-apertura di 
fessura degradante (softening). La multi-microfessurazione è idealizzata con un comportamento 
pseudo-plastico in trazione, mentre l’analisi della macro-fessura si basa sulle ipotesi di un modello a 
fessura coesiva. I risultati concordano con i dati sperimentali e con i risultati di modellazioni 
numeriche effettuate con il metodo degli elementi finiti. Basandosi sui risultati teorici e sperimentali, 
si dimostra che la multi-microfessurazione controlla il comportamento pre-picco e la resistenza 
flessionale. La fase di propagazione della macro-fessura apporta soltanto un contributo marginale 
alla resistenza flessionale, ma svolge, negli elementi sottili, un ruolo di rilievo per lo sviluppo della 
duttilità in flessione. I risultati teorici mostrano che, in presenza di deformazioni importanti in fase 
pseudo-plastica, l’effetto di scala sulla resistenza in flessione è molto meno importante per un 
UHPFRC che per altri materiali quasi-fragili. Se la fase pseudo-plastica è poco estesa, gli elementi 
sottili possono sviluppare resistenza e duttilità simili a quelle sviluppate da un materiale con 
deformazioni in fase pseudo-plastica più importanti: ciò é reso possibile dalla diminuzione lenta e 
progressiva delle tensioni nella fase softening. Nel caso di elementi spessi ed in assenza di fase 
pseudo-plastica, tuttavia, il comportamento si avvicina al comportamento tipico dei materiali quasi-
fragili, con effetto di scala importante. 

Nel caso di travi staticamente determinate o di piastre, si dimostra che per elementi sottili (spessore 
inferiore a 100 mm) la duttilità in trazione permette una ridistribuzione efficace degli sforzi interni, 
con aumento rilevante della resistenza ultima e sviluppo di un comportamento simile ad un 
meccanismo plastico. Inoltre, rotazioni di entità significativa possono svilupparsi nella fase post-
fessurativa, pur mantenendo una resistenza flessionale quasi costante. La teoria della plasticità può 
pertanto essere applicata per il calcolo della capacità portante di travi e piastre sottili. La definizione 
di un approccio per predire il momento resistente plastico permette di stimare in modo semplice il 
carico di rottura di elementi staticamente determinati. I risultati dell’analisi concordano con i risultati 
di prove su piastre di diverso spessore. A causa dell’effetto di scala importante che interessa la 
duttilità in flessione, tuttavia, la capacità di rotazione di elementi in UHPFRC spessi (> 100 mm) é 
limitata, e la teoria della plasticità non può essere utilizzata. 
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La ricerca sperimentale e teorica sulla ruttura per punzonamento di piastre sottili in UHPFRC 
evidenzia l’influenza dei parametri strutturali, quali geometria e condizioni d’appoggio, sulla 
resistenza al taglio. Da un punto di vista teorico, l’apertura della fessura critica per la resistenza al 
taglio é espressa in funzione della rotazione nella piastra. É così possibile formulare un modello di 
calcolo che permette di esprimere il contributo delle fibre alla resistenza al taglio in funzione dei 
parametri strutturali. Per elementi snelli, tale approcio permette una predizione più precisa e più 
prudente di quella ottenuta utilizzando le norme esistenti. 

Nell’ambito di un’applicazione strutturale dell’UHPFRC nella concezione dei ponti, si considera il 
concetto di piastra nervata. Sulla base dei risultati teorici e sperimentali, si dimostra che piastre sottili 
in UHPFRC (40-60 mm) senza armature tradizionali possono essere utilizzate come parti di piastre 
nervate di ponte stradale, poiché forniscono una resistenza alla flessione ed al punzonamento 
sufficiente per riprendere i carichi di traffico applicati localmente e trasmetterli agli elementi portanti 
principali. Con nervature precompresse, le piastre nervate in UHPFRC possono offrire una grande 
resistenza riducendo al contempo, ed in modo considerevole, il peso proprio della struttura. Questo 
concetto é interessante per la realizzazione di nuove strutture, ma anche nell’ambito del ripristino o 
dell’ampliamento di strutture esistenti. 

Parole chiave: calcestruzzo fibro-rinforzato ad altissime prestazioni, trave, piastra, elementi sottili, 
struttura, ponte, piastra nervata, flessione, punzonamento, dimensionamento, calcolo plastico, 
fessurazione, comportamento incrudente in trazione, comportamento softening in trazione, resistenza 
flessionale, duttilità, effetto di scala 
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1.  Introduction 

1.1  Exposition of problem 

The present research investigates possible structural applications of ultra-high performance fibre-
reinforced concrete (UHPFRC) for advanced bridge design. The search for solutions in the design of 
more efficient bridges, in terms of material consumption, ease of construction, aesthetic appeal, 
durability etc., represents an unceasing engineering task.  

There are many parameters influencing bridge design, and consequently many possible ways for its 
improvement. More efficient structural forms and more adapted materials and construction 
techniques are the major parameters leading to a successful structural concept. The application of 
advanced cementitious materials, such as UHPFRC, has been identified as one of the promising 
ways to innovate in bridge design. Cement-based materials, in general, are widely used building 
materials due to the availability of their components and low production energy. Ordinary reinforced 
concrete (OC) solutions are well accepted in design practice and optimised with respect to material 
consumption and construction process. It is acknowledged that the use of high-strength concretes 
(HSCs) leads to a certain decrease in material quantity, principally due to its increased compressive 
strengths, while all tensile forces continue to be borne by reinforcement and prestressing steel. This 
means that all constructive constraints linked with reinforcement placement, as in design with 
ordinary concrete, apply to HSCs, allowing no radical improvements. On the other hand, UHPFRCs 
are specifically tailored materials that, in addition to greatly increased compressive strength, are 
characterised by non-negligible strength and ductility in tension, allowing significant tensile forces to 
be sustained in bending even if passive reinforcement is not used. Due to the greatly improved 
material mechanical strengths and material compactness that provide a high degree of resistance to 
unfavourable environmental conditions, very thin structural elements can be considered. Material 
workability characterised by self-placing and self-compacting, in addition to the economy of labour 
in relation to the placement of ordinary reinforcement, increase production speed and make the 
material well suited for precasting. Light elements permit easy manipulation and rapid construction. 
Corrosion is almost completely avoided in dense UHPC matrix, significantly reducing maintenance 
costs and extending the service life of UHPFRC structures. 

Despite its vastly improved material properties, the structural application of UHPFRC is still not 
widespread. To date, UHPFRC is successfully used mostly in cases where OC barely meets 
particular design requirements, principally with regard to lightness, mechanical resistances or 
resistances to aggressive environments. Apart from certain technical drawbacks and the actual cost 
of the material, the limited structural exploitation of UHPFRC may be partially explained by 
engineers’ needs and habits concerning design with familiar materials and the lack of practical 
design approaches for UHPFRC.  

Since its appearance on the market in 1995, UHPFRC has been an important subject of in-depth 
academic research, mostly focused on understanding the material microstructure and the principles 
of development of its improved material properties. However, for design purposes, its structural 
behaviour needs to be thoroughly understood to allow rational models assessing element resistances 
and appropriate analytic approaches to be defined.  

The tensile behaviour characterised by a multi-microcracking phase and significant fractural 
toughness makes the response of UHPFRC elements quite different from that of OC or other fibre-
reinforced concretes (FRCs). To enable the material to be fully exploited, tensile behaviour must be 
taken into account in design, meaning that the resistance models for OC, HSC or FRC elements 
cannot be directly applied. Knowledge of the behaviour of other concretes, which are typical quasi-
brittle materials, influences to some extent considerations concerning the description of UHPFRC 
element behaviour. However, in thin structural elements, the tensile ductility of UHPFRC results in 
behaviour more similar to that of plastic-like materials.   
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Thus, a certain amount of effort is required to establish appropriate mechanical models that will 
provide a safe application of the knowledge acquired on the material level to structural analysis and 
design. This task must be supported by both theoretical and experimental studies. Most of the 
research in this domain deals with the performances of elements in simple bending, whereas the 
behaviour of UHPFRC elements in redundant systems has been insufficiently investigated. However, 
statically indeterminate elements, such as thin slabs without ordinary reinforcement, are assumed to 
be those that allow the material’s potential to be best exploited: sufficient tensile ductility enables the 
redistribution of internal forces, resulting in increased flexural load-bearing capacity. In addition to 
bending, punching-shear failure must be assured in thin elements, a failure mode that has not been 
widely investigated in UHPFRC slabs. Finally, if the above mentioned resistances are assured, thin 
slabs can be used as local bearing elements in a structure, as in the case of ribbed elements, 
providing the system with high load-bearing capacity with a significant decrease in weight. The 
principal questions arising are: what is the actual load-bearing capacity of statically determinate and 
indeterminate UHPFRC elements, and which design approach is appropriate for assessing it? What 
are the most suitable structural forms for a successful application of UHPFRC in bridge design and 
are the shapes that are well suited for OC appropriate for the full exploitation of UHPFRC? What is 
the final benefit of employing UHPFRC rather than other concretes?     

Assessing the effective potential of UHPFRC structural elements is of more global interest than just 
their application in improved bridge design. Interest already exists for other structures like 
footbridges, roofs, as well as for the upgrading or repair of existing structures. It is also important to 
allow structural engineers to become more familiar with the potential of UHPFRC, and, by providing 
practical design approaches, to introduce UHPFRC more into engineering practice instead of its 
current more academically oriented significance.  

1.2  Objectives 

With a view to the structural application of UHPFRC, the principal objectives of the work comprise 
the understanding and modelling of the mechanical behaviour of structural elements, with the 
possibility of predicting their response at service states and failure. The final aim is to present 
practical conclusions and proposals for the design of UHPRFC beams and thin slabs without 
ordinary reinforcement. This involves the following objectives: 

- concerning simply supported beams:  
- study bending behaviour and develop a model enabling element response to be reproduced as 

a function of non-linear material laws known from uniaxial response and fractural properties; 
verify the model experimentally; 

- identify the influence of material tensile properties on bending behaviour, and the influence of 
size effect on bending strength and ductility; 

- concerning statically indeterminate beams and slabs:  
- develop models enabling the bending behaviour of statically indeterminate elements (beams 

and slabs) to be reproduced based on known non-linear material laws; observe the influence of 
material ductility and system redundancy on element load-bearing capacity; verify the model 
experimentally; 

- investigate the possibility of applying more straightforward analysis than non-linear, e.g. 
plastic analysis, for failure load prediction; 

- identify the influence of size effect on the response of statically indeterminate elements and its 
consequences for practical design; 

- investigate experimentally and theoretically the punching-shear resistance of thin slabs. 

Finally a UHPFRC deck slab, comprising thin unreinforced slab elements and prestressed ribs, is 
studied, with the aim of demonstrating the potential of UHPFRC for structural application.  
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1.3  Thesis organisation 

 The thesis consists of eight chapters, with the structure schematically represented in Figure 1.1.  
Generally, each chapter consists of a short literature overview for the domain considered, theoretical 
study and results with eventual comparison with experimental data, and concluding remarks. 

In Chapter 2, possibilities for the improvement of concrete bridge design are discussed, with a 
review of significant events related to the evolution of concrete bridge design. The orientation of the 
research towards the application of UHPFRC for improved bridge design is justified. 

In Chapter 3, the UHPFRC material properties important for structural application are presented. 
Although the characterisation of material properties is not the principal aim of this study, it was 
found important to recall the origin of the advanced properties based on the material microstructure 
and to propose rational analytical formulations describing material mechanical behaviour.  

Chapters 4 to 6 deal with the structural behaviour of UHPFRC without ordinary reinforcement:  

In Chapter 4, a model describing the non-linear bending behaviour of UHPFRC elements is 
developed. The model takes into account both the multi-microcracking characterising UHPFRC 
material as well as the propagation of a discrete crack with tensile softening. The influence of 
material tensile behaviour on element bending response is observed and sensitivity to size effect in 
bending is discussed in comparison to other concretes. 

In Chapter 5, the non-linear behaviour of statically indeterminate beams is studied: based on the 
developed approach, the influence of size effect on the development of plastic-like behaviour is 
investigated. The possibility of applying the theory of plasticity for the prediction of failure load is 
discussed.        

Chapter 6 is devoted to the analysis of thin UHPFRC slabs subjected to bending and punching-shear 
failure. The development of a non-linear bending response due to tensile ductility is modelled, and 
the possibility of exhibiting plastic-like response at failure is studied. 

In Chapter 7, the structural application of UHPFRC is criticised, with a particular accent on 
application in bridge design. Existing UHPFRC systems are briefly reviewed, and a case study of the 
design of a UHPFRC ribbed deck slab is performed.  

Chapter 8 presents conclusions and prospects for further research related to the problems dealt with 
in this thesis.       

Three appendices are added to this document: Appendix M1 and M2, providing additional 
information on development of analytical expressions used for the bending model, and Appendix T1 
presenting the results of the experimental research on beams subjected to bending and thin slabs 
subjected to bending and punching shear. 
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Figure 1.1: Thesis structure 
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2.  Possibilities for structural improvements in concrete 
bridges 

2.1  Introduction 

Improvement of the performance and efficiency of bridges is an ongoing task in engineering design. 
In the context of this research, efficient structures are defined as structures that satisfy design 
requirements with a minimum amount of materials, enabling easy and rational construction. The 
efficiency of a structure thus depends on a number of heterogeneous parameters. However, the major 
factor in improving structural performances is the appropriate use of building material in an adapted 
structural shape.  For this purpose, topological optimisation is carried out to identify efficient 
structural shapes providing maximal structural stiffness for a given volume of material. An 
alternative approach consists of optimising the dimensions of predefined structural shapes, and using 
more resistant materials. As a case study for this approach, a continuous prestressed box-girder is 
considered, since it represents a classic structural concept well suited for reinforced concrete bridges 
both with respect to exploitation of material strength and construction process. The solution is 
controlled by the ultimate limit state, serviceability limit state requirements or constructive 
constraints, according to current structural design recommendations. A parametric analysis is 
performed by varying girder span-to-depth ratio and concrete grade, i.e. compressive strength, in 
order to demonstrate the contribution of improved material strengths to system efficiency.       

2.2  History of concrete bridges 

2.2.1 Lessons from the history of bridges 
The study of existing and historical structural examples provides an important source of ideas for 
possibilities in the realm of bridge improvement. Throughout history, structural design has been 
based on the principles of strength, durability, functionality, economy, and aesthetics (“firmitas, 
utilitas, venustas”, M. Vitruvius in “De architectura”, 1st century BC). These basic design principles 
still apply today, thus allowing analogies between known ancient structures and contemporary ones 
to be made. It is also interesting to note some successful rediscoveries of ancient structural systems 
thanks to the availability of new building materials and development in design tools that have made 
the more accurate prediction of structural behaviour possible. This is the case for cable-stayed 
bridges, for example, applying the principles used for movable bridges back in 1617 (Fausat 
Verantius), or under-spanned bridges, developed at the beginning of the 19th century (Pont de la 
Caille, G. H. Dufour, 1824) and rediscovered over recent decades (Obere Argen Brücke, Schlaich, 
1989). As a general conclusion, it can be said that the most significant progress in structure 
development concerns inventions in the materials field that allow the optimisation of existing 
structural concepts by reducing material consumption or the development of conceptually innovative 
structural systems. Reduced material consumption while maintaining sufficient strength and 
appropriate stiffness has been a constant driving force throughout this evolution. Being a 
multidisciplinary task, bridge design is also influenced by progress made in other domains, such as 
structural analysis, numerical methods and technological developments, notably in construction 
techniques. However, a substantial time lag is usually observed between the introduction of a new 
component and the moment when its relevant properties are fully exploited in design.  
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2.2.2 Material and structural development in concrete bridges 
When it comes to concrete bridges, the previous conclusions also apply, although the history of 
concrete bridges is relatively recent: some basic principles of concrete-like materials have been 
known since the earliest building times, but the beginning of the modern era of concrete only dates 
back to the 19th century (Chapter 3, Figure 3.2). However, since then, there has been significant 
interest in its application, and, thanks to continuous improvements on the material level as well as in 
the knowledge of its structural behaviour, concrete has become the most widely used building 
material [Penttala 1997]. Moreover, concrete has low fabrication costs and energy consumption and 
is made of widely available materials that compose the Earth’s crust [Scrivener 2005]. It thus meets 
the additional contemporary requirements related to environmental impact. 

The major phases in the development of reinforced concrete bridges were the invention of voided 
section, specifically conceived for the material mechanical properties, and the invention of 
prestressing. In 1875 the first reinforced concrete bridge was designed by J. Monier in Chazelet, 
France, almost two decades after the first patent for reinforced elements was granted. The first 
structural concepts were strongly influenced by traditional massive masonry arches (Figure 2.1a)), 
which did not allow the advantages of reinforced concrete to be well appreciated. It was not until the 
beginning of the 20th century that R. Maillart designed the first structural shapes specifically 
conceived for reinforced concrete structures (Figure 2.1b)). The mechanical properties of concrete 
did not evolve significantly during that period. An important step forward in concrete structures was 
made in the 1920s with the invention of prestressing by Freyssinet in France and Dischinger in 
Germany. This concept enabled better material exploitation, and made it possible to significantly 
increase the span of concrete bridges. The first bridge using this technology was built in 1928 in 
Alsleben, Germany, with a span of 68 m. The widespread application of prestressing did not begin 
until after the Second World War however. 

Figure 2.1: Steps in evolution of concrete bridges: a)  the first patent for RC bridge, J. Monier, 
1873, France;  b) Tavanasa bridge, R. Maillart, 1905, Switzerland 

A new concrete era started in the 1970s with the rapid development of material properties, 
introduction of fibre reinforcement, superplasticisers, and various pozzolanic additives, but no 
particular novelties in bridge design followed these innovations. Contemporary concrete bridges 
nonetheless still successfully combine the two above-mentioned principles of voided cross section 
and prestressing. However, the renewed idea of underspanned systems applied as hybrid 
(Figure 2.4 a)) or completely concrete structures (Figure 2.4 b)) can be considered as an interesting 
new point for medium-span bridges. 

The most recent development in cement-based materials, dating back to 1995 (Figure 3.2), was ultra 
high-performance fibre-reinforced concrete, UHPFRC [Richard, Cheyrezy 1995]. This material 
possesses characteristics that are significantly superior compared with those of other concretes 
(Chapter 3). Thanks to its strength and ductility, structural elements can be made without the use of 

a) b)
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passive reinforcement, thus offering a new challenge in concrete design and the opportunity to 
develop innovative structural concepts and shapes. Up until now, however, in design of road bridges 
UHPFRC has been mainly used to reduce sectional dimensions in traditionally designed structural 
elements [Park et al. 2003]. The first application of UHPFC to road bridges in 2001, in France 
[Simon et al. 2002], exemplifies this trend: it consists of prestressed girders typically used for 
ordinary concrete, in which the use of UHPFRC has resulted in significantly reduced material 
consumption and the use of ordinary reinforcementonly only in joint areas (Chapter 7). 

The properties of UHPFRC can be exploited in a more interesting way for renewing the concept of 
ribbed structures, introduced by Nervi in 1935 [Nervi 1997]. This concept can successfully benefit 
from material strengths and the possibility of avoiding passive reinforcement to significantly 
decrease element sizes while maintaining high strengths and structural stiffness. An application of 
ribbed slab for bridge deck is under investigation at the Laboratoire Central des Ponts et Chaussées 
(LCPC), within the scope of MIKTI French national project [Toutlemonde et al. 2005], (Chapter 7).   

Another interesting possible application for UHPFRC is in composite structures, where a layer of 
UHPFRC is applied over an ordinary concrete girder [Habel 2004], resulting in improved service 
condition stiffness and ultimate load-bearing capacities. A further application of UHPFRC in 
composite bridge girders is developed as a part of the European project named New Road 
Construction Concept (NR2C): UHPFRC is applied as the upper compressive layer of a lightweight 
hybrid girder, comprising fibre-reinforced polymer as a tensile layer and a lightweight concrete core 
[Keller et al. 2007].  

2.3  Possible directions for improvement in concrete bridge 
design

Based on the knowledge of historical and recent developments in material and bridge engineering, it 
can be concluded that optimisation in bridge design should be achieved either by conceiving more 
efficient structural shapes or exploiting higher performance materials to optimise already existing 
shapes. These two possibilities are numerically analysed in this section. 

2.3.1 Efficient structural shapes 
In a first approximation, efficient structural shapes can be defined as shapes requiring the use of the 
least amount of material for a given stiffness or strength or, conversely, providing the highest 
stiffness or strength for a given amount of material. In this case, stiffness is chosen as the controlling 
parameter for structural performance. If structural stiffness is expressed as a function of structural 
shape, stiffness can be optimised with the structural shape as a design variable. This approach is 
made possible by means of topological optimisation [Bendsoe 1995], [Sigmund 2001].  

Topological optimisation and the application to the shape of bridge superstructure

The main advantage of topological optimisation in relation to other types of structural optimisation is 
that no structural shape is initially prescribed, which a priori allows more freedom in the search for 
the best suited shape. The principles of the theory are applied on a design continuum with boundary 
conditions corresponding to a bridge superstructure, enabling a number of efficient structural shapes 
to be identified [Spasojevic 2006], Figure 2.2. 

The aim of the analysis is to find the material distribution providing the highest structural stiffness 
for a given amount of material, V, with given design domain and boundary conditions. The design 
domain is meshed in finite elements, and the portions that need to be kept intact for functional 
reasons are predefined (e.g. driving surface).  
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Based on the assumptions of linear elastic behaviour, the structural response must satisfy the 
equilibrium and compatibility conditions, K U = F, where K is the global stiffness matrix, and U and
F the displacement and load vectors respectively. The global structural stiffness is considered in 
terms of strain energy and, consequently, the problem of stiffness maximisation is defined as: 

=

=
N

i
ii

T
i ukuC

1

min  (2.1) 

where C is the structural compliance, ki and ui are local stiffness matrices and displacement vectors 
and N is the number of elements. The stiffness of an element is represented as ki = ηi ⋅ k0, where k0 is 
the stiffness of the initial elastic solid and ηi is a relative density parameter (pseudodensity) ranging 
from zero to unit and assigned to each element. Finally, the objective function of the problem, C, is 
expressed as a function of design variables ηi as C = f(ηi, k0, ui).

A set of design variables satisfying constraints, 0 ≤  V ≤  V0  - V *, where V0 is the initial volume and 
V * is the volume to be removed, forms a feasible region in which the minimum of the objective 
function is found.   

The formulated problem is treated by a finite element method using software package ANSYS. As a 
comparative solution, a procedure was developed for MatLab, based on the similar solutions 
proposed in [Sigmund 2001]. Figure 2.2 a) shows examples of design domains on which the 
topological optimisation was performed and the obtained results of density distribution plots, 
representing the optimised structural shapes (Figure 2.2 b)). Elements with a pseudodensity, ηi, close 
to 1 correspond to highly dense matter (grey colours), while those with ηi close to 0 correspond to 
the matter that can be removed, and is thus not visible in the figures. The examples of density 
distribution plots in Figure 2.2 b) comprise the same amount of material (V = 0.27V0) for various 
boundary conditions. The results demonstrate that the same quantity of material is disposed in 
various efficient shapes, depending on the boundary conditions. 

a) b) 

L=const.

h = var.

h1= const.

portion to be
optimized 

portion to be 
kept intact 

A

B

C

Figure 2.2:  Topological optimisation: a) initial body - 2D continuum with portions to be kept 
intact for three sets of boundary conditions; b) optimised shapes for various 
boundary conditions, with V = 0.27V0 and L/h = 10

The important conclusion that can be drawn from the results of the analysis (Figure 2.3) is that a well 
chosen topology provides a significant decrease in material volume, while maintaining a significant 
portion of the initial stiffness. Figure 2.3 a) shows the relationship between decrease in volume and 
decrease in stiffness of system A in Figure 2.2 a), with a slenderness L/h = 10. Change in stiffness is 
expressed here as a ratio between the mid-span vertical displacement of the initial system, w0, and 
displacement of the optimised system, w. In the initial part of the curve, a decrease in material 
volume causes almost no change in stiffness because material making a very small contribution to 
the stiffness is removed. After a certain level of volume reduction, the volume decreases due to 
diminution of the thickness of the members, while the shape remains the same. The decrease in 
stiffness then becomes much faster.  It should be pointed out that in this example the initial volume 
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contains a portion which is not subjected to optimisation (representing driving surface, thus keeping 
a constant density over its thickness). The theoretical point for w0 /w 0 in Figure 2.3 a) 
corresponds to the case in which all matter except the deck would be removed (V = 0.10 V0). Similar 
curves were obtained for other boundary conditions and for slenderness values L/h varying 
between 10 and 30.

The curves plotted in Figure 2.3 b) show the difference in global structural stiffness of optimised 
shapes (w/L) expressed as a function of slenderness and boundary conditions. A significant 
difference in stiffness is observed between the various shapes: the under-spanned structure obtained 
for boundary conditions B is much more flexible than the combination of the arch and under-spanned 
central span that result from boundary conditions A and C.  

a) b) 

0
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0.00005
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w
/L

Figure 2.3: a) change in structural stiffness (w0 /w) as function of volume reduction for boundary 
conditions A in Figure 2.2 and L/h = 10 with corresponding optimised shapes; 
b) global structural stiffness as function of slenderness for boundary conditions A, B 
and C; V= 0.43V0

Analogies can be found between the obtained topologically optimal shapes and actual concrete 
structures. This is clearly exemplified in Figure 2.4, which shows a striking resemblance between the 
optimisation results and a recently built structures.   

a) b)  

Figure 2.4: Recognition of numerically simulated optimal material distributions in real 
structures: a) Villa Bedretto Bridge, Switzerland [Muttoni 1999]; b) Flaz River 
Bridge, Switzerland [Pedrazzini, Pedrazzini 2006] 

2.3.2 Classic concrete solutions using more resistant concretes 
Another, more classic, approach in designing structures consists of sizing elements with predefined 
shapes and material strengths. The advantage of this approach is that additional design principles, 
such as constructability, aesthetic appeal etc., which cannot be included in topological optimisation 
for instance, are implicitly respected by the predefined shape.   

A numerical model was developed to investigate the potential of predefined shapes of concrete 
bridges. In addition to static and geometric constraints (as in the previous case) the model includes 
design constraints related to ultimate limit states, serviceability limit states and constructive 
requirements for concrete structures. A continuous girder with a box-cross section of constant height 
and no transversal prestressing in the deck slab is studied as a well known case of an efficient 

AB

C
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prestressed concrete bridge. The results are illustrated in Figure 2.5: figure a) presents the equivalent 
height of concrete cross section, hequiv, which is the ratio of cross section area to deck width, needed 
for various slendernesses, L/h, and material strengths. The results are plotted against values 
corresponding to existing bridges in Switzerland, obtained from [Menn 1982]. Good correlation 
between simulated values and statistical data is observed. Figure 2.5 b) shows the influence of 
increased concrete strength, fck, on this system. As expected, this structural system is fairly 
insensitive to the compressive strength of concrete, in particular for smaller spans and structures with 
limited slenderness; higher concrete strengths are, however, beneficial in slender girders. This 
behaviour mainly results from the fact that a large part of the concrete cross section is constituted by 
the bridge deck and webs, whose dimensions are to some extent influenced by constructive 
constraints. The web dimensions are mostly governed by constraints related to cables and concrete 
placement, which suggests that the use of external prestressing could be a possible solution for better 
exploitation of this system [Naaman, Breen 1990], [Benouaich et al. 2000].  

a)        b) 
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Figure 2.5: Parametric simulation of structural response: a) influence of span on amount of 
concrete, compared to existing structures; b) influence of concrete strength on 
amount of concrete 

The application of high strength and high performance concretes can lead to some higher savings  in 
concrete (up to approx. 30 %) and reinforcement, obtained by optimising the deck slab and varying 
girder height, as shown in [Toutlemonde et al. 2002], [Toutlemonde et al. 2003]. These solutions 
benefit also from other material properties of HPCs, such as easier casting, higher strengths at early 
age, improved durability etc.  

However, the potential of UHPFRC, based on the material’s mechanical performances and 
possibility to avoid the use of passive reinforcement, enables much more significant material savings 
and increase in slenderness of road bridge girders [Sorelli et al. 2007]. In the case of a girder with 
box-cross section, the application of UHPFRC for road bridge PS34 crossing highway A51, France, 
lead to more than two times decreased concrete quantity and a very fast construction [Bouteille, 
Resplendino 2005], Chapter 7.  

2.4  Conclusions  

A review of existing structures shows that bridge design relies significantly on traditional concepts, 
and innovations typically take a long time to be incorporated in design practice. A strong tendency 
towards structures with a small weight-to-stiffness-and-strength ratio can be identified as a driving 
force in innovations. 

The application of topological optimisation enabled shapes with maximum structural stiffness for a 
given amount of material to be identified. It was shown that significant material savings could be 
obtained using an appropriate topology while a high portion of initial stiffness is maintained. An 
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example of a system combining an arch with an underspanned element was recognised as being very 
efficient in terms of weight-to-stiffness ratio. Concrete bridges have recently been constructed based 
on this concept.  

The influence of compressive strength of ordinary concrete on required material amount is studied 
for the case of a typical continuous box-girder bridge with internal prestressing. Based on the results, 
it can be concluded that the application of improved concrete strength led to limited savings in 
material, which may be explained by constructive constraints. 

The application of UHPFRC, however, can be considered as a promising way to provide innovative 
solutions for bridge design. UHPFRC is stronger than ordinary concrete, can replace passive 
reinforcement and is a self-placing and self-compacting material. It reduces the constructive 
constraints lined with the placement of reinforcement and allows a more effective distribution of the 
matter. Consequently, structural stiffness and structural strength can be assured, while structure 
weight is significantly reduced. The material’s potential can be well exploited in thin-walled 
elements, consisting of slab without ordinary reinforcement and prestressed ribs.  
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3.  UHPFRC: material properties 
Ultra-high performance fibre-reinforced concrete (UHPFRC) is studied in this chapter as a material 
for structural application. Unlike conventional construction materials, high-performance concretes 
are the result of a so-called “integrated structural and material design” [Li, Fischer 2002]. According 
to this concept, the material composition is tailored to ensure specific structural performances. It is 
thus important to study UHPFRC at different levels in order to understand the origin of its particular 
structural behaviour.  

The objectives of this chapter are to present the material’s properties of interest for advanced 
structural applications, and to present the models for mechanical behaviour needed for further 
structural analysis and design.  

Structure of chapter 

In Section 3.1 the material is defined from the structural engineering point of view, and the 
development of advanced cementitious materials is briefly reviewed.

Section 3.2 provides a basic insight into the microstructure of UHPFRC, considered as a composite 
material.  This section explains how the concept of this material is developed and which principal 
features are enhanced in order to achieve the desired material properties. The main advances of 
UHPFRC composition with respect to other concrete materials are briefly discussed. The 
composition of the UHPFRC used in the present study is also given.  

The material properties, relevant for the structural application, are divided into mechanical material 
properties (Section 3.3), and other material properties (Section 3.4). 

Section 3.3 focuses on the material’s behaviour in uniaxial compression and in uniaxial tension. The 
behaviour is discussed by considering the material on a macroscopic scale, principally as a 
continuum. The mathematical formulation of mechanical behaviour provided in this section is of 
interest for this research, since it is the basic input for further analysis and design. Various 
constitutive material curves are studied and proposals are made for the description of both 
compressive and tensile behaviour.  

Section 3.4 provides basic information on the time-dependent behaviour of UHPFRC (shrinkage, 
creep), durability, self-healing as well as resistance to impact load, energy dissipation, and fire 
resistance. This section is based on literature review.  

In Section 3.5, conclusions with respect to the two principal contributions of the chapter are drawn:  
- concerning material properties, detailing the advantages of the material that are promising for 

structural application; 
- concerning proposed material constitutive laws for the requirements of analysis and design.  

3.1  UHPFRC: definition, material development 

Definitions  

Ultra-high performance fibre-reinforced concrete (UHPFRC) is an advanced reinforced cementitious 
material. “Ultra-high performance” refers principally to improved mechanical strengths, fractural 
toughness, and durability. Typical behaviour of UHPFRC in a uniaxial state of stress in comparison 
to other concretes is shown schematically in Figure 3.1.  

According to the French Interim Recommendations on UHPFRC [SETRA, AFGC 2002], UHPFRC 
is a material with a cement matrix of a characteristic compressive strength in excess of 150 MPa, and 
with sufficient fibre content to achieve ductile behaviour under tension. These mechanical properties 
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enable UHPFRC to be clearly distinguished from other concretes (Figure 3.1). The Japanese 
recommendations [JSCE 2006] impose the same limits for strength and ductility, but also specify 
material composition by limiting maximal aggregate size, water-cement ratio, and fibre quantity and 
strength.  

According to the classification of fibre-reinforced concretes (FRC) proposed in [Naaman, Reinhardt 
2006] and [Stang, Li 2004], UHPFRC is distinguished between other FRCs as a material exhibiting 
strain hardening in tension (Figure 3.1), whereas other FRCs may exhibit a hardening behaviour in 
bending, but are characterised by strain softening in tension.  

a) 

strain, deformation

OC

FRC, HSFRC

ECC

UHPFRC strain hardening
multi-microcracking

localisation of deformation
strain softening

b) 

UHPFRC

C 30

HSC, C 80

strain, deformation

Figure 3.1: Typical response of UHPFRC in uniaxial stress state in comparison to ordinary (OC) 
and high-strength concrete (HSC), fibre-reinforced normal or high-strength concrete 
(FRC, HSFRC), and engineered cementitious composites (ECC): a) uniaxial tension, 
adapted from [Li, Fischer 2002]; b) uniaxial compression 

Historical development  

On the timescale of concrete development, UHPFRC can be considered as the latest innovation 
(Figure 3.2) originally developed by Bouygues SA, France, in 1995 [Richard, Cheyrezy 1995]. The 
origin of advanced concretes dates back to the 1960s and 1970s with the investigations on the 
strength improvement of the cement paste by heat-curing under pressure1 [Roy et al. 1972], [Roy, 
Gouda 1973], or applying low water-cement ratios [Yudenfreund et al. 1972a], [Yudenfreund et al. 
1972].  

Development in material science provided a better insight into the material’s microstructure, and 
made it possible to influence the target material properties more significantly. From the 1960s 
onwards, more elaborated material mixtures were obtained with the introduction of fillers and 
superplasticizers, as described in [Mielenz 1984], [ACI 1989]. The continually increased 
compactness of the matrices led to increased strength but also increased brittleness. The matrices 
were made more ductile by adding discontinuous fibres, an idea in evidence from the beginning of 
the construction era and applied to concrete since the 1960s [Romualdi, Mandel 1964]. 

In recent years the collaboration between structural and material engineering led to an integrated 
design, based on the tailoring of the material’s composition to meet specific requirements for 
structural applications [Van Mier 1997], [Li, Fischer 2002]. UHPFRC can be considered as the 
advanced result of this collaboration. The material was optimised with respect to mechanical 
strengths, fractural toughness, durability, placing method and time, keeping mixing and casting 
procedures as close as possible to existing practice [Richard, Cheyrezy 1995], [Acker, Behloul 
2004].   

                                                     
1 In [Richard, Cheyrezy 1995] the work of Freyssinet in the 1930s on the application of pressure to concrete 
during setting is mentioned. 
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understanding of cement chemistry

from 1860 the era of modern portland cements 

XVII XIX XX

new era of concrete composition and HSCs

"intuitive" concretes

XVIII

1678 Moxon J., hydratation of heated lime
1793 Smeaton J., hydraulic lime, Eddystone Lighthouse 
1796  Parker J.,  patent for a natural hydraulic cement  

1824 Aspdin J., invention of Portland cement  

1867 Joseph Monier,

1920s  Freyssinet, Dischinger,  

XXI

1960s fiber reinforcement 
1960s superplasticizers 

1980s silica fume 
1995 UHPC

reinforced concrete

century

3000 BC Egypt, gypsum and lime mortars

800 BC Greece, lime mortars 

300 BC Romans,  pozzolana cement 

prestressing 

1980s self-compacting concretes

Figure 3.2:  Brief history of cement and concrete, based on data from [Chamberlain et al. 1995], 
[Mielenz 1984], [Scrivener 2005] 

3.2  Microstructure of the material  

The structural performances of UHPFRC result from properties of its principal constituents – the 
cementitious matrix and the fibres, and their interaction. The conceptual bases of the advanced 
UHPC matrix are discussed in Section 3.2.1. The section aims to examine the relationsip between the 
mechanical performance and microstructure of the material, but no in-depth explanations on concrete 
chemistry and formation of the microstructure are provided. Types of fibres used in UHPFRC and 
the role of matrix-fibres interaction are discussed in Section 3.2.2.  

3.2.1 Ultra-high performance concrete matrix  
In conventional structural design concrete is considered as a continuum. However, concrete is a 
material of a heterogeneous structure, with the heterogeneity and its effects on mechanical behaviour 
observable on different length scales [Van Mier 1997], [Ulm et al. 2004]. UHPC is typically 
characterised as the material with the microstructure that is significantly enhanced regarding 
homogeneity in comparison to ordinary and high-strength concretes. This is the principal argument 
in explaining the improved strengths and durability of UHPFRC.  

Mechanical effects of heterogeneity 

The distribution of different phases in the material and differences in their mechanical properties are 
the main reasons for the appearance of the stress concentration that imposes the material’s strength 
limits. The phenomenon of stress concentration in materials was recognised by Griffit in the 1920s 
[Griffith 1921], and is nowadays widely accepted in fracture mechanics theories. Based on this, the 
relationship between improved mechanical properties and enhanced material homogeneity can be 
drawn.  

Heterogeneity in concrete microstructure and possibilities for decreasing it  

In mechanical terms, concrete can be defined as a complex, non-homogeneous system of solid phase, 
pores and water [Scrivener 1989]. Heterogeneity problems in concrete are caused primarily by the 
presence of pores and the differences in mechanical properties (stiffness and strength) of solid 
phases. Observing concrete on different length scales, different components can be distinguished 
(Table 3.1). Consequently, the conclusions regarding possibilities for the improvement of 
homogeneity can be drawn on different levels.  
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Table 3.1: Multiscale heterogeneous structure of concrete, adapted from [Ulm et al. 2004] 

Length scale and representative system  composed of: 

> 10-3 m, Concrete Cement paste, aggregates, interfacial transition zone 
< 10-4 m, Cement paste C-S-H matrix, CH crystals, macro and capillary porosity 
< 10-6 m, C-S-H matrix C-S-H matrix (C-S-H phases, capillary and gel porosity) 
10-9 - 10-10 m, nanoscale  C-S-H solid  (cement hydration product) 

On the length scale higher than the millimetre scale, chemically inert aggregates, hardened cement 
paste, and interfacial transition zone are distinguished in hardened concrete (Figure 3.3). Aggregates 
tend to form rigid inclusions in the paste. The different mechanical properties of aggregates, paste 
and the interfacial zone lead to the generation of cracks in the interfacial zone once the load is 
applied. The size of these cracks is directly proportional to aggregate diameter [Richard, Cheyrezy 
1995], meaning that a significant reduction in microcrack size is achieved with reduction of 
aggregate size. The influence of the quality of aggregates on mechanical properties is also reported 
[Donza et al. 2002].  

a) b) 

Figure 3.3: Hardened ordinary concrete on microstructural level, [Mehta, Monteiro 2005]: 
a) material heterogeneity;  b) interfacial transition zone 

On the length scale below 10-4 m, in an ordinary it is observed that the interfacial transition zone is 
the zone with significant heterogeneity, containing the highest percentage of the porosity and high 
content of large calcium hydroxide (CH) crystals, produced during hydration (Figure 3.3). The 
porosity at this level significantly influences the mechanical strengths (Figure 3.4 a)) since the stress 
concentrates around the pores, initialising microcracks.  

a)   b) 

UHPC

HPC, C70 - C100

ordinary concrete
C20 - C50

ordinary concrete
C5 - C30

1              0.8            0.6            0.4           0.2              0

water - cement ratio

250

200

150

100

50

f  [MPa]c

Figure 3.4:  a) Effect of porosity on compressive strengths, according to Power’s model [Mehta, 
Monteiro 2005]; b) Effect of water-cement ratio on compressive strengths, adapted 
from [König et al. 2001] 

cement 

aggregate 

CH 
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Apart from its structure, the volume of the formed interfacial zone has an important influence on 
material strengths. This volume can be related to aggregate size, density of granular compactness, 
and water-cement ratio. This causes the interaction with the microstructure at this level with the 
components observed at the previous one. To enhance density, tailoring of the granular mixture for 
optimal aggregate packing is a well recognised principle, known since roman road-making 
[Scrivener 2005], through to modern packing models [de Larrard, Sedran 1994], [Okamura, Ozawa 
1995]. Granular mix is optimised with respect to relative density and quantity of water required.  The 
quantity of water in the cement paste, as well as for hydration, is important for control of the spacing 
of cement grains. More spacing means more space for the interfacial zone to form, leading to 
increased porosity. The influence of the water-cement ratio on compressive strength is shown in 
Figure 3.4. 

Principles of UHPC composition 

Based on the previous observations, the principles applied in tailoring the UHPC matrix can be 
detailed:  

- coarse aggregates are eliminated, decreasing the mechanical effects of heterogeneity (maximal 
aggregate size less than 7 mm, Table 3.2;  according to the Japanese recommendations 
maximal aggregate size is even less than 2.5 mm); 

- granular mix is optimised; for the composition of a fine-grained mixture, silica fume and/or 
silica flour are added. This component in particular improves the properties of the UHPC, 
acting both as filler and pozzolanic material [Grabowski, Gillott 1989]. The Figure 3.5 shows 
the physical effect of silica fume, as “micro-filler” of space, and also providing the lubrication 
effect. As a pozzolanic material, it reacts chemically with CH, forming compounds with 
cementitious properties (calcium silicate hydrate, C-S-H). Therefore, the addition of silica 
fume improves the paste on two levels: it reduces porosity mainly by reducing the space for 
growth of CH, and improves the mechanical properties of the cement paste by reacting with 
CH;  

Figure 3.5: Silica fume acting as “micro-filler” of the space between cement grains. The specific 
surface area of silica fume is approximately 20 000 m2/kg, 50 times greater than that of 
cement 

- the paste volume is higher than the voids index; this means that the paste is less restrained by 
the granular skeleton and consequently fewer pores are formed during plastic shrinkage than 
in the case of ordinary concrete;  

- a low water-cement ratio is applied;  this maintains the small spacing of the cement grains, 
decreasing space for the formation of the interfacial zone; 

- admixtures are included to achieve sufficient workability of the fresh paste, which otherwise 
decreases with a decrease in the water-cement ratio [Mielenz 1984]; 

- optionally, the microstructure can be further enhanced by a production process such as heat-
curing or the application of pressure [Reda et al. 1999]; 

The resulting concrete matrix is very dense, with almost no capillary porosity, in comprarison with 
20 - 25 % of capillary pores present in ordinary concretes or 12 - 20 % in high-strength concretes 
[Vernet 2003]. The obtained interfacial transition zone is very thin in relation to that of ordinary or 
HSC, and no large CH crystals are present [Reda et al. 1999], indicating a well-developed bond 
between the improved cement paste and aggregates. The Young’s modulus of cement pastes is 
higher than 50 GPa [Richard, Cheyrezy 1995]. The less difference there is between the stiffness of 
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the cement  paste and the stiffness of the aggregate, the lower the mechanical  heterogeneity of the 
mix. Moreover, the viscosity of the fresh mix enables self-compacting, and thus no additional 
compacting treatment is necessary after casting.     

Composition of UHPC 

The typical compositions of ordinary concrete, HSC, and UHPC are listed in Table 3.2. UHPC is 
distinguished as a fine-grained concrete, with the special selection of aggregates, high binder content 
and low water-cement ratio.  

Table 3.2:  Examples of composition of ordinary, high-performance and ultra-high performance 
concrete and average material properties 

  Ordinary concrete HSC 1 UHPC 2

Component: [kg/m3] [kg/m3] [kg/m3]

Portland cement < 400  410 700 - 1000 
Coarse aggregate  ≈ 1000  920 0 - 200 

Fine aggregate, sand ≈ 700  620 1000 - 2000 
Silica fume - 40 200 - 300 
Superplasticizers - 5 10  - 40 

m
at

ri
x 

co
m

po
si

tio
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Water > 200 100 - 150 110  - 200 
Water-cement ratio > 0.35  0.28 - 0.38  < 0.24  
Water/binder ratio  <  0.38 < 0.22 

Reinforcement / Fibres [kg/m3] designed  designed  > 150  

Density [kg/m3] 2000 - 2800 2000 - 2800 > 2500 
Compressive strength [MPa] <  60 60  - 100 > 150 
Tensile strength  [MPa] < 3 < 5 > 8 
Initial modulus of elasticity [GPa] ≈ 30 < 45 50  - 70 

pr
op

er
tie

s 

Fracture energy [J/m2] 30 - 200  3 < 150  4 < 90  without fibres4

> 10 000 with fibres 

1 [Larrard, Sedran 2002], 2 [Graybeal, Hartmann 2003], [Reda et al. 1999], [Graybeal 2006], 3 [CEB 
1993],  4 [Wittmann 2002]

3.2.2 Fibres in UHPFRC  
Fibres are incorporated in UHPC in order to enhance the fracture properties of the composite 
material. Since the pioneering work of Romualdi in the 1960s based on the idea on controlling 
cracking in concrete by fibre bridging [Romualdi, Mandel 1964], both fibre technology and 
knowledge of the interaction between fibres and matrix have constantly developed [Naaman 2007]. 
The present section deals only with the fibres as a component of the UHPFRC material. Mechanisms 
of fibre action in UHPFRC are discussed in more details in Section 3.3.2.  

The additional role of fibres in UHPFRC, in comparison to the role of fibres in ordinary and in high-
strength fibre-reinforced concrete, is to provide sufficient ductility of the material in tension without 
a decrease in stress. This is achieved by choosing the appropriate type and quantity of fibres.  

Types of fibres 

Fibres are characterised by the material and its mechanical properties, and by their geometry. In 
structural engineering, steel and synthetic fibres are mainly used, although a great variety of fibres 
made of other materials exists. This is related to the strength and stiffness that is required of the 
desired fibre contribution. In order to enable the transfer of force with a small crack opening and to 
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sustain tensile force without breaking, a high modulus of elasticity and high strengths are required. 
The modulus of elasticity of steel fibres is 200 GPa and strengths are in the range of 1 000  - 
3 000 MPa, with a deformation at failure of 3 - 4 % [Denarié 2005]. In Japanese recommendations 
for UHPFRC [JSCE 2006], minimal fibre strength is limited to 2 000 MPa.

Figure 3.6: Example of types of steel fibres used in FRC and UHPFRC, from [Markovic 2006] 

Fibres used in UHPFRC are typically short, smooth, and straight, while hooked fibres are more often 
used in high-strength or ordinary concretes (Figure 3.6). Fibre geometry is expressed in terms of 
aspect ratio, lf /df, where lf is the nominal fibre length and df  the diameter of the fibre. Required fibre 
geometry can be estimated based on the relationship between pullout force and fibre-breaking force 
[Behloul 1996]: 
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ffbf f
d

dl ,

2

4
⋅

⋅
≤⋅⋅⋅

π
τπ  , (3.1) 

where the left side of the equation represents the force that can be transferred to the matrix over the 
maximal development length, lbf, with an average shear stress, τf, acting on the fibre-matrix interface; 
the right side represents the maximal force that can be transferred by the axial deformation of the 
fibre, with fs,f the strength of the fibre. For a maximal development length assumed as lbf = lf /2, fibre 
geometry must satisfy the relationsip  

f

fs

f

f f

d

l

τ⋅
≤

2
,  .  (3.2) 

For approximated values of the interfacial shear τf = 5 MPa [Tjiptobroto, Hansen 1993] and fibre 
strength fs,f = 1 500 MPa, the value of the aspect ratio needs to be smaller than 150. Some more 
detailed models on anchorage lengths and optimal fibre radius can be found in [Ulm 2002].  

Fibre quantity  

Fibre content is usually expressed in terms of fibre volume fraction, Vf, representing the ratio 
between the fibre volume and material volume (matrix and fibres).  

Fibres quantity varies in different types of UHPFRC, § 3.2.3, usually in the range of 2 - 6 % Vf. In 
some UHPFRCs it may be as high as 10 % Vf  [Rossi 2000], [Rossi et al. 2005].  

An intuitive definition of minimal fibre quantity, which can be drawn from the analogy with ordinary 
reinforced concrete, is: fibre quantity must be sufficient to transfer tensile force greater than or equal 
to the force carried by the matrix prior to cracking. A detailed model for minimal fibre quantity 
prediction based on the fracture properties of materials is presented in § 3.3.2.4.  

According to Japanese recommendations [JSCE 2006] minimal fibre quantity is limited to 2 % Vf. In 
the French recommendations for UHPFRC Article 6.0,1 [SETRA, AFGC 2002], the minimal Vf is 
not defined, but verified indirectly by the tensile response of the material after the cracking of the 
matrix. The proposed relationship actually implies that the average stress, σ, that can be transferred 
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by the bridged crack up to an opening of 0.3 mm is equal to or greater than the matrix tensile 
strength, fct, m: 

( ) mctfdww ,
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⋅
σ   (3.3) 

where σ(w) is the measured stress as a function of the crack opening, starting at the first cracking of 
the matrix.  

No limits for the maximal fibre quantity are defined in the current recommendations for FRC. 
However, fibre quantity must remain low to allow good workability of the fresh paste and prevent an 
anisotropic fibre distribution. A simplified relationship providing the maximal fibre quantity based 
on the volume associated to every fibre, V2 = π lf

2 df / 4, can be found in [Behloul 1996]. When the 
ratio of Vf V2 /vf , where vf is the volume of a single fibre, is lower than one, the fibres can be oriented 
in all directions. A higher ratio indicates a tendency to local anisotropy. This model is actually 
inspired by a study on the orientation of stick-like viruses, by L. Onsager [Onsager 1949]. 

3.2.3  Different types of UHPFRC  
Different types of UHPFRCs are currently available on the market. The principal differences lie in 
the composition of the mixture: water-cement ratio, water-to-fine1 ratio, maximal aggregate size. The 
fiber volume fracture is also a variable. 

Concerning the basic development principles, there are two main kinds of UHPFRC. Following the 
idea of improving the homogeneity of the row mix, a class of concretes known as densified small 
particle concrete (DSP) has been developed. The matrix of this concrete has a very compact granular 
packing, with high content of superplasticizers and silica fume, and hard aggregates [Richard, 
Cheyrezy 1995], [Rossi 2000]. Another approach was oriented towards improving the strength of the 
paste, based on the concept of the so called macro-defect-free concretes (MDF). This material 
comprises a paste that is modified by the addition of water-soluble polymers [Alford  et al. 1982], 
and, from the manufacturing point of view, is highly demanding.  

UHPFRC that are currently used in construction have been developed according to the concept of 
DSP concretes. In 1995 a UHPFRC known as reactive powder concrete, RPC, was launched by 
Bouygues SA, France. It contained fibres of 13 mm in length and 0.15 mm in diameter, with a 2 -
2.5 % fibre volume fraction. Further enhancements were more oriented towards different geometry 
of fibres added. Multi-scale fibre reinforced concert (MSFRC), with a high fibre volume fraction 
(11 %) and fibres of different sizes, was developed by the LCPC, France [Rossi 1997], [Tailhan et al. 
2003]. By elaborating the compactness of the matrix and surface of fibres a UHPFRC known as 
DUCTAL was developed by the companies Lafarge, Bouygues and Rhodia [Acker, Behloul 2004], 
[Graybeal, Hartmann 2003]. The steel fibre content of this material is relatively low, 2 % Vf. 
UHPFRC developed in Germany contains 1.5 - 2.5 % of fibres in volume, and a decreased amount of 
cement [Fehling et al. 2005]. Compresit is the registered name of a UHPFRC patented in Denmark 
with a typical fibre volume fraction of 6 % [Nielsen 1995].  A multi-modal high-performance 
hybrid-fibre concrete with three types of short straight fibres was developed in the Netherlands [Sato 
et al. 2000], and a similar concepts High-performance hybrid-fibre concrete is under investigation at 
Delft University of Technology [Markovic 2006]. A class of UHPFRC patented in Great Britain 
under the name CARDIFR has been modelled at Cardiff University, containing 6 % of steel fibres of 
two different lengths [Stiel et al. 2004].  

Another category of innovative concrete materials, known as engineered cementitious composites 
(ECC) [Li 1993], [Li, Fischer 2002], [Kabele 1995] is present on the market. These can be classed as 
advanced cementitious materials, in particular since they exhibits considerable strain hardening in 

                                                     
1 fine is composed of cement and fillers (e.g. silica fume) 
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tension (Figure 3.1). They do not however meet UHPFRC requirements regarding compressive 
strength of the matrix.  

UHPC used in the present study 

In the present study the material used is BSI® UHPFRC. BSI (“Béton Special Industriel”) is 
UHPFRC developed by the company EIFFAGE in collaboration with cement manufacturer SIKA at 
the end of the 1990s [Maeder et al. 2004]. The composition of the material and average mechanical 
properties are listed in Table 3.3.    

Table 3.3: Composition of BSI®  

Quantity Unit 

Component:  
Pre-mix1 2355 kg/m3

Water 195 kg/m3

Superplasticizers 44.6 kg/m3

Fibres, lf = 20 mm, df = 0.3 mm 195 kg/m3

Total weight 2789.6 kg/m3

   

Water-cement ratio 0.22 - 

Water/binder ratio 0.19 - 

Fibre quantity Vf  2.5 vol. % 

 
Compressive strength  fc ≈ 190  MPa 

Tensile strength  fct ≈ 9  MPa 

Modulus of elasticity ≈ 60 GPa 

Fractural toughness > 15 000 J/m2

1 Pre-mix includes: Portland cement (CEM 1), sand, fine aggregates of diameter 0 - 7 mm, and silica 
fume; [Maeder et al. 2004] 

Fibres used are straight steel fibres, with the nominal diameter df = 0.3 mm and nominal length 
lf = 20 mm. It should be noted that the fibre quantity in the material used is not very high in 
comparison to other UHPFRCs, while the material properties achieved are satisfactory (§ 3.3.2). 

3.3  Mechanical properties of UHPFRC 

For design purposes, the mechanical behaviour of the material has to be known and mathematically 
described by constitutive curves that are accurate and easily applicable.  

Accuracy is achieved by relating the curves to parameters that are physically significant for the 
observed material behaviour (intrinsic material properties). For this reason the mechanics of the 
material must be understood. For applicability, the intrinsic parameters should be easily obtainable 
from a characterization test of the material, and the shape of the curves has to be sufficiently simple. 

In the case of ordinary concrete, compressive strength is the principal parameter used in constitutive 
curves. For UHPFRC both compressive and tensile behaviours are relevant in the design, and, unlike 
in ordinary concrete, tensile behaviour is not directly related to compressive behaviour.  

The general structure of Sections 3.3.1, dealing with behaviour in compression, and 3.3.2, dealing 
with tension, is as follows: 
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- material behaviour is described qualitatively, based on the experimental data 
- analytical material models are presented and their applicability to the UHPFRC used in this 

study is investigated 
- proposals for possible material models, well adapted for further structural analysis, are made 
- design curves proposed by existing recommendations for UHPFRC are also included. 

3.3.1  Uniaxial Compression  

3.3.1.1  UHPC without fibres  

UHPC matrix without fibres exhibits a compressive behaviour characterised by:  
- high strength,  fcm > 150 MPa,
- high modulus of elasticity, in the range of 50 GPa to 70 GPa, representing the linear part of 

the stress-strain curve, 
- linearity limit of stress-strain curve corresponding to 70 - 80 % of compressive strength,  
- Poisson’s ratio remaining constant up to 70 - 80 % of compressive strength, 
- extremely brittle failure. 

Figure 3.7:  Behaviour of UHPC, high-strength and ordinary concrete (NSC) in compression, [Tue 
et al. 2004]: a) stress-strain relationship; b) Poisson’s ratio development over 
compression stress  

Figure 3.7 shows the behaviour of UHPC under static compressive load in comparison to the 
behaviour of ordinary and high-strength concrete. The failure is of an explosive nature, and the 
descending branch cannot be observed in the stress-strain curve. The increase in brittleness with the 
increase in compressive strength is a phenomenon already observed for ordinary and high-strength 
concretes. This tendency is also exhibited by UHPC. The typical fracture energy of UHPC fibre-free 
matrix is almost in the range of mortars (50 - 90 J/m2) [Wittmann 2002], while that of HPC is 
approximately 150 J/m2 [CEB 1993]. 

The increase in the initial stiffness of UHPC in comparison to ordinary concrete is primarily related 
to the increase in the modulus of elasticity of the hardened cement paste. It has been reported that the 
Young’s modulus of RPC paste can rise to 75 GPa for very high paste densities, in comparison to 
approximately 30 GPa achieved in ordinary cement pastes [Richard, Cheyrezy 1995].  

The nonlinearity of the curve for higher levels of axial strains results from microcracking that starts 
at the aggregate and paste interface. The higher homogeneity of UHPC leads to the formation of 
macrocracks at a much higher average stress than is the case with ordinary and HSC. On the other 
hand, the effect of stress transfer by aggregate interlock is less pronounced because of smaller  
aggregate size and the cracks going through the aggregates, resulting in a less pronounced nonlinear 
phase and a much more brittle failure.  
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The strains corresponding to maximal stress are higher than those of ordinary concrete. This 
tendency was also recognised for high-strength concretes, and consequently included in design 
recommendations ([CEB 1995], Article 2.1.4.4).

3.3.1.2 UHPC with fibres  

The addition of fibres to a UHPC matrix leads to less brittle compressive behaviour, with fibres 
having a similar effect from the mechanical point of view, to that produced by aggregates in ordinary 
concrete. Figure 3.8 a) shows the results of static uniaxial compression tests on elements made of 
different UHPFRCs, and of the UHPFRC used in this study  [Jungwirth, Muttoni 2005]. The 
behaviour is characterised by the following regimes: 

- linear elastic part guided by the behaviour of the cementitious matrix, with the modulus of 
elasticity, Ec, in the range of 50 - 70 GPa

- non-linear part prior to failure load  
- post-peak softening behaviour1
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Figure 3.8:  UHPFRC behaviour in compression: a) measured stress-strain relationship of different 
UHPFRCs in compression (tests on cylinders D/L= 100/200 mm), 1)[Jungwirth, 
Muttoni 2005], 2)[Fehling et al. 2005], 3)[Reineck, Greiner 2004]; b) characteristic 
parameters of stress-strain curve 

The compressive strength is slightly improved by fibre addition. In [Nielsen 1995] and [Behloul 
1996] an increase of 5 - 10 % in average compressive strength for fibre quantities of up to 4 % Vf  is 
reported.  

The non-linear part before failure load is more pronounced than with fibre-free matrix, due to the 
improved stress transfer mechanism through the microcracks, as mentioned in § 3.3.1.1.  The 
compressive strength is reached at a strain in the range of 3.5 -5 ‰. Apart from the effect of element  
size, the post-peak behaviour is influenced mainly by:  

- fibre content, Vf , 

- fibre type (straight or hooked fibres, aspect ratio, lf /df), and  
- interaction of fibres and matrix (interfacial shear, fibre length to aggregate ratio).  

                                                     
1 The post-peak correspond to a localisation of deformation, and as a consequence it is a structural property, 
affected by size and test conditions; extensive research in this field for ordinary concrete is carried out by 
RILEM Committee [Van Mier 1997a]. 
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3.3.1.3 Constitutive and design stress-strain relationship in compression 

No simple theory exists for the modelling of either concrete or fibre-reinforced concrete in 
compression, since this behaviour results from the complex mechanism developed in its micro-
structure, § 3.2.1, § 3.3.2.3. Some models, based on micro-mechanical approaches are available in 
the literature [Li 1992a], [Nielsen 1995]. These models allow FRC behaviour to be estimated as a 
function of the strength of the plain matrix and action of the fibres.  

The present study follows the approach that is closer to conventional structural design, where 
empirical models with simple analytical expressions are used to describe the concrete compressive 
behaviour. The characteristic points in these analytical expressions are related to the characteristic 
parameters of the composite material, such as average compressive strength, fcm, corresponding 
strain, εc1, which represent the maximum point of the curve, and the modulus of elasticity, 
representing the slope of the initial part of the curve (Figure 3.8 b)).  These data can be easily 
determined by uniaxial compression test.   

In a more general way, the analytical expression for the post-peak behaviour should contain the 
parameters related to the fractural toughness of the material. Fractural toughness is associated with 
the action of fibres and can be expressed by the means of the fibre reinforcement index, RI=Vf lf /df . 
The influence of this parameter in FRC is dealt with by many authors, such as Fanella and Naaman 
[Fanella, Naaman 1985]. In the present study, the reinforcement index is a constant, and 
consequently no conclusions with respect to its influence could have been drawn.  

Stress-strain relationship in Design Recommendations for UHPFRC 

According to the Interim Recommendations for UHPFRC, Article 1.3, [SETRA, AFGC 2002], 
behaviour in compression is defined by:  

- the characteristic compressive strength, fck,
- the Young’s modulus of elasticity, Ec.

For design at ultimate limit states (ULS) and serviceability limit states (SLS), the use of a 
conventional linear constitutive law with yield plateau is suggested by French and Japanese 
recommendations, (Figure 3.9 a)). No detailed information on the shape of the softening part of the 
curve is given in this document. The German approach [Schmidt, Fehling 2005] suggests the use of a 
curve passing from the parabolic for fc = 110 MPa to linear for fc = 210 MPa, followed by a plateau 
(Figure 3.9 b)). Design values are obtained from the characteristic values and safety factors, γc. The 
additional multiplication factor for the characteristic value of the compressive strength, 0.85, is 
introduced in the recommendations. The end of the plastic plateau is limited to 3.5 ‰ according to 
French and Japanese recommendations, while the German provisions state that this value, εc3u, 
should be assumed in order to take brittleness into account.  

The advantage of the proposed curves lies in their easy application in the design, requiring only two 
parameters. Moreover, for the evaluation at SLS, both the French and the Japanese recommendations 
suggest that the material can be considered as linear-elastic.  
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Figure 3.9: Design curve for compressive stress – strain relationship at ULS according to: 
a) [SETRA, AFGC 2002] and [JSCE 2006]; b) from [Schmidt, Fehling 2005] 
according to [DAfStB 2003] 

It should to be noted, however, that the current design recommendations seem too conservative with 
respect to the exploitation of material ductility in compression. Figure 3.10 a) shows the comparison 
of design curves at ULS according to [SETRA, AFGC 2002] and [JSCE 2004] with test results. The 
same Figure b) shows the design curves at ULS for ordinary and high-strength concrete, in 
comparison with the constitutive material curve, according to CEB-FIB Model Code 1990 [CEB 
1993]. The main reason for this more conservative limitation of the ultimate strain in UHPFRC in 
comparison to other concretes may be explained by uncertainty regarding determination of the 
plateau and its only partial validation by tests. 
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Figure 3.10: Comparison of measured or constitutive stress-strain response with design curves at 
ultimate limit states (ULS): a) UHPFRC: design curves according to [SETRA, AFGC 
2002], tests: 1)[Jungwirth, Muttoni 2005], 2)[Fehling et al. 2005]; b) ordinary, C30, 
and high-strength concrete, C80; constitutive curves (dashed lines) and design curves 
at ULS (solid lines) according to [CEB 1993] 

3.3.1.4 Investigation of appropriate constitutive compression curves  

To define a material law that more accurately describes the behaviour of UHPFRC in compression, 
families of material curves that are well applicable to ordinary, HSC and FR concrete, are examined. 
The tendency is to formulate an analytical expression that can take into account the physical 
phenomenon of the progressive damage (due to microcracking) occurring with increased 
deformation ε,

( ) εσ σ ⋅−= KEc 1  (3.4) 

1 

2 

AFGC 
C80 

        C30 
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where Kσ is a variable governed by the damage, yielding to 0 for ε = 0 to 1 for completely damaged 
material. Possibilities for extending some of the models to UHPFRC are proposed. The considered 
analytical curves and correcting parameters are summarised in Table 3.4, and plotted in Figure 3.11.  

A) An important family of constitutive curves for concrete is based on the proposal of Sargin and 
Handa [Sargin, Handa 1969], Table 3.4.  A large number of curves used for the design of ordinary 
and high-strength concretes is based on the relationship proposed by the CEB Model Code 90 [CEB 
1993], Article 2.1.4.4.1, which is a simplified version of the expression proposed by Sargin, obtained 
for D = 0. For high-strength concretes (grades higher than C50) the extensions to Model Code 90 
[CEB 1995] recommends that the strain at maximal stress, εc1, be a function of average concrete 
strength, fcm, and the descending branch of the curve be replaced by a curve based on a model 
proposed by Van Gysel and Taerwe [Taerwe, Van Gysel 1996]. These expressions are calibrated for 
materials that are generally more fragile than a UHPFRC and can not be applied to UHPFRC in a 
straight forward way, also because of the significant variability in the post-peak behaviour for 
different UHPFRC (Figure 3.8). If the parameter εc1 is introduced as the measured value for 
UHPFRC, and consequently the secant modulus is calculated as Ec1 = fcm / εc1, the expression 
proposed by Model Code 90 describes ascending part of the curve satisfactorily. However, this 
expression is incapable of approaching the complete descending branch, which can be explained by 
the difference in fractural toughness between UHPFRC and the concretes for which the expressions 
are calibrated.  

B) Another group of curves proposed in the literature is based on the model of Carreira and Chu 
[Carreira, Chu 1985], Table 3.4. Ezeldin and Balaguru [Ezeldin, Balaguru 1992] used the analytical 
expression of Carreira and Chu to approximate the stress-strain behaviour of fibre-reinforced 
concrete by expressing β as a linear function of the reinforcement index, RI= Vf ·lf /df. The values 
for β are based on tests with RI varying between 0.23 and 0.76, which is lower than in typical 
UHPFRC, and, like the proposal of Taerwe and Van Gyse, cannot be directly applied to UHPFRCs. 
Hsu and Hsu [Hsu, Hsu 1994] proposed replacing β by nβ, with both parameters, n and β, depending 
on the matrix strength and fibre volume fraction.  

C) A well accepted analytical formulation for describing the compressive behaviour of concrete is 
proposed by Thorenfeldt, Tomaszewicz and Jensen [Thorenfeldt et al. 1987], Table 3.4. For the 
ascending branch this curve coincides with the curve proposed by Carreira and Chu, while the 
descending part is calibrated with a single parameter that enables the measured curve to be 
approached. The formulation remains similar to that of Carreira and Chu however, and leads to 
similar results. 

D) Various models proposing an exponential expression for the description of the descending branch 
of the stress-strain curve can be found in the literature [Cusson, Paultre 1995], [Apostolos, Shah 
1985]. The shape of the exponential curve is generally appropriate for an analytical description of 
UHPFRC in compression softening.  

Possibilities for extending existing models to UHPFRC in compression 

Modified Sargin’s curve for UHPFRC: 

The general formulation of Sargin’s curve (Table 3.4) is investigated in this section for the 
description of both the ascending and descending branches of UHPFRC. It was observed that the 
increase of parameter D chiefly increases the stresses in the descending branch; strains in the 
range εc < 1.45 εc1, and stress in the descending branch higher than 0.75 fcm, are well approximated 
with 0 < D < 0.4, which is in accordance with the previous observation on the applicability of Model 
Code 90. The stress-strain relationship for higher strain levels is better approximated with values 
0.6 < D < 1. Consequently, parameter D is proposed as a function of strain level, in the following 
form: 

,2ηη baD +=  (3.5)  
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Coefficients a and b are determined so that the surfaces of the areas under the simulated and the 
tested curves are equal (equality of toughness).  The coefficient D defined in Equation 3.5 provides a 
smooth and continuous analytical expression that enables the curve to be followed integrally in the 
descending as well as ascending regimes, Figure 3.11 a).  

Proposals for parameters for the application of other shapes of curves are given in the following 
table.  

Table 3.4: Constitutive curves for UHPFRC in compression  
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In this table y is normalised stress and η  is normalised strain, with σc compressive stress, fcm average 
compressive strength, εc compressive strain and εc1 the strain corresponding to compressive strength. 
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Figure 3.11: Comparison of the proposed material curves in compression and measured data (light 
grey, [Jungwirth, Muttoni 2005]); curves are plotted for two sets of parameters:  fcm = 
-195 MPa, εc1 = -4.85 ‰ (solid line) and  fcm = -180 MPa, εc1 = -4.0 ‰ (dashed line): 
a) Modified Sargin’s curve (black) and Carreira’s curve (grey); b) exponential (black) 
and TTJ (grey) curve 

All investigated expressions give plausible results for the ascending part of the curve. The shapes of 
the modified Sargin’s and exponential curve give satisfactorily approximation of the descending 
branches for various strength levels, while the curves proposed by Carreira and TTJ are more 
sensitive to strength variation. 

3.3.1.5 Material curves in the case study 

When the continuous curve is necessary for analysis, the modified Sargin’s curve is found to be 
appropriate for the description of compressive behaviour. For the analysis in which the ascending 
and descending branches can be separated, the Sargin’s curve with coefficient D  0 can be used for 
the ascending part, and the exponential curve for the descending branch, which enables a simple 
integration of the stress. For numerical integration, both models are easily applicable. If compressive 
failure does not occur, a linear curve characterised with the modulus of elasticity Ec=60 GPa
(Appendix T1) provides sufficiently accurate results for the UHPFRC used in this study.

3.3.1.6 Conclusions 

The behaviour of UHPFRC in compression is characterised by very high strength, greater than 
150 MPa, a high strain at maximal stress (4-5 ‰ for the tested UHPFRC) and significant post-peak 
ductility.  

No practical formulation of a general material model for UHPFRC behaviour in compression, taking 
matrix/fibre interaction into account, is available in the literature.  

Constitutive curves used for ordinary, HSC and FRC can be used for describing the ascending part of 
UHPFRC in compression and the modifications of certain curves can also give a satisfactory 
approximation of the descending part. Proposals for the correcting parameters are given for the 
UHPFRC used in this study. More generally, these parameters are influenced by the fracture 
properties, associated to the fibre action. In the present study this influence could not be considered, 
since the material matrix and the reinforcement index were constant (RI =1.6). However, the 
proposed curves show good plausibility with regard to other UHPFRCs containing similar fibre 
quantities.  
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Regarding design, current recommendations for UHPFRC impose a conservative limit for ultimate 
compressive strain. The possibility of using a less conservative ultimate strain limit needs to be 
further investigated.  

3.3.2  Uniaxial Tension  

3.3.2.1  Matrix in uniaxial traction 

The tensile strength of UHPC matrix is in the range of 10 MPa, which is significantly higher than 
that of other concretes, and can be explained by the increased compactness of the matrix.  As stated 
in § 3.2.1.1, the fibre-free matrix is extremely brittle (Table 3.2).   

3.3.2.2  Matrix with fibres in uniaxial traction  

The addition of fibres to UHPC matrix leads to a tensile behaviour that can be schematically 
presented as in Figure 3.12. The measured curves of UHPFRC members subjected to a uniaxial 
tensile test are plotted in Figure 3.20. The following regimes of behaviour are distinguished: 

- linear-elastic behaviour up to the stress level corresponding to matrix tensile strength;  
- pseudo strain hardening behaviour resulting from multi-microcracking; 
- strain softening behaviour with localisation of deformation. 

strain                           crck opening

UHPFRC

strain hardening
multi-microcracking
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Figure 3.12: Uniaxial tensile response of UHPFRC element and notations for characteristic values 

Linear-elastic behaviour 

The maximal stress attained in this regime coincides with the tensile strength of the matrix, fct,m, and 
it is observed that the first cracking stress is scarcely influenced by the presence of fibres [Shah 
1991]. The major part of maximal tensile strength is achieved in this regime, but with a very small 
part of corresponding deformations (εel << εu). No permanent microstructural changes take place 
during this deformation, and it can be considered as linear-elastic, with the modulus of elasticity Ec

corresponding to the initial modulus of elasticity in compression, § 3.3.1.2.  

Pseudo strain hardening behaviour 

The end of the elastic regime corresponds to the occurrence of the first microcrack at the section with 
statistically the weakest matrix strength [Behloul 1996]. With the further increase of deformations 
beyond the elastic level, uniaxial tensile stress increases at a much lower rate than in the elastic 
regime, or remains constant (fct ≥ fct,m). The high increase in deformations that characterises this 
phase is due to the formation of a large number of tiny cracks, of micron magnitude, termed multi-
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microcracking. This continuous microcracking process, with well distributed, closely spaced 
openings bridged by the fibres, observed on the elements scale ressembles a plastic or strain 
hardening behaviour. Owing to the fact that no true plastic microstructural changes take place a term 
“pseudo strain hardening” or “pseudo plastic” is used to describe this behaviour.  The physical 
distinction between these deformations and those of a real plastic material can be seen during the 
unloading of a UHPFRC element, where the descending curve clearly shows the behaviour of a 
damaged (cracked) material (Figure 3.20 b)).  

Pseudo strain hardening behaviour distinguishes UHPFRC from other FRCs [Naaman, Reinhardt 
2006], (Figure 3.1). It is characterised by the maximal deformation that can be attained before strain 
softening begins, εu, and by the strength attained at that level of deformation, fct. For a typical 
UHPFRC, εu has a value in the range of 2 - 3 ‰. Both of these parameters (εu and fct) are functions of 
the quantity and properties of the fibres, and their interaction with the matrix. An increase in tensile 
and flexural strengths in relation to fibre volume quantity is demonstrated in a lot of research. 
Figure 3.13 shows an example of the effect of quantity and type of fibres on tensile strength. It 
should be noted that 2 % fibre volume fracture content may be sufficient to considerably increase 
tensile strength.  

Figure 3.13: Uniaxial tensile strengths of a UHPC with different types and quantities of fibres, 
hybrid-fibre concrete [Markovic 2006] 

In order to treat pseudo strain hardening as a material property, it is essential to assess the conditions 
for stable multi-microcracking, studied in § 3.3.2.4. 

Strain softening behaviour 

The end of strain hardening phase coincides with the moment when, for the increase in deformation, 
the transfer of the same (nor higher) intensity of average stress in one of the sections can no longer 
be assured. This can be expressed as the moment when the strain hardening capacity of the material 
is exhausted. When stress starts to decrease, the sections other than the weakest one start to unload 
decreasing the deformation, and the deformation localises in the weakest section1, developing a so-
called “macrocrack”. The energetic conditions that must be fulfielled to ensure the stability of 
macrocrack growth are discussed in § 4.3.5.3.  

Similarly to the previous one, this phase remains governed by fibre action, but, unlike to the previous 
phase, observed on the element scale, it is influenced by specimen size. For this reason, for it to be 
considered as a material property [Hillerborg 1985], the strain softening behaviour can no longer be 
expressed as a function of average deformation, but of localised deformation, i.e. crack opening.     
The deformation capacity during strain softening is very pronounced for UHPFRC and the limiting 
value is typically related to half the length of the longest fibre.  

                                                     
1 Various positions of localised crack in UHPFRC tie elements can be seen in [Reineck, Greiner 2004a]. 



                                                                                                             3. UHPFRC: material properties

31

Strain softening behaviour remains qualitatively the same as that of FRCs, investigated 
experimentally and analytically by many authors [Naaman et al. 1974], [Nammur, Naaman 1989], 
[Morrison et al. 1988].  

3.3.2.3 Mechanism of fibre action and multi-microcracking principle 

When the first microcrack occurs in the matrix, the opening of the crack is restricted by the presence 
of fibres if their resistance is sufficiently high. If a single fibre crossing the crack is considered, as 
the crack opening increases, the stress transferred by the fibre between the crack faces changes due 
to several phenomena. This crack-bridging mechanism is a possible combination of the following 
actions (Figure 3.14):  

- fibre deformation, 
- fibre pullout: cracking of the interface between fibre and matrix (debonding), and frictional 

slip,  
- deformation of pulled-out fibre, and 
- fibre rupture.  

Depending on a dominant crack-bridging mechanism and its capacity to dissipate energy, different 
types of failures can occur:  

- fibre break or pullout during crack initiation so that the load borne after formation of the crack 
decrease; strain softening occurs thus with the formation of a single crack which governs 
ultimate strength and further deformation;  

- fibre is capable of sustaining a greater load after the initiation of the first crack by deforming 
and pulling-out, allowing the formation of new cracks; this results in pseudo strain hardening 
behaviour, and an increase in overall deformation. 

Figure 3.14: Behaviour of a fibre bridging the crack [Hillerborg 1980] 

Physical parameters that interfere with the complex mechanism of crack-bridging by fibres 
determine whether the material can exhibit pseudo strain hardening and with which deformational 
capacity. Some researchers have dealt with the analytical formulation of this problem [Aveston et al. 
1971], [Naaman et al. 1991], [Li 1993], based on description of the behaviour of a single fibre in the 
matrix.  

To ensure that pseudo strain hardening behaviour occurs, the pullout of the fibres is the desirable 
energy dissipation mechanism of crack-bridging. To achieve this, it must be ensured that the matrix 
strength and fibre-matrix interface can provide the adequate bond and further frictional resistance 
during pullout mechanism. However the created resistances (due primarly to the bond) should not be 
sufficiently high to provoke failure of fibres with the matrix cracking instead of pullout development. 
The pseudo strain hardening behaviour thus depends greatly on matrix-fibre interaction and fibre 
geometry [Bartos 1981], [Brandt 1985], [Casanova 1996]. 

UHPFRC are conceptually developed to meet those conditions. As it will be shown in this thesis, the 
pseudo strain hardening behaviour of UHPFRC has important implications for structural application. 
For that reason, it is necessary to demonstrate that it is a stable process, with a strong likelihood of 
occurence. 
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3.3.2.4 Conditions for a stable developpement of multi-microcrack 

The condition for stable first cracking can be simplified in a similar manner to that used in the case 
of reinforced concrete elements (Equation 3.7): when the matrix fails, at stress fct,m, the load borne by 
the unit area of the matrix is then transferred to the fibres; if the fibre strength is fs,f, the following 
inequality must be respected:     

fmmctffs VVfVf ⋅+⋅≥⋅ '
,, σ   (3.7) 

where σ' is the stress borne by the fibres prior to matrix cracking, σ'=Ef ·εcm, and Vm is matrix volume 
fraction, Vm=1-Vf .This gives approximate information concerning the fibre strength needed for 
stable first cracking. The further cracking condition requires more thorough models.  

One of the earliest models used to describe multi-microcracking based on energy equilibrium was 
proposed by Aveston, Cooper and Kelly, known as the ACK model [Aveston et al. 1971], [Aveston, 
Kelly 1973]. Principles of the ACK models are used in further study in order to demonstrate the 
potential of the material for developing multi-microcracking. Another formulation that can be used 
for the same purpose is proposed by Li, [Li 1993], and Li, Mishra and Wu [Li et al. 1995], also based 
on the fracture energy.  

Multi-microcracking criteria based on the ACK model  

The ACK model explains the phenomenon of multi-microcracking based on comparison of the 
energies that are dissipated during this process. The multi-microcracking principle can be 
summarised as follows: at the formation of the first matrix crack, the energy required to grow the 
crack is greater than the energy required for the formation of a new crack. A practical formulation of 
this condition in terms of fibre volume fraction is derived in [Tjiptobroto, Hansen 1993] and 
graphically shown in Figure 3.15 b).  

a) b) 

Figure 3.15: a) Multi-microcracking in fibre-reinforced material; b) determination of critical fibre 
volume fraction in HPFRC, according to [Tjiptobroto, Hansen 1993]: Ei is the energy 
of the formation of new cracks, E1-2 the energy needed to grow the crack 

According to the ACK model, the following work is assumed to take place during crack opening: 
- destruction of the interface bond between fibres and matrix, 
- extension of fibres with increase in elastic strain, ΔUf,
- loss of strain energy by matrix due to zero stress at the crack face, ΔUm,
- increase in fibre and decrease in matrix deformation, resulting in matrix sliding over the fibres, 

causing frictional work, ΔUfr,
- work done for the formation of the new crack surface, corresponding to the fracture energy of 

the matrix, GF,m.

The energy required for the opening of the first microcrack sufficiently to reach the softening region 
(energy for passing from point 1 to point 2, Figure 3.12) is denoted by E1-2 and, according to 
[Tjiptobroto, Hansen 1993], can be obtained by adding together the increase in fibre strain energy, 
ΔUf-mc, debonding, Udb and frictional energy, ΔUfr,: 

i 
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 E1-2 = ΔUf-mc+ Udb + ΔUfr. (3.8) 

The energy required for the creation of a new microcrack (crack 1, 2, 3 etc, Figure 3.15a)), is 
denoted by Ei, and can be assumed as being equal to the fracture energy of the matrix, GF, m V m, 
increase in fibre strain energy, ΔUf-mu, and decrease in matrix strain energy, ΔUm :

Ei=  GF, m V m + ΔUf-mu - ΔUm  (3.9) 

As long as the value of Ei is lower than the value of E1-2, multi-cracking can occur, Figure 3.15 b). 
Tjiptobroto and Hansen have developed the expressions for the energy terms in Equations 3.8 and 
3.9 as a function of the effective fibre volume fraction, Vef, that is related to actual fibre volume 
fraction, Vf, using a reduction factor η : 

Vef = η Vf ,    0 < η <1.  (3.10) 

From the limiting condition E1-2 = Ei, the critical fibre volume fraction, Vcr, is determined as the 
minimal fibre volume fraction, Vf, required to enable multi-cracking to occur.  

Multi-microcracking of the UHPFRC used in this study 

For the material used in the present study, results for the frictional stress, τf , and debonding energy 
(the fracture energy of the second failure mode, GF,II)  are accepted from the tests on similar fibre 
type and concrete matrices, such as DSP concrete [Tjiptobroto, Hansen 1993], and high-performance 
hybrid-fibre concrete [Markovic 2006].  

In Figure 3.16 the comparison between the energy required to open a crack (E1-2, grey line) and the 
energy required for creation of new cracks (Ei, black line) is shown. The curves in Figure 3.16 are 
plotted for τf  = 3.7 MPa, GF, II = 46 J/m2 and GF, m= 110 J/m2, while the other data are given in 
Table 3.3. These values are accepted on the safety side: for τf  the value of 5 MPa and GF, II= 
120 J/m2 can be accepted according to [Tjiptobroto, Hansen 1993]; in [Wittmann 2002] values 
GF, m=40 - 90 J/m2, is reported for high-performance matrixes.  

In Figure 3.16 a) the results are also plotted for the decreased values of τf  and GF, II  and the 
increased value of GF, m, which is an even more conservative combination of parameters, an 
obviously leads to an increased critical value of the volume fraction (intersection of dashed lines). 
The decrease in interfacial shear strength, τf  and the decrease in fracture energy GF, II lead to a 
decrease in the energy that is dissipated with the opening of the first crack (E1-2); the increased 
fracture energy of the matrix, GF, m, increases the energy for the formation of new cracks, Ei, which 
eventually leads to an increase in the minimal quantity of fibre needed for the development of multi-
microcracking. The energy curves in Figure 3.16 a) are plotted for reduction factor η = 0.5.

The influence of the reduction factor, η, on critical fibre volume fraction, Vcr, is presented in 
Figure 3.16 b). This plot shows the increase of Vcr with the decrease of parameter η (the decrease in 
effective fibre volume), meaning that with a decrease in effective fibre volume, the material rapidly 
approaches the limiting condition for hardening (Vcr approaches or exceeds Vf).  

It can be concluded that for the UHPFRC used in this study, assuming that an effective fibre volume 
fraction of 0.5 Vf is assured, the multi-microcracking can occur, since the material’s fibre volume 
fraction (Vf =2.5%) is slightly higher than the obtained critical fibre volume fraction. The variation in 
effective fibre volume is principally related to fibre orientation. The effects of fibre orientation on 
both flexural and tensile strengths and on the fracture energy of UHPFRC are also observed 
experimentally [Stiel et al. 2004], [Behloul 1996]. Since fibre orientation is strongly influenced by 
the casting procedure, care should be taken to place the fresh concrete in such a way as to ensure 
pseudo strain hardening in materials with a low fibre-reinforcement index. 
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Figure 3.16: Fracture energies as a function of fibre volume fraction: a) η = const = 0.5, with 
τf  = 3.7  MPa, GF, II= 46 J/m2 and GF, m=110 J/m2  (plane line) and with the critical 
combination of decreased τf  and GF, II values ( 30 % decrease) and 30 % increased 
value of GF, m; b) with average values of τf, GF, m and GF, II  and η = var.

In [Li 1993] an expression for critical fibre volume fraction was formulated based on the steady state 
cracking condition and with the introduction of the probability density functions for the orientation 
and position of the fibre’s centroid from the crack. This model will not be discussed here. The 
conclusions from the developed relationship will be given however, since they are of interest in 
understanding the concept of UHPFRCs: the low toughness of the matrix, strong interfacial bond and 
friction, and high aspect ratio of fibres (lf /df) can lead to pseudo strain hardening with even a small 
fibre volume fraction. This is plausible with the results obtained from the AVK model (Figure 3.16). 

3.3.2.5 Modelling of material behaviour in tension: σ(ε)σ(ε)σ(ε)σ(ε) and σσσσ(w) curves  

According to § 3.3.2.2, the behaviour of UHPFRC in tension has to be described by means of two 
relationships: stress-strain σ(ε) up to the point when strain softening occurs, and stress-crack opening 
σ(w) describing the localised deformation, Figure 3.12.  

Two families of models are used for describing tensile behaviour: micromechanical and 
macromechanical models. The first family includes models based on the behaviour of a single fibre 
in the matrix, as mentioned  in § 3.3.2.3, with two possible ways of describing the system’s 
equilibrium: using the energy balance approach, or the force equilibrium, [Stang, Shah 1990]. Some 
of these models are presented in closed analytical forms ([Aveston, Kelly 1973], [Li 1992], [Ouyang 
et al. 1999] etc.), while some are better adapted for numerical implementation ([Kabele 2000], [Ulm 
2002]).  

Macromechanical models observe the integral response of the material as a continuum. The 
formulation is based on the affinity of analytically defined shapes with the experimentally observed 
behaviour. This is a widely accepted approach, well suited to design needs, as already explained for 
compressive behaviour, § 3.3.1.3. 

Micromechanical models for FRC behaviour  

Micromechanical models generally comprise a two-stage procedure: firstly, the pullout behaviour of 
a single fibre is modelled, usually by assuming that the fibre is at right angles to the crack direction 
and that the embedded length of the fibre is known. For the known mechanical and geometrical 
properties of the fibre, matrix and interface, the force–pullout relationship, σ(δ), for one fibre can be 
derived. This has been done by several authors on the basis of energy as well as equilibrium 
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approaches, with similar results [Stang, Shah 1990]. The influence of the inclination of the fibre with 
respect to the crack direction as well as other phenomena such as the bending and failure of the fibre, 
or the local failure of embedding concrete, can also be considered at this stage [Pfyl 2003]. The 
second stage passes from describing the behaviour of a single fibre to the behaviour of the fibred 
material. The problem is principally related to the distribution and orientation of fibres, which are 
finitely long and randomly placed, and their interaction. From the known behaviour of a single 
fibre, σ(δ, φ, z), as a function of its orientation, φ, and its position with respect to the crack, z, the 
effect of several fibres crossing a crack can be determined by integrating the σ(δ, φ, z) relationship. 
The integration is performed over possible range of fibre orientation and position, with fibre 
disposition based on statistical assumptions (Equation 3.16). A considerable amount of experimental 
and theoretical work on fibre distribution is carried out [Li et al. 1996], [Behloul 1996], [Akkaya et 
al. 2001]. In addition, the effect of the interaction of randomly oriented fibres can be either positive 
(local confinement due to surrounding fibres) or negative (surrounding fibres causing microcracking 
weakening the matrix)1.

A general formulation of material mechanical response during microcracking with the presence of 
fibres can thus be as follows: 

( ) ( )
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where σ(δ, φ, z)  is the stress-displacement (pullout) response of a single fibre in the matrix, and p(φ)
and p(z) are probability density functions for the orientation and position of fibres centroid from the 
crack.  

In [Li et al. 1991] and [Li 1992] a formulation of probability functions p(φ) and p(z) is given, and the 
relationship of the remote stress-crack opening, σ(δ) can be expressed in a simplified manner [Li et 
al. 1996]: 
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with factor g including parameters related to fibre-matrix interaction, and δp the opening 
corresponding to maximum bridging stress 
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1  In [Behloul 1996] it was experimentally observed that residual stress (in softening) is proportional to Vf for 
2.4 and 4 % of fibres, but residual stresses for 1 and 2.4 % of fibres are almost identical, indicating the 
influence of more damage caused by the higher fibre content in the cracked region. 
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Behloul [Behloul 1996] has developed a similar model that enables the variability of the number of 
fibres in a section and variability in matrix resistance with respect to fibre quantity and type of 
solicitation to be taken into account. The mean value of the stress sustained by the cracked section as 
a function of the normalised crack opening r, r = 2w / lf, is expressed as: 

( ) ( ) ( )rFfg
d

l
Vr f

f

f
f ,, αατασ ⋅⋅⋅⋅⋅=    (3.15) 

and the expression for the stress variation coefficient is:  
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In Equations 3.15 and 3.16 α is the fibre orientation factor, f is the representative coefficient of fibre 
inclination with respect to direction of solicitation, and g(α , f) represents the function of the 
combined influence of the two parameters on strength. Function F(α , r) represents the influence of 
the orientation factor on the shape of the post-peak curve. An advantage of adopting statistical 
approach is that the upper and lower limits of material strength can be determined, and crack 
development can also be explained.  

Similar developments relating to multiple cracking with short aligned fibres, based on fracture 
mechanics approaches, can be found in [Stang, Shah 1986], [Ouyang et al. 1999]. Simplified models 
that take into account fibre-matrix interaction using average interfacial shear, τf, and introduce the 
efficiency factor η (Equation 3.10), enabling problems caused by finite fibre length and random 
orientation to be dealt with, have a practical significance particularly for the determination of 
average composite cracking strength [Naaman et al. 1974], [Naaman, Reinhardt 2006], [Swamy, 
Mangat 1974], [Behloul 1996]. 

Micromechanical approaches were used to describe the behaviour of UHPFRC materials [Jungwirth 
2006]. Moreover, these approaches can be useful for the development of UHPFRC, in that they 
allow the fibre and fibre-matrix interface properties to be tailored to meet specific requirements. 
However, the chief problems related to the application of micromechanical models are their 
complexity and the need for parameters usually not easily available in design. For practical reasons, 
engineers are more interested in the behaviour of composite material, that can be determined from 
the experimental data at the structural level, as explained in the next section.  

Macro-mechanical models based on the measured curves 

Tensile tests   

The use of experimental data to establish the stress-strain and stress-crack opening relationship in 
tension also gives rise to certain problems, mainly related to: 

- the appropriate test method  
- methods for deriving the pure material curves from test data, without the influence of test 

method and specimen geometry. 

A great deal of research in this field has been done by the RILEM committee since steel fibre-
reinforced concrete (SFRC) has been more intensively used in design. Recommendations for SFRC 
and UHPFRC propose that either the direct tensile or flexural test be performed for material 
characterisation [SETRA, AFGC 2002], [RILEM 2003]. Both tests can be performed on notched or 
unnotched specimens. Direct tensile testing is more difficult to perform, but provides more reliable 
results. According to some authors [Hillerborg 1980], the tensile test is the only accurate way to 
determine the tensile behaviour of FRC materials. It should be pointed out that there is a problem in 
distinquishing between tensile strain hardening and tensile softening during the hardening in 
bending. Consequently the determination of tensile hardening from the bending test, if no additional 
information on tensile response is available, is uncertain. The problems concerning the relationship 
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between tensile and bending behaviour in the case of strain-hardening materials are again refered to 
in Chapter 4.   

Derivation of material curve form the uniaxial tensile test  

Here the material’s tensile behaviour is derived from uniaxial tensile tests on unnotched specimen 
(Figure 3.20). Deriving the stress-strain part of the curve from the force-elongation curve 
(Figure 3.17) is a straightforward task while the softening part of the curve requires some additional 
considerations: the stress–crack opening curve, σ(w), characterises the material at the fracture zone 
only, signifying that, during strain softening, deformations increase only in the localised section, 
while the rest of the specimen exhibits deformation decrease following the unloading part of the σ(ε)
curve (Figure 3.17). Thus, for derivation of the stress–crack opening it is essential to know the 
unloading modulus of the damaged (microcracked) material, E*.
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Figure 3.17: Stress-elongation curves, according to [Hillerborg 1980]: a) stress-average 
deformation for different measurement bases; b) stress-elongation and crack opening  

The measured data in the direct tensile test is the elongation of the measurement base, D l, of the 
initial length of lm. If the elongation of the measurement base at the formation of the macrocrack is 
D lfo, the further increase in deformation is actually the increase in crack opening, w, and the decrease 
in deformation of the surrounding material, as a function of average stress. The surrounding material 
is considered to have a linear stress–strain relationship for stress decrease, characterised by an 
unloading modulus, E* (Figure 3.17). Thus, assuming that unloading occurs in a homogeneous 
manner along the whole measurement base, for elongations greater than D lfo : 
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 is disregarded for a small lm. The crack opening w is obtained as 
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Analytical expressions for the σ(w) curve 

Analytical curves describing the behaviour of FRC in tensile strain softening can be found in the 
literature ([Stang et al. 1995], [Behloul 1996], [Kosa, Naaman 1990], [Shah 1987]), and in general 
can be grouped into several families. Some of these curves are considered for the description of the 
strain softening behaviour of the tested UHPFRC. Analytical expressions and plots against the 
measured data are given in Section 3.3.2.8. 
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3.3.2.6 Concept of fracture energy in FRC and UHPFRC 

The relationship between average stress and crack opening provides information concerning the 
amount of energy required for the opening of the crack up to the maximal value, wc, (grey surface in 
Figure 3.17 b)). This energy is traditionally defined as the fracture energy of concrete and fibre-
reinforced concrete material, GF,

∫=
cw

F dwwG
0

)(σ , (3.19) 

and was introduced in this concept for ordinary concrete by Hillerborg, Modéer and Petersson, via 
the fictitious crack model [Hillerborg et al. 1976]. The principles of this model are given in § 4.2, but 
only the definition 3.19 is included here, as a means of distinguishing between the nature of fracture 
energy as defined in linear elastic fracture mechanics theories and the energy consumed for the 
opening of the bridged crack. The latter is actually dissipated throughout the crack-bridging actions, 
which for an FRC include debonding, friction, deformation and possible fibre failure, as explained in 
§ 3.3.2.3 and § 3.3.2.4. 

There is also a significant difference in the definition of the crack, which is, in fracture mechanics 
terms, a stress-free surface, while the crack in FRC materials transfers a considerable amount of 
stress, and the term “fictitious” is found more appropriate to designate such material discontinuity. 
However, on the macroscopic (structure-relevant) scale, the fictitious crack is the representative 
crack in fibre-reinforced concretes, while the stress free-microcracks in the matrix are insignificant 
on this scale. This justifies the concept of fracture energy as defined in Equation 3.19.  

The fracture energy values of typical UHPFRC are in a range higher that 10 000 J/m2, while for 
ordinary concrete, fracture energy is of the magnitude of 100 J/m2, Table 3.2. It should be noted that 
the significance of the total fracture energy, GF, of UHPFRC is less important than that of brittle 
materials or even ordinary concrete. The initial rate of change in fracture energy for crack growth 
becomes more significant, as explained in the case of stable crack propagation, § 4.3.5.3.  

3.3.2.7 Constitutive and design material curves in tension 

Constitutive curves in recommendations for UHPFRC 

Present recommendations for UHPFRC suggest the use of tests (tensile or bending) for 
characterization of tensile behaviour. Transfer factor is proposed in order to derivate intrinsic curves 
from different test procedures [SETRA, AFGC 2002]. Figure 3.18 a) shows a proposal for 
constitutive curves in tension according to French recommendations, while a simplified stress-crack 
opening relationship, suggested by Japanese recommendations, is shown in the same figure b). 

a) b) 

Figure 3.18: Characteristic tensile curves: a) stress-strain and crack opening according to [SETRA, 
AFGC 2002]; b) idealised stress-crack opening according to [JSCE 2006] 
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Design curves in recommendations for UHPFRC 

In order to simplify computations, current recommendations propose the use of a continuous stress-
strain curve including the softening part. It should be remembered that “a complete stress-strain 
curve does not exist as a material property; in case where such curves are shown, they have to be 
referred to a certain length over which the additional deformation within the fracture zone has been 
averaged”, [Hillerborg 1991]. 

a) b) 

Figure 3.19: Design curves: a) by  [SETRA, AFGC 2002]; b) by [JSCE 2006] 

French recommendations [SETRA, AFGC 2002] introduce a quantity termed the characteristic 
length, lc, for transforming σ(w) (Figure 3.18 a)) into the σ(ε) curve (Figure 3.19 a)). The 
characteristic length is dependent on sectional dimensions, and for rectangular and T cross-sections, 
a value lc=2/3 h is proposed by these regulations, with h being the depth of the section. The 
transformation is based on the relationship 
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where γc is the appropriate design safety factor. 

In Japanese recommendations, the equivalent specific length, Leq, is used to transform the σ(w)
(Figure 3.18 b)) into the σ(ε) curve (Figure 3.19 b)). This value is calculated using numerical 
simulations, and is reported as being dependent on section height and shape. The expression for Leq

is based on the assumption that the flexural strengths, obtained by the FEM analysis using σ(w), is 
equal to the flexural strength obtained from the section equilibrium using the σ(ε) curve. The 
following relationship is derived from this numerical analysis: 
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For the sake of comparison with the lc, for a typical UHPFRC with 2 % Vf, the value of the 
equivalent specific length Leq is obtained in the range of 0.16 h - 0.35 h for thin elements (10 -
 200 mm), that is smaller value, leading to higher tensile deformations, in comparison to lc=2/3 h
proposed by the French recommendations. For more thick elements the difference between Leq and lc

becomes less significant.  

Further comments concerning the characteristic length used to transform the σ(w) into the σ(ε)  can 
be found in Chapter 4.  



3. UHPFRC: material properties                                                                                                                                       

                                                                                                                                                  

40

3.3.2.8 Tensile behaviour of UHPFRC used in present study; proposed material curves 

For the UHPFRC used in this study (Table 3.3) the data are provided from direct tensile tests. Tests 
were performed at the EPFL Structural Concrete Laboratory. Two types of test specimens were 
considered: unnotched (Figure 3.20 a)) and notched (Figure 3.20 b)). More information about these 
tests can be found in [Jungwirth 2006]. Unnotched specimens show lower tensile strength, 
coinciding with the strength of the statistically least resistant section.  
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Figure 3.20: Measured response of UHPFRC specimen in uniaxial tension: a) average deformation 
over measurement base lm=100 mm of unnotched specimens (G14T1, G14T3); 
b) elongation of measurement base lm = 100 mm of notched specimens (G15F1, 
G15F2, G15F );  more detailed data are presented in [Jungwirth 2006] 

Stress- strain curve  

Based on the experimental data (Figure 3.20) and in accordance with the previous analytical 
considerations (§ 3.3.2.4) the multi-microcracking takes place throughout the volume of the element 
up to a certain deformation. Microcracks are spaced closely together, with small openings, invisible 
to the naked eye. For a representative volume relevant for the structural scale, the integral of 
localised deformations can be considered as a state of uniform change in the material’s structure, 
thus giving a homogeneous continuous behaviour, as if no localisation took place. From the bulk 
strain and stress increases, the average uniaxial values can be obtained as follows: 
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where x is direstion of tensile force, and A is cross-section of the element.  

For the studied UHPFRC, the tensile behaviour before localisation of deformations is represented by 
a bilinear σ(ε) curve (Figure 3.21). This curve is obtained respecting the integral of the force, based 
on the following assumptions: 

- the elastic part is characterised by fct = 9 MPa and Ec = 60 GPa, (Appendix T1), 
- multi-microcracking is represented by a hardening with zero slope, designated the pseudo-

plastic plateau 
- the pseudo-plastic plateau is limited to εu = 2.5 ‰, also according to [Jungwirth 2006]. 

The stress-strain relationship in unloading, Ed, is considered to be constant for a pseudo-plastic 
deformation attained (Figure 3.21 b)). For the tested material, the value of the unloading slope for the 
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maximal pseudo-plastic deformation attained, εu, is E* = 5.8 GPa, based on data from [Jungwirth 
2006]. 

The advantage of a bilinear material model with zero hardening slope is that it enables the simple 
development of analytical expressions for prediction of element resistances. Moreover, it is shown in 
Chapter 4 that this model is appropriate for simulation of the behaviour of elements made of other 
UHPFRCs, and materials that exhibit slight strain hardening. Significant pseudo strain hardening 
slopes are very rarely observed in UHPFRC.  
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Figure 3.21: a) Measured and assumed constitutive stress-strain relationship (up to ultimate 
homogenous deformation) for BSI UHPFRC; b) characteristic points of the σ(ε) curve 
(notations) 

Stress-crack opening 

The stress–crack opening, σ(w), curve characterises the material at the fracture zone. The analytical 
expression for design relevant σ(w) relationship can be formulated providing that the portions of 
fracture energies required for small crack openings are maintained. This yields the shape of the curve 
with the initial slope corresponding to the slope of the measured curve. The importance of this 
criterion is explained in Chapter 4. 

According to § 3.3.2.6,  the energy required to open the crack of a unit area from crack opening level 
wi to wi+1, is 

∫
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If an interpolation function is found over the measured data, {{σ, w}}, an approximate σ(w) function
is sought, verifying the accuracy of the approximate function using the equality of the energy 
portions (Equation 3.25) as follows:  
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For further analytical implementation in design, the additional criterion was the simplicity of the 
form of the approximate function, and its integrability.  

It is found that the stress-crack opening relationship is satisfactorily approximated either by the 
multi-linear curve (Figure 3.22 b), Equation 3.32), or the curve of the following analytical shape 
(Figure 3.22 a)):  
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where both the parameters, wn,w and p, are determined from data fitting. Good correlation with test 
results was found for parameter p=1.2. The parameter wn,w corresponds to the crack opening at which 
stress decreases to the value of 2-p fct. In the case of the measured curves, with p=1.2, wn,w yields 
wn,w = 1 mm.

This curve is similar to the curve proposed by the empirical model of Stang [Stang et al. 1995], [Li 
1993Li et al. 1993]: 
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where p and w1/2 are also the parameters to be obtained from experimental data, and, similarly to the 
previous curve,  w1/2 corresponds to the crack opening when stress decreases to 0.5 fct.

The advantage of the curve proposed in Equation 3.27 is that the initial slope is a determined value:  
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while, for p ≠ 1, it is indeterminate for Equation 3.28. Both curves exhibit the similar inaccuracy for 
stress at higher crack openings: neither the stress nor the slope of the curves at w = wcr yields zero, 
Figure 3.22 a). However, this inaccuracy occurs for large crack openings (> 6 mm), which, as shown 
in Chapter 4, are of no practical interest in the major part of the analysis (bending, bending with N 
force).    
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Figure 3.22: Material constitutive law for stress-crack opening relationship and measured data: 
a) curve resulting from Equation 3.27; b) multilinear curve. 

An additional advantage of Expression 3.27 is that it is an integrable function for w >0:  
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For the development of analytical expressions for further elements analysis, it was found more 
suitable and equally accurate to use a multilinear curve to describe the stress-crack opening 
relationship1:  
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where the inflection points, {{wi, σ(wi)}}, can be found using the curve proposed in Equation 3.27 
and condition 3.26. For the first part of the linear curve, the equality of the slopes (Equation 3.29) 
can also be used as a criterion for definition of the parameters in Equation 3.32. For the given data, 
the first inflection point is set at w1 = 0.5 mm.

Furthermore, considering that for the most frequent design needs (e.g. bending resistance), only the 
small crack openings range is attained, the first linear part of the σ(w) is typically sufficient. 

Consideration of some other σ(w) curves 

The curve proposed by Behloul’s model [Behloul 1996] (Equation 3.15) with approximation of the 
function F(α, r) by a polynomial curve (1-r)γ yields the shape  
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where γ = 2 / α . For an isotropic case (α = 0.5), for example, the function F(α, r) yields (1-r)4 . A 
similar curve shape is proposed by Kosa and Naaman [Kosa, Naaman 1990] with γ = 3. The initial 
slope of this curve is influenced by the ratio between tensile strength and critical crack opening (wcr, 
which is typically assumed as lf /2), and the parameter γ :
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This curve was found suitable for different materials [Marti et al. 1999], including ordinary concrete 
[Kenel 2002] where γ is found by the least-squares fit, as a value ranging between 4 and 6. However 
the initial slope with the mentioned range of γ  is found unsatisfactory for describing the behaviour 
of the tested UHPFRC (Figure 3.23 a)). The reason is the difference in ratio between fct and wcr, (as 
parameters influencing the initial slope, Equation 3.34). Consequently, higher γ  values enable a 

                                                     
1 Bilinear curves are commonly used for modelling of softening behaviour of ordinary and SFRCs 
[RILEM 2002];  



3. UHPFRC: material properties                                                                                                                                       

                                                                                                                                                  

44

better fitting of the first part of the curve, but in this case the rest of the curve is not well followed 
(Figure 3.23 b)). Additionally, it should be stated that, using a standard procedure for fitting the 
parameters (e.g. least-squares fit) over the whole set of data, the obtained curves may respect the 
integral 

F

w

eapproximat Gdww
cr

=∫
0

)(σ ,

but stress values in the initial part of the curve are overestimated, which can lead to unreliable 
predictions of the element’s resistances (Figure 3.23 b)).  
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Figure 3.23: Modelling of tensile strain softening according to Equation 3.33: a) with wcr=lf  / 2 and  
γ = 2, 3 and 4; b) with wcr=lf  / 2 and parameter γ  obtained by fitting for three sets of 
measured data (γ =4.2, 5.1 and 6.3) 

Another family of curves is based on the shape proposed by Shah [Shah 1987] :  
pwq

ct efw ⋅−⋅=)(σ  (3.36) 

with q and p being fitting parameters. A plot of such a shape against the measured data is shown in 
Figure 3.24. This expression enables material behaviour to be represented with sufficient precision. 
It is found less attractive for analytical application in the design of elements however. In cases where 
numerical integration is applicable, this form of curve can be well applied.  
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Figure 3.24: Fitted exponential curve (Equation 3.36) with obtained parameters q = 0.7 and
p = 0.75
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3.3.2.9 Concluding remarks  

UHPFRC is a material that exhibit high tensile strengths, in the range of 10 MPa, but especially high 
tensile strains (2 -3 ‰), achieved with no decrease in stress (Figure 3.25). This behaviour, governed 
by the presence of short fibre reinforcement with random distribution, must be able to develop in the 
structural element, for it to be implemented as a material property in the design. To this end, a 
minimal quantity of fibres and their effectiveness need to be assured. It is shown both experimentally 
and analytically that in a UHPC matrix, providing that the casting procedure is correct, strain 
hardening behaviour can be achieved as from a fibre volume fraction of 2 %.
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Figure 3.25:  Comparison of tensile capacities of UHPFRC and reinforcing steel bars: for the 
softening part of stress-deformation curve of UHPFRC, deformations of the element 
are averaged over different lengths, lm; deformations of the steel bars are provided by 
tests [Redaelli 2006], and values are in agreement with the code [CEB 1993] 

The UHPFRC used in this study, containing a 2.5 % steel fibre volume fraction, is characterised by a 
tensile strength of 9 MPa with a plateau in tension reaching 2.5‰ (Figure 3.25). 

The structure-relevant crack is considered to develop with tensile strain softening. This crack 
transfers a significant part of the tensile stress (a “fictitious crack”), resulting in a high fracture 
energy value in comparison to other concretes (higher than 10 KJ/m2 compared to approx. 100 J/m2, 
Figure 3.26). 

Models for the description of strain-softening behaviour are investigated and a simple analytical 
formulation is proposed. For design needs only the small crack opening range is of interest, and it is 
sufficient to apply the linear stress-crack opening relationship, respecting the slope of the softening 
curve rather than the integral up to maximal crack opening (GF). Continuous curves may be of more 
interest for numerical application.  
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Figure 3.26: Comparison of slopes of softening curves of UHPFRC, SFRC and ordinary concrete  
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3.4 Other material properties of UHPFRC 

The material properties referred to in the following sections, although important in providing correct 
structural performance, are not the subject of the present research. For this reason only the principal 
points and relevant references are summarised.  

3.4.1 Long term behaviour: shrinkage, creep, self-healing     
According to some authors, creep and shrinkage are “the most outstanding characteristics” of UHPC 
[Acker, Behloul 2004], since the effect of both phenomena is significantly decreased.  

Shrinkage is a process primarily caused by the self-dessication, and due to the low water-cement 
ratio in UHPFRC, it is reported that the major part of shrinkage occurs immediately after settling, 
while practically no shrinkage occurs after early age. A difference in behaviour is reported between 
thermally treated and non-treated UHPC. According to French recommendations [SETRA, AFGC 
2002], autogenious shrinkage is defined as a function of the water-cement ratio, and for thermally 
non–treated material with a water-cement ratio of 0.17 - 0.20, for time t , the shrinkage value is 
550 μm/m. For thermally treated material no shrinkage develops according to these 
recommendations. Certain manufacturers of UHPFRC give similar values: zero to 10 μm/m post-
cure shrinkage and 550 μm/m for thermally non-treated material characterises Ductal, the UHPFRC 
manufactured by Lafarge [Graybeal 2006].  

Creep is closely related to shrinkage behaviour from the microstructural point of view, [Acker 2004a 
], and it is observed that thermal treatment significantly reduces creep [SETRA, AFGC 2002]. The 
evolution of creep function depends on the age of the material at loading. For example, a creep 
coefficient of 0.2-0.8 is suggested for Ductal, with the lower values corresponding to thermally 
treated material and the higher to non-treated material. In normal concrete, the creep coefficient can 
reach the value of 3 to 4. Low creep values are of particular interest for the application of 
prestressing (reduction of prestress losses). 

More details concerning the creep and shrinkage of UHPC, HPC, and ordinary concrete, based on 
the description of microstructural changes, can be found in [Acker 2004], [Acker 2004a] and 
[Kamen 2007].  

Another positive consequence of a low water-cement ratio and the fact that a conciderable 
percentage of the cement paste remains unhydrated, is that, in the presence of humidity, further 
hydration can take place in microcracks. This is known as the self-healing effect. The results of an 
experimental programme conducted in order to quantify the self-healing of UHPC materials are 
reported in [Granger et al. 2007], [Hearn, Morley 1997]. Both the recovery of global stiffness and the 
improvement in strength of initially cracked specimens are reported, as a function of the time of 
healing. The stiffness recovery is due to the formation of new crystals with a stiffness close to that of 
the C-S-H crystals that were initially formed. 

3.4.2 Porosity, durability  
As already mentioned in relation to the conception principles of UHPC, the matrix is tailored in 
order to decrease porosity on different scales, resulting in hardly any capillary porosity in 
comparison with other concrete materials [Vernet 2003], [ Schmidt, Fehling 2005], Figure 3.27.  



                                                                                                             3. UHPFRC: material properties

47

Figure 3.27: Distribution of pores of different size in UHPC, HPC and ordinary concrete, from 
[Schmidt, Fehling 2005] 

The durability of UHPFRC is related to this impressively decreased porosity, and to generally 
improved material homogeneity. This results in highly improved resistance to the penetration of 
chlorides, frost and freezing attack, etc. Various laboratories are investigating these issues 
worldwide. More detailed information on these properties and characteristic durability values can be 
found in [Vernet 2003], [Schmidt, Fehling 2005]. 

Microcracking, characterised by small crack openings, has been proved to have only a small impact 
on permeability, and consequently durability [Aldea et al. 1999]. 

3.4.3 Energy-dissipation capacity, impact resistance 
UHPFRC has a high energy-dissipation capacity, which ensures cracking stability even in the case of 
relatively strong impact. For typical rates of impact loading on civil engineering structures, it is 
demonstrated that tensile strength increases up to two times, and compressive strengths up to 1.5
times according to [SETRA, AFGC 2002] and based on research on RPC, e.g. [Toutlemonde et al. 
1998].   

3.4.4 Fire resistance 
UHPFRC reinforced with steel fibres only exhibits relatively unfavourable behaviour. Due to the low 
content of connected pores, and higher enclosed porosity, steam cannot escape, resulting in an 
increase in internal stresses in the presence of high temperatures. Fire resistance problems can be 
avoided by the use of organic fibres, [Acker, Behloul 2004], which, in melting, create 
communication between the pores. The addition of approximately 0.7 % in volume of polypropylene 
fibres provides sufficient fire resistance [Heinz et al. 2004]. 

3.5 Conclusions  

UHPFRC is a new, advanced concrete material of elaborated composition, with remarkably superior 
mechanical strengths and durability in comparison to other concretes. 

As a result of material optimization on different scales, the obtained UHPC microstructure is very 
homogeneous and compact, with almost no capillary porosity. The developed microstructure 
explains the significantly improved mechanical properties. Ductility is achieved by the addition of 
short fibres, in an optimal quantity that also maintains the workability of the fresh mixture.   

The compressive strength of UHPFRC is higher than 150 MPa; tensile strength, in the range of 
10 MPa, is characterised by significant ultimate strain (approx. 2-3 ‰), and the cracking behaviour 
of the composite is characterised by a fracture energy higher than 10 kJ/m2.
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From a qualitative point of view, the compressive behaviour of UHPFRC does not differ 
substantially form the behaviour of ordinary concrete, and it is possible to model it with a slight 
adaptation of material laws used for ordinary concretes. More detailed conclusions on the behaviour 
in compression and modelling are given in § 3.3.1.6.  

The tensile behaviour of UHPFCR is characterised by the strain-hardening phase, often with a small 
slope, that distinguishes it from other concretes and FRCs. The potential of the material to develop 
strain-hardening phase depends on the quantity of fibres and their orientation, the latter being 
strongly influenced by the casting procedure. Details of this behaviour and modelling possibilities 
for further design needs are discussed in § 3.3.2, and conclusions are given in § 3.3.2.9.  

In addition to mechanical strengths, the properties of interest for structural application such as creep 
and shrinkage, durability, and impact strengths are also impressively improved due to the material 
microstructure.  

The combination of these properties postulates more advanced structural application:  
- high strengths and ductility, combined with material durability, suggest that applications 

without passive reinforcement, and with a decrease in element size, may be  possible;  
- the plasticity of the fresh material allows easy placement in a variety of formworks, without 

additional vibrating; combined with the fact that the ordinary reinforcement can be excluded, 
a gain in production time and a greater freedom of form are possible.  
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4.  Analysis and design of UHPFRC structural elements 
in bending 

The objective in this chapter is to study bending behaviour of UHPFRC elements and develop a 
practical procedure for their analysis and design. Elements without conventional reinforcement are 
considered.  

The specific mechanical properties of the material lead to an element bending response with a 
pronounced non-linear part, governed by multi-microcracking in the tensile region and the 
propagation of a localised macrocrack. For this reason fracture mechanics theories are required for 
understanding UHPFRC element response in bending. An analytical model describing the behaviour 
of elements in the presence of pseudo-plastic tensile strain (representing multi-microcracking) and 
the localised crack is developed in this study. The results are compared with the experimental results 
obtained in a test programme on thin UHPFRC elements in bending (Appendix T1). The results of 
the analytical model are also compared with the results of a developed numerical model for finite 
element analysis. The plausibility of analytical results is also demonstrated for elements made of 
other quasi-brittle materials, with and without the multi-microcracking phase. A simplified version 
of the model is proposed for design purposes. 

The influence of the specific tensile properties of UHPFRC on bending strengths and ductility are 
studied by means of parametric analysis, with the major parameters for the analysis being the 
maximal deformation achieved during the microcracking phase and the slope of tensile softening 
law. Based on these results, the size effect in relation to strength and to the deformational capacity of 
elements made of UHPFRC and other quasi-brittle materials is discussed. Conclusions regarding 
practical design procedures for UHPFRC thin elements without ordinary reinforcement are drawn.  

a) 

microcracking
localised 

 macrocrack

b) 

microcracking
localised 

 macrocrack

Figure 4.1: UHPFRC structural elements failing in bending, without the possibility of 
redistributing internal force; thus the resistance of the element corresponds to the 
resistance of a critical section; a) thin elements without ordinary reinforcement; 
b) deep elements, with prestressing reinforcement 

4.1 UHPFRC elements in bending: problems involved 

Models that describe the bending behaviour of UHPFRC in a physically realistic way and allow 
prediction of resistance to bending failure are required for structural design. The principal difference 
between the behaviour of UHPFRC elements and those made of ordinary RC and FRC is that a 
significant tensile force is sustained by the material itself, primarily due to significant ductility in 
tension. These mechanical properties change both the design approach and the structural concept for 
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an appropriate application of UHPFRC, allowing ordinary reinforcement to be excluded in some 
structural elements. 

UHPFRC elements of interest for structural application are thin slabs without ordinary 
reinforcement, with a short span (Figure 4.1 a)), or deeper prestressed beams with a longer span 
(Figure 4.1 b)). In statically determinate systems failing in bending, the resistance of the element is 
governed by the resistance of a critical section. In statically indeterminate systems (Figure 4.2) the 
rotational capacities of the first cracked sections may provide a certain amount of force 
redistribution, enabling further increase in load. These systems are studied in Chapters 5 and 6, while 
the present chapter deals with the bending of statically determinate systems.   
a) b) 

localised 
 macrocracks

localised 
 macrocracks

Figure 4.2: UHPFRC structural elements failing in  bending with the possibility of redistributing 
internal force; the resistance of the element is higher than that of the first cracked 
section, a) thin slab with two line supports (in Π-shaped girder); b) thin slab with four 
line supports (in ribbed slab) 

Design recommendations for UHPFRC structures 

Intensive work has been carried out on developing design recommendations for UHPFRC in recent 
years by different national and international research committees. Theses efforts have focused on 
material characterisation, formulation of material constitutive laws, and resistance models. Current 
documents remain at the level of provisions:   

- Interim Recommendations by the UHPFRC working group of the French Association of Civil 
Engineers, AFGC, and the Technical Department for Transport, Roads and Bridges 
Engineering and Road Safety within the French Ministry for Transport, SETRA, chaired by 
B. Lecinq and J. Resplendino [SETRA, AFGC 2002]; the document is based mostly on the 
recommendations for steel-fibre reinforced concrete by AFREM; 

- The Draft Recommendations for UHPFRC of the Japanese Society of Civil Engineers, JSCE, 
published on September 2006 [JSCE 2006]; 

- A State-of-the-art Report on UHPC by the German Association for Reinforced Concrete, 
published in  2003 [DAfStB 2003]; 

- Material Property Characterisation of Ultra-High Performance Concrete, a report published by 
the U.S. Department of Transportation [Graybeal 2006].  

The documentation published by the RILEM technical committee 162 on fibre-reinforced concretes 
may also provide useful information for the design of UHPFRC elements [RILEM 2002]. 

Considering the design in bending, a transition from knowledge gained at the material level to safe 
application in structural elements becomes a delicate task, owing to the fact that the bending 
resistance of a UHPFRC member is associated to cracking behaviour which is affected by size effect. 
This phenomenon characterises all quasi-brittle material, and is also well recognised for ordinary 
concrete ([CEB 1993], [Bazant, Cedolin 1991]), although the fracture properties of concrete 
elements reinforced with ordinary bars are not normally included in design. Moreover, the bending 
resistance of an RC element is determined according to the theory of plasticity [SIA 2003b], with no 
tensile forces being sustained by the concrete. When it comes to materials with a significant tensile 
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strain hardening and tensile softening capacity, such as UHPFRC, the material’s capability to sustain 
tensile forces is of interest in design. 

4.2 Fracture models for quasi-brittle materials 

Since crack formation and propagation play an important role in both ordinary and fibre-reinforced 
concrete structures, fracture mechanics (FM) theories can be applied in assessing their behaviour at 
failure [Bazant 1976]. The characteristics of cracks in concretes, being quasi-brittle materials, make 
the use of non-linear FM theories obligatory. Among existing approaches, the most widely accepted 
are the fictitious crack model, (FCM) proposed by Hillerborg, Modéer and Petersson [Hillerborg et 
al. 1976], and the crack band model proposed by Bazant [Bazant 1976], [Bazant, Oh 1983]. The two 
models differ mainly in the concept of the crack zone (Figure 4.3). Some other approaches to 
modelling cracks in concrete can be found in literature [Carpinteri, Massabò 1997], [Li et al. 1996].  

Fictitious crack model 

The FCM is an application of the Dugdale-Barenblatt strip yield model, with the assumption of a 
non-constant intensity of the stress transferred at the crack tip (Figure 4.3 a)). It is also known as the 
“cohesive zone model” [Hillerborg 1991]. Most of the models describing the behaviour of concrete 
structures in the presence of a localised crack apply the principal hypotheses of the FCM. In the 
present thesis the FCM is also used for the development of an analytical bending model (§4.3.5) and 
for a numerical, finite element model (Appendix M2). For this reason the hypotheses of the FCM are 
detailed:  

- the intensity of the stress transferred over the crack (fracture mode I) is a monotonically 
decreasing function of the separation of crack surfaces (henceforth referred to as crack 
opening in further text), σ=σ(w); the stress-crack opening relationship is a material property 
defining the fracture zone, which replaces conventional fracture mechanics material 
properties, such as KI, G, J, COD [Hillerborg 1980]; 

- the fracture process zone is the fictitious crack itself [Hillerborg 1980], and the total energy 
dissipated in the crack is dissipated for the crack opening; 

- the crack forms when the tensile strength, fct, is reached at the crack tip, and propagates with 
the same value of tensile stress at this point (Figure 4.3 a)). For this reason the stress intensity 
factor loses its significance in the FCM. 

The FCM is suitable for implementation in a structural model analysed by a finite element method. 
The model enables the stability of crack growth for any σ (w) relationship to be observed in a 
realistic way. The size effect can also be predicted by this model.  

a) b) 

Figure 4.3: Crack models for quasi-brittle materials: a) fictitious (cohesive) crack model; b) crack 
band model; from [Bazant 2002] 

Crack band model 

Similarly to the FCM, the crack band model, proposed by Bazant, enables the formation and 
propagation of a crack transferring tensile force to be described accurately, and the size effect to be 

wc
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observed. The principal difference is that the line crack is replaced by a band, of width wc, in which 
the non-linear deformations near the crack are uniformly smeared (Figure 4.3 b)). This approach may 
be more appropriate for finite element analysis, but it is essentially equivalent to the line crack 
approach if the mean strain across the crack band corresponds to the ratio of the crack opening over 
the wc [Bazant, Cedolin 1991].  

4.2.1 Existing models for bending in quasi-brittle materials  
The bending behaviour of quasi-brittle materials can be described by models that take into account 
the development and propagation of a discrete crack transferring tensile force. Particularly since the 
first developments in fibre-reinforced concretes (FRC), characterised by significant tensile force 
transfer over the crack, numerous models for describing bending response have been proposed in the 
literature. According to the approach used to describe the crack, two groups of bending models can 
be distinguished:  

- continuous models, and 
- discrete crack models. 

In continuous models the influence of crack opening is smeared over a certain distance, usually as a 
function of element depth and the correlated stress-strain, σ−ε, relationship is used to characterise the 
crack1. The development of some of the continuous approaches for bending can be found in 
[Naaman et al. 1993], [Behloul 1996] etc. In the year 2000, the RILEM committee for FRC 
published the Recommendations for σ−ε design method for SFRC elements [RILEM 2000].  

The major difference between continuous and discrete crack bending models is that in the latter the 
stress transferred by a crack is expressed as a function of crack opening, based on the assumptions of 
the FCM, [Ulfkjaer et al. 1995], [Armelin, Banthia 97], [Stang, Olesen 1998], [Olesen 2001]. 
Various approaches for analysing structural response in the presence of a discrete crack are 
proposed, differing principally in the way in which the crack-surrounding region is modelled:  

- the crack implemented in a linear continuum; in this case the disturbance of the stress field due 
to stress decrease in the crack is taken into account by finite element method (FEM) analysis;   

- the crack modelled as a non-linear hinge; in this case kinematic assumptions are made 
enabling the region surrounding the crack to be taken into account regardless of the real state 
of stress.  

The possibilities and limits concerning the application of discrete crack models in analysing 
UHPFRC in bending were investigated in the present research and thus the main assumptions of 
some of these models are detailed. The comparison between the results from existing discrete models 
and results from the model developed in this thesis are given in Section 4.4. 

4.2.1.1 Models for non-linear hinge 

The hypotheses applied in non-linear hinge models, summarised below, enable the presence of a 
discrete crack in a bending element to be taken into account without the need for FEM analysis:  

- the non-linear behaviour of the element is concentrated in the zone of the hinge, of length s, 
whose endfaces are assumed to remain plane, providing continuity with the rest of the element 
(Figure 4.4); 

- mechanical equilibrium in the cracked section is established using the tensile softening stress-
crack opening relationship in the cracked part, while the rest of the section follows the linear-
elastic material law (e.g. Figure 4.5 a)); 

- kinematic assumptions are introduced to describe the hinge zone (Figure 4.4), while the rest of 
the structure behaves linear-elastically. The classic non-linear hinge approach gives an average 
curvature that corresponds to a given crack opening, while some other models (e.g [Casanova, 
Rossi 1996]) enable the curvature in the very cracked section to be distinguished.  

                                                     
1 In some of the earliest works on the bending of SFRC, [Swamy, Mangat 1974], bending resistance was 
considered only as  a characteristic of the composite material. 
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A state-of-the-art document on non-linear hinge models for bending of SFRC is published by 
[RILEM 2002].  

a) b)                                    c) 

Figure 4.4: a) Concept of the non-linear hinge; b) and c) different kinematic assumptions; from 
[RILEM 2002] 

 In the non-linear hinge model proposed by Pedersen [Pedersen 1996], the kinematic hypothesis 
assumes that the fictitious crack surfaces are plane, and that the crack opening angle is equal to the 
overall rotation (angular deformation) of the non-linear hinge (Figure 4.4 b)). The crack propagates 
when maximal tensile strength is attained at the crack tip (Figure 4.5 a)). The non-linear hinge is 
related to the crack mouth opening displacement, wCMOD, as follows:  
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for a constant distribution of the curvature, χ = fct / Ec /(h - x0 - a), along the length s of the non-linear 
hinge. In this formulation h is the section height, x0 the position of the neutral axis, a crack length, 
ϕ  rotation (Figure 4.5 a)), and fct and Ec are tensile strength and modulus of elasticity. By defining a 
value for parameter s, the relationship between bending moment and rotation (or the averaged 
curvature) can be found based on the equilibrium of sectional forces (Figure 4.5 b)). 
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Figure 4.5: Non-linear hinge model proposed by Pedersen: a) kinematic and force equilibrium of 
non-linear hinge; b) simulated moment-rotation (or average curvature) relationship 
with variation of the non-linear hinge length (parameter s); c) simulated force-
displacement response of a beam in three-point bending 

For application in structural analysis, the length of the non-linear hinge, s, is considered a fitting 
parameter. According to the author and others [Ulfkjaer et al. 1995], [RILEM 2002], it has been 
shown that reasonable results are obtained with s = h/2 for plane concrete and FRC. The model is 
used to simulate moment-rotation relationships for a FRC beam and the results are plotted in 
Figure 4.5 b) for different values of parameter s (s =1/4 h, 1/2 h and h). The geometry of the beam 
and material properties are assumed as in the case study presented in [RILEM 2002]: beam of span 
L = 500 mm, and constant cross section 150x150 mm, subjected to three-point bending; modulus of 
elasticity Ec=35 GPa, tensile strength fct=3 MPa, and the initial slope of the strain softening curve of 

s= h/4 

s= h/2 

s= h

s= h/4 
s= h/2 
s= h 
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30 MPa/mm up to crack opening w= 0.05 mm and zero stress at w= 10 mm. It can be seen that 
varying parameter s results in a significant change in maximal bending resistance, and above all a 
change in deformational capacity of the non-linear hinge. More ductility is obtained with non-linear 
hinges of shorter lengths. Considering the simulated force-displacement response as a function of 
parameter s, the influence on resistant moment remains, while the effect on deformation lessens 
(Figure 4.5 c)). For the given boundary conditions, force-displacement relationship is found in a 
closed form, as a function of s. Otherwise, displacements can be obtained by curvature integration 
along beam length (Equation 4.20). 

Another non-linear hinge model is presented by Casanova and Rossi in [Casanova, Rossi 1996], 
[Casanova, Rossi 1997]. The assumptions of this model regarding the kinematics of the non-linear 
hinge are similar to those of the model proposed by Pedersen (Figure 4.4 b)) - the angle between the 
fictitious crack faces remains proportional to the angular rotation, ϕ = wCMOD / a. But two curvatures 
are considered in this model: the curvature in the cracked section, χc, and the elastic curvature at the 
edge of the non-linear hinge, χel. Assuming a parabolic variation of the curvature along the non-
linear hinge, an average value can be obtained (χm =(2 χel +χc)/3). The length of the non-linear hinge 
varies with the crack length as Δf = 2 a. Examples of application of the model to simulate behaviour 
of a cracked section in FRC subjected to bending are plotted in Figure 4.6 b) and c). The same beam 
and material properties used to illustrate the model of Pedersen are applied for this analyis. 
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Figure 4.6: Non-linear hinge model proposed by Casanova and Rossi: a) kinematic hypothesis; 
b) simulated M-χc response of the cracked section, with variation of non-linear hinge 
length; c) possibility to predict size effect with respect to bending strength and 
ductility (Δf/a = 2a) 

The model of Maalej and Li [Maalej, Li 1994], [Li et al. 1996] applies the concept of the fictitious 
crack model, FCM, using an iterative procedure to resolve the problem of crack mouth opening 
displacement w (CMOD), based on the idea of superposition (Figure 4.7): the CMOD w is the sum of 
the CMOD w1 of a real (stress-free) crack of crack length a, caused by applied bending moment M
(Figure 4.7 b)) and of the closing CMOD w2, caused by cohesive stress σ(x) (Figure 4.7 c)). The 
components of crack opening, w1 and w2, are calculated using expressions provided by Tada, Paris 
and Irwin in [Tada et al. 1985]. 
a)  b)  c) 

= +

Figure 4.7:  Superposition of CMODs in model proposed by Maalej and Li [Maalej, Li 1994] 
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Other approaches to non-linear hinge modelling (e.g. Figure 4.4 c)) can be found in literature.  

The force-displacement (P-δ) response of a beam in bending can be obtained by applying the 
presented non-linear hinge models, by either integrating the curvature, or superposing the elastic 
displacement of uncracked beam and the displacement due to the non-linear hinge rotation with the 
rest of the body assumed as being rigid body. A closed form solution (as a function of s) can be 
found for the model proposed by Pedersen when a simple tensile softening law is applied. The model 
of Casanova and Rossi and that of Maalej and Li both require an iterative resolution for M-χ and P-δ
relationships.  

The models presented above are developed for elements made of materials characterised by tensile 
softening, for which the deformation localises in a single crack while the rest of the element behaves 
as a linear-elastic continuum. In the case of UHPFRC, characterised by tensile hardening, the 
localisation of deformation occurs after the developement of a non-linear multi-microcracking phase 
that extends over a larger part of the beam. This additional non linear contribution is not taken into 
account by the previously presented models. 

4.3 Proposed model for bending of UHPFRC elements  

An analytical model for describing the non-linear inelastic bending response of a UHPFRC member 
is developed in this section. The model enables the resistance and deformability of bending elements 
required for structural design to be assessed. An element made of UHPFRC attains bending 
resistance during the cracking phase. For this reason the reliable introduction of the multi-
microcracking phase and a localised macrocrack constitute the principal issues of the model. 

4.3.1 Approach 
The studied structural member is assumed to be of sufficient length in relation to its thickness, and 
subjected to transversal load, allowing the hypotheses of the classic beam theory to be applied. This 
enables the analysis and design procedure to be maintained similar to the practical design performed 
for ordinary civil engineering structures, studying the distribution of stresses and strains in the 
element via the stress-strain distribution at the cross-sectional level. The mechanical properties of the 
material in tension result in different states of deformation and correlated stress distribution over the 
section height. As previously mentioned, in a statically determinate system bending failure is 
governed by the failure of the most loaded section, termed the critical section.  

Based on the deformation states of the critical section, different behaviour regimes of an element in 
bending are distinguished (Figure 4.8): 

A) Linear-elastic behaviour 
B) Non-linear inelastic behaviour before macrocrack opening 
C) Non-linear behaviour with macrocrack opening, and increase in load-bearing capacity of the 

element (resistance increase with local tensile softening in the crack)  
D) Post-peak behaviour (resistance decrease) 

The study is performed regime by regime, on a beam element subjected to three-point bending 
(Figure 4.8 c)). The beam has a rectangular cross-section of width b and height h, and the span of the 
beam is L.

The non-linear phase before macrocrack opening (regime B) is characterised by the presence of 
multi-microcracking, which is considered a homogeneous material property (§ 3.3.2.8) and is 
represented by pseudo-plastic yielding in tension (Figure 4.10 b)). This enables the formulation of 
close form solutions describing the force-displacement relationship for the element before tension 
softening occurs. Similar approaches to modelling the multi-microcracking phase, applying 
numerical analysis, are presented in [Casanova 1996], [Kabele 2000], [Kunieda et al. 2002], [Tailhan 
et al. 2003]. For typical UHPFRC material properties, it is shown that the non-linear behaviour 
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before the macrocrack starts to propagate is the regime in which the element response during service 
life is situated. For this reason, it was also important to develop an analytical formulation defining 
the stiffness of a member in the presence of damaged (microcracked) regions. 
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Figure 4.8: UHPFRC beam in three-point bending: a) an example of normalised force-
displacement response of a tested element (Appendix T1); b) schematic force-
displacement response with distinction of behaviour regimes; c) geometry and 
boundary conditions of case study with schematic representation of cracked region 

The ultimate limit states of the studied member (end of the regime C) are attained with macrocrack 
opening, and both the strength and deformability in this regime are of interest. The macrocrack is 
modelled using the assumptions of the fictitious crack model [Hillerborg et al. 1976] (§ 4.2) and the 
propagation of the fictitious crack in the member is governed by energy equilibrium, based on 
fracture mechanics theories. Using the results of the model, an approach providing the analytical 
relationship between the force and deformation of a cracked section is also proposed.  

As in any structural analysis, three groups of equations must be satisfied for each of the mentioned 
behaviour regimes:  

- equations of equilibrium (static equations) 
- equations of continuity (kinematic equations) 
- constitutive equations (material behaviour). 
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4.3.2 Hypotheses of the model 
The following hypotheses are applied in the developed model:   

- Element is not subjected to normal force (N=0); 
- Small displacements are assumed: the equilibrium of internal and external forces is established 

on the undeformed system, enabling linearisation of the equilibrium differential equations 
(First Order Theory); 

- The theory of small deformations is respected: higher degrees of deformational values are 
disregarded in the calculation of componential displacements, providing linearisation of the 
relationship between deformations and displacements; 

- The Navier-Bernoulli hypothesis for deformations of uncracked and microcracked section is 
assumed: plane sections remain plane and perpendicular to mid-plane after deformation; 
compatibility conditions are than provided by the following linear relationship  

yyy
xx

xx ⋅=⋅=
ρ

χε
1

)(   (4.2) 
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21

dx

d

xx

ν
ρ

χ ≈=    (4.3)  

is the curvature of the mid-plane, corresponding to radius ρxx, and ν is the vertical 
displacement of the beam’s mid-plane. (Positive orientation of element axes, positive signs for 
internal forces, stresses and strains are indicated in Figure 4.9.) The right side of Equation 4.3 
is obtained by disregarding (dν / dx)2, which is much smaller than 1. All other deformations 
εxy, εxz,εyz,εzz  are negligible; 

- In order to develop analytical expressions, material behaviour is represented by simplified 
relationships: a linear elastic stress-strain relationship σ(ε) is used in compression1, elastic-
plastic (bilinear) stress-strain relationship with constant-stress plateau and limited strain is 
used in tension, and a linear stress-crack opening relationship σ(w) is used for tension 
softening curve2 (Figure 4.10); 

a) Compression 

−σ

−ε

E

fc

c

εel

b) Tension: stress-strain, 

σ

ε

E

fct

c

εel εu

E  (  )d ε

stress-crack opening 

σ

fct

1 ww

Figure 4.10: Material constitutive laws used for development of the analytical model; numerical 
values used in the present study for UHPFRC are given in § 3.3.1 and § 3.3.2 

- Plastic yielding in tension occurs for σxx = fct. (The applied yielding criteria is justified for 
bending failure, where shear stress remains sufficiently low and the maximal principal tensile 
stress σI does not exceed maximal normal tensile stress σxx.); 

                                                     
1 For modelling of bending in elements without ordinary reinforcement and with N=0, compressive strains 
remain in the linear-elastic range 
2 Only the initial part of softening curve is relevant in providing bending strength of UHPFRC elements
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- Hypotheses related to the development and propagation of the fictitious crack, based on 
fracture mechanics theories, are presented in § 4.2; some additional hypothesis will be 
introduced in § 4.3.5. 

Based on the previous hypotheses, sectional equilibrium is assured by respecting the following 
equations:    

( ) ( ) ydzdyxyxM xx∫∫ ⋅= ,σ ,   ( ) ( ) ydzdyxxN xx∫∫= ,σ ,        (4.4) 

where M(x) and N(x) are bending moment and normal force along the length of the element, x. The 
internal forces must satisfy the following relationships: 

( ) ( )
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xdV
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xdM
−==       , , (4.5) 

where V(x) is shear force along the length of the element and q is the load acting on the system 
(Figure 4.9).  

Disregarding the contribution of shear deformations,  the deflection of the beam is represented by the 
deflection of the beam’s mid-plane, ν, as a function of x only, with the governing equation for the 
mid-plane deflection  
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For a general stress-strain relationship σxx(ε), Equation 4.6 cannot be solved by algebraic methods.  
If the distribution of the curvature χ along x is known however, the displacement can be obtained 
from the integration of Equation 4.3 with two known boundary conditions. Alternatively, the force-
displacement relationship can be obtained by the second moment of area theory. Thus, the 
displacement at each point of the member can be determined if the function of the curvature along x
is known. For this reason, the derivation of the continuous function of the curvature for a non-linear 
material behaviour is of interest in the present study.  

The force-displacement response of the element in bending will often be presented in a normalised 
form, by means of equivalent bending stress, σequ, and equivalent bending strength, fequ. Equivalent 
bending stress (or simply bending stress) is defined as 

elh
elz
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,

),(
⋅=σ , (4.7) 

where Iz,el is the moment of inertia of the elastic uncracked section with respect to axis z, passing 
through the section centroid (Figure  4.9), and yh1,el is the distance of the outermost tensile fibre from 
the centroid. The equivalent bending strength (or simply bending strength) represents the maximal 
value of bending stress, obtained for M= Mmax, where Mmax is the maximal moment sustained by the 
critical section. For the geometry and boundary conditions of the case study (Figure 4.8 c)), the 
reference bending stress is defined as 
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where P is the mid-span point load, L is the element span, and b and h are the width and height of the 
section respectively. Bending strength is obtained for P = Pmax, where Pmax is the maximal force 
sustained by the element.  
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4.3.3  Linear-elastic behaviour 
Linear-elastic behaviour characterises the element as long as the maximal tensile strain in the critical 
section is smaller than the elastic strain εel. Only a small part of the bending strength (0.35 – 0.4 fequ) 
and a very small part of the corresponding deformations of a UHPFRC beam (1/10 δPmax) are 
achieved in this regime (Figure 4.8 b)). This behaviour is accurately described with known equations 
of linear-elastic beam analysis, enabling the maximal force Pel,max sustained by the system in this 
regime, and the corresponding deformation δel to be determined.  

4.3.4 Non-linear behaviour due to multi-microcracking 
If the deformation or force in the system increases beyond the elastic regime, the force-displacement 
response becomes non-linear (Figure 4.11 a)). Pseudo-plastic yielding occurs in sections in which 
tensile strains exceed the elastic limit. Unlike typical plastic yielding, e.g. in metals, which is 
isotropic regarding compressive and tensile behaviours, the pseudo-plastic yielding considered here 
appears only in the tension region. This results in an asymmetric distribution of stresses over the 
section, with displacement of the neutral axis from the centroid of the cross-section towards the 
compressed zone, as shown in Figure 4.11 c) and 4.12.  
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Figure 4.11: a) Position of multi-microcracking regime (B) in whole force-displacement response 
in bending, b) material behaviour in tension, c) distribution of curvature along 
element’s axis  

This phase ends when the maximal tensile strain in the critical section attains the value of uniaxial 
tensile strain prior to strain softening, εu, (Figure 4.11 b)). The coinciding force P and the 
corresponding moment at the critical section are designated Ppl,max and Mpl,max, respectively. Bending 
stress (Equation 4.7) at the end of the multi-microcracking regime is   

 σequ (Mpl,max) = nfct fct,  (4.9) 

where nfct is a coefficient to be developed (Equation 4.16).  
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Considering the entire element, there are the parts that are still in the linear-elastic phase (for x ≤ xel), 
and the parts with different levels of quasi–plastic yielding in tension (xel ≤  x ≤  L/2, in symmetric 
boundary conditions), Figure 4.11 c). The position xel varies as a function of load level P.

Respecting the hypotheses given in § 4.3.2, the relationship between the deformation and the 
sectional force, i.e. moment-curvature relationship, and the force-displacement relationship for the 
member are found in a closed form (Equations 4.10, 4.11, and 4.22). An analytical development of 
these relationships is presented in Appendix M1. Only the final expressions are given in the 
following sections. 

4.3.4.1 Cross-section with pseudo-plastic yielding in tension 
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Figure 4.12: Stress and strain distribution in the section with pseudo-plastic yielding in tension 

The moment-curvature relationship of the rectangular section is governed by the following 
equations:  
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where max,elχ and max,plχ are the curvatures at the first cracking and at the end of the pseudo-plastic 

regime respectively, defined as 
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Moments Mel,max  and Mpl,max  are the maximal moments that can be borne by the section, with N=0, in 
elastic and pseudo-plastic regimes respectively, defined as 
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1 For χ < χel, max, and M<Mel, max , expressions  M(χ) and  χ (M,) are well known from linear-elastic analysis.  
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The maximal bending stress before the macrocrack occurs, termed pseudo-plastic bending strength, 
can then be expressed, according to Equation 4.8, as 
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The moment-curvature relationship (Equation 4.10) for the critical section, before the macrocrack 
starts to propagate, is plotted in Figure 4.13. Here, bending moment value is normalised by maximal 
elastic moment, Mel,max, and curvature is multipled by section thickness. It should be noted that, for a 
constant value of εu, the maximal normalised moment achieved at the end of this regime is a size-
independent value. This can equally be concluded from Equation 4.17 that is a function of material 
intrinsic properties and, consequently, pseudo-plastic bending strength is a function of material 
properties only. Maximal curvature (Equation 4.13) remains inversely proportional to element 
height, as in the linear-elastic regime, and thus the thinner elements are characterised by a higher 
curvature at the end of the pseudo-plastic region.  
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Figure 4.13: Normalised moment-curvature relationship for rectangular sections in pseudo-plastic 
tensile yielding 

Figure 4.14 shows the ratio of pseudo-plastic bending to tensile strength, nfct, as a function of 
maximal tensile strain εu at the end of the pseudo-plastic tensile plateau. For the UHPFRC used in 
this study, with εu = 2.5 ‰, fct= 9 MPa and Ec= 60 GPa, the pseudo-plastic bending strength is 2.4
times the tensile strength. Studying the rate of nfct as function of εu, it can be seen that, for an εu

higher than approximately 1 ‰, the pseudo-plastic bending strength increases much more slowly 
(Figure 4.14). For εu =1 ‰  the nfct already has a value of 2.1, while for εu =5 ‰ the nfct= 2.56. It is 
also important to note that for a typical value of εu ( 2-3 ‰), the small variation in strain (e.g. 
± 0.5 ‰ due to dispersion of material resistance) causes a change in nfct that is never higher than 3 % 
(Figure 4.14 b)).
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Figure 4.14: a) Ratio between equivalent bending strength prior to macrocrack opening and  tensile 
strength as a function of maximal tensile strain; plots for fct =9 MPa and Ec=60 GPa; 
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The influence of tensile strength, fct, on the increase in pseudo-plastic bending strength is shown in 
Figure 4.15. Pseudo-plastic bending strength as a function of εu increases slightly faster for lower 
tensile strengths. In Figure 4.15 the increase in flexural strength is plotted for fct=3 MPa (tensile 
strength of an ordinary concrete), fct=10 MPa (a typical value for UHPFRC) and fct=25 MPa (a very 
high tensile strength, possible for some UHPFRCs, § 4.4.2). From these plots, it can be concluded 
that the relative increase in pseudo-plastic bending strength is much less sensitive to tensile strength 
than to maximal tensile strain, εu.
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Figure 4.15: Pseudo-plastic bending strength for various material properties in tension: a) as a 
function of maximal tensile strain, for different tensile strengths; b) as a function of 
tensile strengths, for different maximal tensile strains; Ec, is kept constant in these 
plots 

The increase in pseudo-plastic bending strength thus depends primarily on maximal tensile strain, εu, 
and it can be demonstrated that for εu →∞, the right side of Equation 4.16 yields 3 fct, which is the 
theoretical limit for rigid-perfectly plastic bending strength, comprising infinite compressive 
strength. For realistic material properties, however, this limit cannot be attained, since failure in 
compression occurs once a certain level of deformation is reached.  

Verification of compression capacity  

The expression for pseudo-plastic bending strength (Equation 4.16) assumes that the corresponding 
compressive stresses are linear-elastic. It can be easily concluded that, since fct  <<⏐fcm⏐, where fcm 
is compressive strength, the depth of the section part in tension (h1, Figure 4.12) is higher than h/2, 
meaning that the strain attained at the outermost tensile fibre, εu, is higher than the strain attained at 

fc t=3 MPa 
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the outermost compressive fibre, εc, (εu >⏐εc⏐). For a typical UHPFRC, the εu has a value in the 
range of 2-3 ‰, and the εc remains in the linear-elastic regime within that range of values (§ 3.3.1), 
and thus the assumptions of Equation 4.16 are respected. 

More precisely, the maximal compressive stress attained at the end of pseudo-plastic phase, σc,pl, can 
be expressed by Equations 4.18 or 4.19. This actually represents the minimal elastic compressive 
stress required to enable maximal tensile strain to be developed:  

( )( )ctucctucctctplc fEfEff −++−= εεσ 22, . (4.18) 

The minimal required ratio between compressive stress and tensile strength is 

( )( )ctucctucct
ctct

plc
ct fEfEf

ff
n −++−== εε

σ
22

1
1

,
. (4.19) 

The plots of the expression 4.19, as a function of εu, for different levels of tensile strengths are given 
in Figure 4.16. The values obtained for nct justify the interest in providing sufficient compressive 
strength in order to exploit the tensile capacities of UHPFRC, considering in addition that the 
deformation, and thus maximal compressive stress, will continue to increase in the following regime 
(regime C). For a typical UHPFRC, the compressive stress required at the end of the pseudo-plastic 
phase is 5-6 times tensile strength, which is largely satisfied. This also allows Equations 4.10 to 4.15 
to be applied in further analysis. Plots in Figure 4.16 show an increasing requirement for 
compressive stress as a function of εu, and a decreasing requirement as a function of tensile strength.  
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Figure 4.16: Minimal ratio of compressive stress to tensile strengths required to enable exploitation 
of maximal tensile strain εu

4.3.4.2 Element behaviour in presence of pseudo-plastic yielding  

For the given boundary conditions (Figure 4.11 c)) the function of curvature χ(M), Equation 4.11,
can be expressed as a continuous function along the length of the element, with M = M(P, x) being 
the continuous function of the moment along x. Plots in Figure 4.17 a) represent the distribution of 
curvature along the element length (up to mid-span) for different load levels.

It can be noted that for load levels of up to approx. 70-80 % of maximal load in the pseudo-plastic 
phase Ppl,max curvatures deviate slightly from the elastic curvatures. The significant increase in 
curvature occurs when the load approaches the level of Ppl,max (see also Figure 4.13), causing a 
considerable local increase in deformations in the vicinity of the most loaded section. Thus, multi-
microcracking, which in a uniaxial stress state prevents strain localisation, causes the concentration 
of deformations in the case of a non-constant tensile force along the element. Similar conclusions 
can be drawn regarding the deformations of a member subjected to a uniformly distributed load 
(Figure 4.17 b)). 
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conditions of : a) three-point bending;  b) uniformly distributed load along a simple 
beam 

The force-displacement relationship for the beam can finally be obtained e.g. by the integration of 
curvature. For simple symmetric load cases, closed form solutions can be established from the 
following  
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The solution for the mid-span deflection of a beam subjected to three-point bending is obtained in 
the following form:  
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Otherwise, for an arbitrary monotonic function of the bending moment, performing a numerical 
integration applying any standard integration procedure gives satisfactory results.  

The force-displacement relationships for UHPFRC beams of different heights are plotted in 
Figure 4.18. In Figure 4.18 b) the simulated curves are plotted against the measured data of beams of 
25, 40 and 60 mm height, in constant span L = 420 mm, subjected to a three-point bending test 
(Appendix T1). The analytical results show very good agreement with experimental results. As 
previously stated, the bending strength attained prior to the development of macrocracking is size-
independent, and it can be seen that a high proportion of bending strength (more than 85%) is 
achieved in this regime. Regarding the deformational capacity of the elements, it is evident that the 
thinner elements are more deformable which is further discussed in § 4.4.3. 
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Figure 4.18:  Bending stress over mid-span displacement for beams of various heights, h, subjected 
to three-point bending, with 420 mm span: a) simulations with fct = 9 MPa, εu = 2.5 o/oo

and Ec=60 GPa, b) simulations and measured response of UHPFRC beams 
(Appendix T1) 

In addition, longitudinal deformations along the length of the beam can also be predicted by applying 
the developed equations. Let us observe the elongation of two points on the tensile (lower) side of 
the element. For the sake of comparison with experimental data, let us consider the two points at the 
position x = L / 2 - lm /2 and L /2 + lm /2, L /2 being the point of introduction of the force (Figure 
4.19). 
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Figure 4.19: Measurement of non-linear tensile deformations: initial position and rotation of  
measurement points caused by rotation of beam 

The elongation of the two points, using symmetry with respect to mid-point, is determined by the 
following expression: 

thick  
thin 
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where both of the functions χ(x) and h1(χ) are analytically defined (Appendix M1), and the 
integration can be performed. The calculated elongation, Δlm, is plotted in Figure 4.20 against the 
measured data as a grey line. Owing to the geometry of the measurement device (Figure 4.19), the 
experimentally captured deformations are higher than the beam deformations, due to the rotation of 
the measurement base. The error is more pronounced for slender beams because of their higher 
deformability (Figure 4.20 a)).  
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Figure 4.20: Calculated and measured elongations of the measurement base during the elastic- 
pseudo-plastic phase, for beams of various depths; continuous grey lines denote actual 
elongation, while the black lines denote calculated elongation of the same 
measurement base but captured at the position of the measurement device 

The relationship between measured elongation, Δlm. device, and actual elongation, Δlm., can be obtained 
from the geometry of the device (Figure 4.19) if the rotation θ of the member at the position of the 
measurement device is known: 
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The rotation θ can be obtained from integration of the curvature function, respecting the boundary 
conditions: 
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For three-point bending: 
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Using Equation 4.11, rotation θ  at the position x = L /2 - lm /2 is then calculated as 
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for each level of load P. The obtained measured elongation (Equations 4.24 and 4.27) shows good 
agreement with experimental data (Figure 4.20, black line). 

Δlm 

Δlm, m. device 

test data



                                                                                                             4. UHPFRC elements in bending                        

67

These results, together with results obtained from the photogrammetry analysis (Figure 4.28 showing 
no localisation of deformation in one crack prior to Ppl, max), confirm1 that the multi-microcracking 
observed in uniaxial tension also develops in bending and can be well modelled using pseudo-plastic 
material properties in tension.  

4.3.4.3 Inelastic unloading and actual element stiffness in multi-microcracking regime 

The multi-microcracking causes damage in the material (§3.3.2) that results in inelastic behaviour, 
which is also different from real plastic behaviour. This can be observed experimentally, during the 
unloading of the element that had previously exhibited deformations beyond the elastic limit 
(Figure 4.22). The unloading curve shows a decreased stiffness that is the actual stiffness of the 
element once microcracking occurs, and this is of interest for design. The relationships developed for 
determining unloading stiffness, based on the stiffness of the damaged material Ed are given in more 
detail in (Appendix M1). Only the final expressions and principal results are given in the following.  
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Figure 4.21: Inelastic behaviour due to multi-microcracking of UHPFRC: a) loss in stiffness in 
uniaxial tension; b) loss of bending stiffness; c) distribution of sectional forces due to 
change of modulus of elasticity in cracked part 

The variation in stiffness of a damaged section is schematically shown in Figure 4.21 a) and b) for 
uniaxial tensile and bending state respectively, and a distribution of stresses in the section during the 
unloading phase is shown in c). The bending stiffness of tested elements is shown in Figure 4.22, and 
it can be noted that bending stiffness is a function of previously achieved deformation. The bending 
stiffness of a section that has reached maximal curvature χi can be calculated using the following 
expression:  
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where the newly introduced coefficients are given in Appendix M1. This enables the curvature at 
unloading, χunload, of any section along the element that was loaded with maximal force Pi, and also 
the relationship between force and displacement to be calculated: 

                                                     
1 If only the force-load point deflection (P-δ) relationship is verified, the conclusions may be misleading, since 
similar P-δ  relationships may result from the opening of a localised crack without development of pseudo-
plastic deformations (§ 4.4).  
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The predicted unloading paths for tested UHPFRC elements are plotted against measured data in 
Figure 4.22, showing good agreement.  
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Figure 4.22: Measured and simulated stiffness of microcracked element  

This approach enabled the actual element stiffness, Kd, to be predicted as a function of the maximal 
load sustained by the element, Pi. Figure 4.23 a) shows the ratio of the sectional bending stiffness, 
EId, to initial elastic stiffness, EI, as a function of the maximal curvature achieved in the section. On 
the same plot it can be seen that this relationship is similar to the relationship between the relative 
curvature and the ratio of secant, EIsec, to elastic stiffness. This implies that, for a practical 
estimation, the secant stiffness can be used, giving results on the safety side. Similar observations 
can be made  regarding the element stiffness, K. For an element in three-point bending, the loss of 
element stiffness as a function of maximal load Pi is plotted in Figure 4.23 b). It is interesting to note 
that, for these boundary conditions, the unloading stiffness for Pi = 0.8 Ppl,max is almost 85 % of 
initial stiffness. As will be shown, the service load range of a statically determinate element is below 
this limit, which gives the information on the error produced by calculating element deformations by 
applying the initial elastic stiffness. Similar conclusions for a beam under uniformly distributed load 
are given in Appendix M1. 
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4.3.5 Non-linear behaviour with macrocrack propagation 
A macrocrack is assumed to start propagating when the maximal pseudo-plastic strain εu is reached 
in the critical section (Figure 4.24). In reality, the location of the first macrocrack is influenced by 
the distribution of material resistance, which in the case of fibre-reinforced materials, is influenced 
by the variability in fibre effectiveness along the element’s length [Behloul 1996], causing that the 
crack may appear in a less loaded section with lower resistance. The deviation of the position of the 
crack from the most loaded section can also be seen in specimens tested during the present research 
(Appendix T1). However, it is assumed that the macrocrack is located at mid-span and that material 
behaviour is homogeneous all along the element. The macrocrack in the element will be modelled 
using the hypotheses of the fictitious crack model (FCM, § 4.2 ). 
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Figure 4.24: UHPFRC beam in bending: a) position of regime with macrocrack opening in whole 
normalised force-displacement response; b) material laws in tension; c) geometry and 
boundary conditions of case study, with distribution of curvature along element’s axis  

Since the macrocrack is capable of transferring significant stress for small crack openings, the force 
in the system can continue to increase as deformations increase (Figure 4.24 a)). Prior to peak force, 
the sections in the vicinity of the crack are subjected to local unloading, due to stress decrease in the 
macrocrack (Figure 4.24 d)), while the rest of the member behaves in the same way as during 
phase “B”. 

4.3.5.1 Cross-section with pseudo-plastic yielding and fictitious crack propagation 

The equilibrium of a cracked section with one part in pseudo-plastic yielding in tension is studied as 
the first step of the analysis. The parameters describing the state of stress and strain of the cracked 
section are shown in Figure 4.25. The uncracked part of the section is characterised by curvature 
 χ  (χ  < χpl,max), whereas the fictitious crack is characterised by its length α⋅h and the crack mouth 
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opening displacement (CMOD) wi. The latter two are new parameters in the equilibrium equations of 
internal forces that did not exist in the equations describing the uncracked state.  
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Figure 4.25: Assumed distribution of stress and strain in a cracked section 

The following assumptions are made: 
- the fictitious crack starts to propagate when the tensile strain at the crack tip reaches εu; 
- the Navier-Bernoulli hypothesis of plane sectional deformations is valid for the uncracked part 

of the section; 
- the crack pattern is known: a linear relationship for crack opening along the length of the crack 

w(yw)  is assumed (as in the models of [Maalej, Li 1994], [Casanova, Rossi 1996]): 
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In the non-cracked zone, the stress at any point is related to deformations by the σ (ε) relationships. 
In the zone of the fictitious crack, the stress is related to crack opening w. The bending moment 
sustained by the section is obtained using Equation 4.4: 
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With the assumed crack pattern i.e. the relationship between parameters α  and wi, and the 
equilibrium condition 0=ΣN , bending moment is expressed as a function of two parameters: 

( ) ( ) ( )ii wMMwMMMM ,    ,    , χααχ =∨=∨= .  (4.31) 

Since the two parameters are independent, the equilibrium of a cracked section has an infinite 
number of solutions for an imposed curvature, or for an imposed crack length or crack opening. 
Analytical expressions for the relationships 4.31 are given in Appendix M2. 

Figure 4.26 shows a field of bending moments that can be sustained by a cracked section, as a 
function of curvature, χ, and CMOD, wi. Every line plotted in Figure 4.26 a) represents normalised 
values of bending moment M = M(χ, wi) (Equation A 2.12) for a constant curvature i·χpl,max, 
i=1,2,…,with wi being variable. The moment is normalised with the maximal value of the moment 
achieved prior to crack opening Mpl, max. The curves are plotted for a typical UHPFRC (fct = 9MPa, 
εu = 2.5 o/oo, fc = 180 MPa, dσ(w)/dw =6.8 MPa/mm). Similarly, in Figure 4.27  normalised values of 
possible bending moments are plotted as a function of wi and normalised crack length, α. By 
normalising the moment value, M / Mpl, max, the obtained analytical expressions are functions of 
material properties only, independent of section dimensions, so the plotted fields therefore apply to 
all specimen sizes.  
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It can be seen that for any imposed curvature, i·χpl,max in Figure 4.26, or any imposed crack length, 
α⋅h, in Figure 4.27, there is an infinite number of equilibrated solutions as a function of crack 
opening. However, for an equilibrated bending member with a given geometry, only one moment 
corresponds to any imposed deformation and, for an increasing deformation, only one possible 
equilibrium path exists. Due to the fact that all the values of χ, α and wi increase for a monotonic 
increase in deformation, the shape of the equilibrium paths will be as schematically shown in Figure 
4.26 b). Considering the possible field of solutions again, it is important to note that, for given 
material properties, there is an upper bound for the maximal moment1. Moreover, the moment can be 
higher that the maximal moment prior to crack propagation, Mpl, max, for only a limited range of crack 
openings.  
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Figure 4.26: a) Possible field of bending moment of a cracked section as a function of CMOD, wi, 
and curvature in non-cracked part of section, χ ; b) the same plot as in a) with two of 
an infinite number of possible moment-curvature relationships; material proeprties 
used: fct = 9MPa, εu = 2.5 o/oo, fc = 180 MPa, dσ(w)/dw =6.8 MPa/mm

For the UHPFRC used, some important conclusions can be drawn from the plotted curves:  
- maximal moment is attained with small fictitious crack openings (smaller than 0.35 mm), 

regardless of beam size; 
- maximal moment is less than 20 %  higher than the maximal moment reached prior to the 

fictitious crack opening; 
- the deformations (e.g. curvature) may increase significantly with even small crack openings, 

while M > Mpl,max; this suggests the potential of this regime in providing element ductility. 
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Figure 4.27: Possible field of bending moments of a cracked section as a function of CMOD, wi,
for a crack length α⋅h

                                                     
1 Note that for a greater increase in curvature, softening in compresson may take place, decreasing the section’s 
bearing capacity.  
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The first conclusion justifies the use of the linear stress-crack opening relationship in the equilibrium 
equations describing behaviour up to maximal force, and in the bending softening regime, at least 
while M ≥ Mpl max. Small crack openings are also observed both experimentally, by means of 
photogrammetry data, and numerically. Figure 4.28, shows the relative horizontal displacements Δx, 
of two points between which a crack is detected by means of photogrammetric analysis. Since the 
chosen points are spaced close together, at a distance of approximately 1.5 mm (Appendix T1), their 
relative displacement is practically identical to that of crack opening. Examples of crack openings for 
two beams of different heights, h = 25 mm and h = 60 mm, are plotted against bending stress. It can 
be seen that maximal force is reached for crack openings smaller than 0.2 mm. Similar experimental 
observations are reported in [Graybeal 2006]. In addition, from the plotted diagrams it can be seen 
that no crack opening occurs until a significantly high level of bending stress is reached, justifying 
the applied hypothesis that the high percentage of bending stress is achieved with a homogeneous 
(pseudo-plastic) material behaviour, with no localisation of deformation in a single crack.  
a) b) 
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Figure 4.28: Force-“crack mouth opening” relationship; data obtained by photogrammetric analysis 
of beams in three-point bending; Δx represents the relative displacement of two points 
at approx. 1.5 mm from the CMOD: a) beam of height h = 25 mm, (P 25a, 
Appendix T1); b) beam of h = 60 mm (P 6a) 

4.3.5.2 Force-displacement relationship for a cracked member 

The above analysis of cracked section equilibrium shows that for a UHPFRC element with typical 
material properties, the major part of bending strength is achieved before propagation of the fictitious 
crack. However, as already mentioned, the cracked regime is relevant since it can allow high 
deformations to develop without a decrease in force. In order to obtain a unique relationship between 
forces and deformations, one additional condition is needed to relate the two parameters describing 
the fictitious crack. Two approaches are developed and discussed in the following sections. The first 
approach is based on energy balance in the systems, while the second approach introduces a 
parameter relating the cracked and uncracked parts of the section. The latter leads to an explicit 
analytical formulation for the moment-curvature relationship, which is convenient for practical 
application.  

4.3.5.2.1 Energy balance in a cracked member 

The balance between the energy brought into the system and the energy consumed for the 
deformation and fictitious crack opening is used to predict the bending response of a cracked 
element. In the case of FRC materials, in which significant strain softening is present, the application 
of fracture mechanics (FM) theories based on energy criteria rather than application of strength 
criteria is suggested by many authors [Hillerborg 1980], [Van Mier 1997], [Bazant, Oh 1983], [Li 
2006]. This also applies to UHPFRC. The fundamental principles of the energy balance approach are 
briefly reviewed in the following.
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Energy release rate, G, and fracture energy, GF 

The principal assumption in the energy balance approach is that a certain amount of energy is 
required for the formation of a unit area of crack surface. The energy required for crack growth is 
considered to be a material property, known as fracture energy, GF, (also fracture toughness). When 
a crack grows, a certain amount of energy is released from the system to the crack, at a rate of 
G [J/m2]. The available energy release rate, G, depends on element geometry, applied load, and 
crack length.  

Energy balance approach  

In 1920 Griffith proposed an energy balance approach, based on the first law of thermodynamics, to 
describe the formation of a crack: a crack forms and grows only if this process causes the total 
energy E of the system to remain constant or to decrease. This indicates that the critical condition for 
a crack to form and grow in equilibrium is that there is no net change in total energy [Anderson 
1995]. The total energy of the system is defined as 

sWE +Π=   (4.32) 

where Π is the potential energy and Ws is the work required to create new crack surface. The 
potential energy, Π, corresponds to the difference between the internal strain energy, U, and the 
work of external load, F: 

FU −=Π .  (4.33) 

The strain energy in an elastic body can be obtained as follows: 

∫=
δ

δδ dPU )(  . (4.34) 

If pseudo-plastic deformations occur in a body, as in the case of UHPFRC elements, only a part of 
the integral on the right side of Equation 4.34 is reversible energy stored in the system, while a part 
is spent for damage, UD (Figures 4.29 and  4.32). The work of external forces is δ⋅= PF .
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Figure 4.29: Energy of the system subjected to loading P, with corresponding load point 
displacement δ : a) in a non-linear elastic material, b) in a non-linear damaged 
material  

For an increment in crack area, dA, the energy balance can then be formulated as follows: 

dA

dW

dA

d

dA

dE s+
Π

= ,  (4.35) 

and as a limit case: 
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dA

dW

dA

d

dA

dE s−=
Π

⇒= 0  .  (4.36) 

According to Irwin [Irwin 1956], the opposite of the ratio dΠ/dA is defined as energy release rate G : 

dA

d
G

Π
−= , (4.37) 

whereas dWs/dA is the already introduced fracture energy GF. Thus, the enrgy balance (Equation 
4.36) can be rewritten as  

( )
dA

dW

dA

UPd s=
−⋅δ

,  (4.38)  

or, more compactely G = GF.

Conditions for stable crack growth  

Based on the principle of energy balance the conditions for stable crack propagation can be 
formulated as follows: if the proportion of energy that can be released from the system is smaller 
than the energy required for crack growth, the crack remains unchanged. Additional energy is needed 
(e.g. brougth by force of displacement load) in order to allow crack growth. If, with crack 
propagation, the energy available for crack growth becomes greater than the fracture energy, the 
crack becomes unstable. These conditions can be formulated as: 

FGG ≤  (4.39) 

,     , dabdA
dA

dG

dA

dG F ⋅=≤∧  (4.40) 

with a being crack length, b being constant width of the crack. According to 4.40, a crack of length a
will propagate in a stable way if the variation of the energy release rate for an incremental crack 
opening dA is lower than the variation in the fracture energy for the same dA. The first criterion is 
generally less demanding than the second one, as it will be shown with an exemple in the following 
paragraph. 

It is not useless to recall here that, according to Definition 4.33, the potential energy Π of the system 
is composed of two contributions: the work Pδ done by the applied loads and the strain energy U. In 
a structural system, two cases must be distinguished with respect to the second term, U
(Equation 4.38): in case of unloading in the system (dP/dA <0), the strain energy decreases (dU/dA 
< 0), whereas in case of increasing load (dP/dA >0) there will generally be some parts of the system, 
typically those located around the crack, that experience unloading, but the rest of the material will 
experience an increase in the stress and strain conditions. In the first case, a limit condition for crack 
stability occurs when the rate of releasing the strain energy stored in the system is equal or higher 
than the fracture energy GF: in this case, the crack propagates in an ustable way even if no work of 
applied load is provided. On the contrary, an additional energy should be supplied by the load in 
order to make the crack propagate. 

Fracture energy for UHPFRC 

In the case of quasi-brittle materials, like concrete, FRC and UHPFRC, the classic definition of 
fracture energy should be reconsidered (§ 3.3.2.6). For elastic brittle materials, cracks are assumed to 
be stress-free, and in this context, GF is the energy required to create a new stress-free crack surface 
in a previously uncracked material. In the case of quasi brittle materials, a part of the crack close to 
the tip is assumed to be able to bear some tensile stress (fictitious crack), whereas the rest of the 
crack behaves like the real stress-free crack (Figure 4.30 a). In this case, the energy required for 
crack propagation comprises the energy spent on fracturing the uncracked material and the energy 
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required for separation of the crack faces up to the point where no more stress can be transferred. In 
the case of UHPFRC (Figure 4.30 b)), the matrix is very brittle, whereas the stress bearing capacity 
of the fibres is very high: thus, the fracture energy represents the energy required for crack opening 
(§ 3.3.2.6), while the energy required for crack formation is negligible. According to the modelling 
approach adopted in this work, the energy associated to the multi-microcracking that occurs before 
the tensile softening, is related to deformational dissipation and is included in the surface covered by 
the tensile stress-strain relationship of UHPFRC. 

a) b) 

stress-free bridging zone microcracking 

macrocrack zone

FPZ

bridging zone
fictitious crack

microcracking and microcrack bridging zone  

FPZ

FPZ

Figure 4.30: a) Schematic illustration of crack growth and representation of fracture process zone 
(FPZ) in ordinary concrete, adapted from [Van Mier 1997]; b) fracture proces zone in 
UHPFRC, adapted from [Kabele 2000]; according to the FCM the FPZ is the fictitious 
crack itself 

Conditions for stable crack growth in a UHPFRC member in tension 

Before considering the general conditions for stable crack growth in a UHPFRC member in bending, 
the stability conditions in uniaxial tensile state are investigated. It is assumed that a monotonously 
increasing displacement is imposed to a member, that the maximal tensile strain εu was attained and 
that the force in the system starts to decrease. Assuming that the crack has developed through the 
whole cross-section, crack energy and consequently the criteria for crack stability become functions 
of crack opening wi.
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Figure 4.31:  Member in uniaxial tension, definition of fractur energy, adapted from [Hillerborg 
1980] 

We will first consider the stability criterion 4.40. At a certain point in the descending branch, the 
energy per unit surface that can be released by the microcracked system is a function of the stress 
variation, the length of the specimen and the unloading stiffness E* of the material: 

),,(),,( ** ELwfELfG i=Δ= σ . (4.41) 

G can be expressed as a function of crack opening wi: 
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while the energy required to open the crack up to crack opening wi is 

∫=
i

i

w

iiwF dwwG
0

, )(σ .  (4.43) 

The rate of change in the released energy and the corresponding rate of the energy consumed by the 
fictitious crack opening are then related as functions of crack opening: 
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For a σ(w) law typically used for concretes, the maximal value of the right side of the Inequality 4.44 
is obtained for w 0, thus the most critical point for stability is at the beginning of the softening 
branch. With the assumed linear stress-crack opening relationship defined in § 3.3.2.8, the previous 
condition becomes: 
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thus:  

*
2 ELC ≤  (4.46) 

where C2 is the initial slope of the stress-crack opening relationship (§ 3.3.2.8). Equation 4.46 
indicates that the crack stability is governed by the length of the specimen and by two material 
properties, namely the slope of the σ-w relationship and the slope of the unloading stress-strain 
behaviour. Equation 4.46 enables the critical length lcr, as the maximal length of a specimen for 
which the crack can propagate in a stable way, to be defined: 

2

*

C

E
lcr ≤  . (4.47) 

For a member in tension, the stability condition defined by Equation 4.39 gives: 

F
ct

F GL
E

f
GG ≤⇔≤

*

2

2
     . (4.48) 

In the case of a linear stress-crack opening relationship: 

2

2

2 C

f
G ct

F ⋅
=  (4.49) 

and the two conditions given by Equations 4.46 and 4.48 give the same result in terms of critical 
length. Otherwise, the integral condition (4.48) is less restraining than the differential condition 
(4.46). For a typical UHPFRC, the initial slope C2 of the stress-crack opening law is about 2.5-3.5 
times the slope f 2

ct/(2GF) corresponding to a linear stress-crack opening relationship with the same 
fracture energy. The error in estimating the critical length required for stable crack growth using 
expression 4.48 is in the same range. As illustration, the maximal element length required for a stable 
tensile test according to Equality 4.46 gives lcr = 1 m, while condition 4.48 gives lcr =2.86 m, with 
GF = 20 KJ/m2, fct=9 MPa, and the initial slope of C2 = 6 MPa/mm and E*= 6 GPa.

Finally, it is important to underline that the so-called characteristic length: 
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frequently used to characterise the brittleness of a material [RILEM 2002] corresponds, in the case of 
a linear stress-crack opening law, to one half of the critical length previously introduced. 

Condition for stable crack growth in bending 

Let us now examine the stability of a fictitious crack in an element in bending (Figure 4.32 a). The 
more demanding stability criterion based on rates of energies (Equation 4.40) will be discussed 
during the definition of the analytical model for bending. In this section, only the integral stability 
condition, which is a minimal condition for stable crack growth, will be investigated. We consider a 
beam in three point bending and we assume that the beam has been loaded up to a certain load level 
P, when a discrete macrocrack starts to propagate. At this point, the total energy that can be released 
by the member in case of unloading (the shaded area in Figure 4.32 a)) is: 

( )resplplPG δδ −= max,max,2
1

  (4.51) 

where δpl max corresponds to the displacements of the load point for the force level prior to crack 
opening and δres  is the residual displacement of the same point for zero force (Figure 4.32 a)). Both 
of these values can be calculated by taking into account the non-linear material behaviour of 
UHPFRC, using the equations developed in § 4.3.4 and in Appendix M1.  
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Figure 4.32: Stability of the UHPFRC element in bending: a) available energy in system at the 
onset of crack, and boundary conditions; b) instability points as function of element 
size, h, for various fracture energy values (5, 15 and 20 KJ/m2); c) instability point 
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As a limit case, if the total energy defined by Equation 4.51 is higher than the fracture energy, the 
crack can propagate in an unstable way without work of the applied load. The instability points 
calculated with this approach are shown in Figure 4.32 b) as a function of elements size h. Elements 
slenderness is kept constant, L/h = 10, and several fracture energy values are assumed. Since the
quantity of the strain energy that can be released increases with increase in element size, the fracture 
energy required in order to exhibit stable crack growth increases. However, it can be noted that for 
fracture energy values typical for UHPFRCs, stable crack propagation can be expected in thin 
elements, suggesting possible safe applications without additional ordinary reinforcement. 

In bending, the crack propagates in length and the crack opening varies along the length of the crack. 
In order to give a simple estimation of the energy that can be consumed by a crack in bending, it is 
assumed that the crack propagates up to the entire height of the section and that the crack mouth 
opening displacement is equal to the maximal fictitious crack opening, wi  wmax, assuming the crack 
shape as defined in Equation 4.30. With these conditions, the energy required for crack opening, 
designated as GF, per crack, can be calculated (Equation A 2.18) and the comparison with the strain 
energy that can be released is shown in Figure 4.32 c).  

4.3.5.2.2 Application of energy balance approach to a UHPFRC element in bending;  

Hypotheses of the model 

Let us continue to observe the element in bending governed by a single load parameter, P
(Figure 4.33). If the energy release rate at the onset of the macrocrack is lower than the 
corresponding fracture energy, that is if the Inequalities 4.39 and 4.40 are satisfied, a stable crack can 
grow in the element. If so, let us assume that the additional energy for crack growth is brought into 
the system by the increase in force. Consequently, the deformation of the system increases, with the 
macrocrack opening in the critical section, while the major part of the rest of the beam deforms in the 
same linear and non-linear way as if the crack were not present. (This can be seen by means of the 
numerical FEM model1, Figure 4.39). Thus, the energy brought into the system is dissipated partly as 
deformational energy and partly as energy for crack opening.  
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Figure 4.33: Case study: beam in three-point bending with a fictitious crack : a) system geometry 
and schematic presentation of regions exhibiting different stress states; b) distribution 
of curvature; c) stress distribution in cracked section  

Additional hypotheses are introduced in order to relate the force and the deformation in the cracked 
system: 

- if for the given force level Pi=P+ΔP, ΔP>0, a crack propagates up to the length αij⋅h, the 
corresponding CMOD wij is calculated from the sectional equilibrium (Equations A.2.11); 

                                                     
1 The hypothesis of the numerical FEM model are presented in Appendix M2: singe macrocrack is modelled 
based on the FCM, and the surrounding material can exibit plactic yielding in tension 



                                                                                                             4. UHPFRC elements in bending                        

79

consequently, the energy needed for fictitious crack growth, GFij(αij⋅h, wij), is quantified 
(Equation 4.63); 

- the presence of the crack leads to a changed stress state in the vicinity of the crack, due to the 
local decrease in stress (Figures 4.34); this “disturbed” region is distributed around the 
fictitious crack, within a distance 2 li,cr, which is proportional to crack length (Figure 4.39); 

- the continuity of deformations in the disturbed region is assured by defining a continuous 
smooth function describing curvature (Equation 4.69, Figure 4.33 b)); this enables the total 
displacement, δij (Pi, αij⋅h), of the system loaded with Pi, in the presence of a crack of length 
αij⋅h, to be calculated.  

Based on the work of [Bazant, Becq-Giraudon 1999]1 and [Bazant, Cedolin 1991], it is assumed that 
the displacement δi can be expressed as:  

 δi (Pi)= δi0(Pi)+ δif(P i)   (4.52) 
where δi0(Pi) is the displacement of the load point that would occur if no crack were present in the 
system (violating the condition of resistance), and the δif(Pi) is the additional displacement due to the 
fictitious crack opening while force is kept constant. The crack length αi⋅h corresponding to imposed 
force Pi is determined as a crack length αij⋅h for which released energy Gij is equal to fracture energy 
GFij(αij⋅h, wij), Figure 4.38 a) and b). The released energy is obtained based on the condition of 
minimization of potential energy for crack growth2 (developed Equations 4.57 to 4.62).   
a) 

b) c) d) 
(M)σ   

fct
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pl Δσ   

Figure 4.34: Beam with a fictitious crack at maximal force: a) normal stress distribution along the 
beam; b) disturbed field of normal stresses and c) of principal stresses close to the 
macrocrack; d) normal stresses in the elastic-pseudo plastic section and 
selfequilibrated stress variation (Δσ) due to fictitious crack opening 

An interesting phenomenon concerning a fictitious crack opening in a UHPFRC element prior to 
peak force is noted: the energy liberated from the surrounding material due to local unloading can be 
virtually disregarded, owing to the fact that the crack opening up to peak load is very small 
(Figure 4.26 and 44.28) and the corresponding stress decrease is very limited (low slope of tensile 
softening curve). From the numeric analysis, it can be seen that the unloading region around the 
                                                     
1 The energy released rate in this paper is related to stress intensity factor (SIF); for the FCM, the SIF loses its 
significance; 
2 In [Bazant, Li 1995] for the stability of a cohesive crack growth in a linear-elastic quasi-brittle material, an 
approach for obtaining crack opening by minimizing the complementary energy with respect to crack length is 
developed as a function of stress intensity factors

elastic compression 
elastic tension 

pseudo-plastic tension  
crack-influenced region  
macrocrack 
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crack evolves in a way that can not be easily described analytically (Figure 4.34). However, 
following the hypothesis commonly accepted in the analysis of crack propagation in concrete 
[Bazant, Cedolin 1991] (Figure 4.35), the energy that can be released from the surrounding material 
can be expressed as a function of crack parameters (α and wi), and element size (Equation 4.55). 
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Figure 4.35: a) Assumptions regarding unloading region surrounding fictitious crack; b) portion of 
energy released by unloading 

The stress decrease, Δσ, in the zone surrounding the crack causes the release of an amount of energy 
e(Δσ(w)) that can be estimated for a known unloading modulus of the material, E* (Figure 4.35). For 
an elementary thickness dy along the height of the unloading region: 
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With a defined crack opening pattern (Equation 4.30) and considering the initial slope of the 
unloding stress-crack opening curve, C2, the previous expression becomes: 
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Integrating this energy portion over the volume of the unloading region, the total energy Elicr that can 
be released from the surrounding material is  
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This value, as a function of crack opening and relative depth, is ploted in Figure 4.36 b), while the 
energy required to open a crack, GFi (Equation 4.67), as a function of the same parameters, is plotted 
in Figure 4.36 a). The ratio between these two quantities of energy, again as a function of crack 
length and opening is formulated as: 
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and it can be seen that for element heights of up to 100 mm, for typical UHPFRC material properties, 
this ratio is lower than 2-3 % (Figure 4.36 c), 4.37 a)). It is also interesting to observe that the portion 
of released energy due to stress decrease in the vicinity of the crack is more significant in quasibrittle 
materials in which the initial slope of the tensile softening branch is steeper, indicating lower fracture 
energy (Figure 4.37 b)).  

Thus, for the fictitious crack opening in a UHPFRC prior to peak load, the portion of the energy 
released form the surrounding material can be disregarded. Moreover, in the case of more brittle 
materials, if simplified hypotheses concerning the shape of the unloading zone are made, the 
energetic contribution of this zone can be easily implemented in the analytical model under 
discussion.



                                                                                                             4. UHPFRC elements in bending                        

81

a) b) c) 
  

Figure 4.36: a) Energy consumed by fictitious crack, GF,i, as a function of relative crack length, α, 
and crack opening, wi; b) energy that can be released from the surrounding material, 
Elicr; c) ratio between Elicr and GF,i (beam depth h=50 mm) 
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Figure 4.37: Ratio between Elicr and GF,i: a) for a typical UHPFRC and various element heights; 
b) for a constant element height h=50 mm and variation in slope of tensile softening 
curve 

Respecting the energy balance in the system, on condition that the potential energy for crack growth 
is minimised, it is obtained that 
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where 
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α
 represents energy released rate G and can be obtained based on the previous 

hypothesis of the crack growing under constant force [Bazant, Becq-Giraudon 1999]:  
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In view of the fact that no additional strain energy is stored in the system with the increase in crack 
length under a constant force,  
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the energy released for a crack of length αij·h in an equilibrated system is:     

h=200 mm 

h=100 mm 

h=50 mm 

10 Δσ /dw 

5 Δσ /dw 

Δσ /dw 
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The energy equilibrium condition yields  

 Gij(Pi, αij⋅h ) == GFij(αij⋅h, wij) , (4.62) 

thus, for the given Pi ≤ Pmax, for every assumed crack length αij⋅h there is a crack energy, 
GFij(αij⋅h, wij), and a corresponding energy Gij(Pi,αij⋅h)  provided by the external load for propagation 
of the crack of length αij⋅h. A unique value of αij is found as the solution of the Equation 4.62, 
graphically presented in Figure 4.38 b).  

a)  b) Pi ≤ Pmax c) Pi > Pmax
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Figure 4.38: Equilibrium point as a function of assumed crack length, αij·h: a) possible force-
displacement responses for different αij; b) energy that can be released from the 
system, GR, and energy that can be consumed by the crack, GF, for a stable crack 
growth; c) as previous, for unstable crack growth in force-controlled loading 

For a force level higher than the maximal force, the point of equilibrium can no longer be found, 
since the released energy always remains higher than the energy that can be consumed by a crack 
that is equilibrated with the given force (Figure 4.38 c)). The system becomes unstable under the 
force-controlled load.  

4.3.5.2.3 Algorithm for resolution of the stated problem 

Force control 

Let us assume that for given force level max.  , plii PPPPP ≥Δ+= , the crack propagates up to the 

length αij⋅h. There is a corresponding CMOD, wij, which satisfies the equilibrium of internal and 
external forces, obtained as a solution of equation  

 M(P, xcr) = M(αij,,  wij)    (4.63) 

where M(αij,,  wij) is given by Equation A 2.14 (Appendix M2).  For given force level Pi an array of 
possible pairs {αij, wij} satisfying the equilibrium of force can be formed. It should be noted that 
Equation 4.63 has more than one root for wij, but there is only one rational solution in the range of wij

covered by the equation σ(w).

The energy needed for a crack of length αij⋅h to open with CMOD wij, designated GF,ij, can now be 
calculated for the stress distribution defined by the function σ(w)
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For a cross section of a constant width, b=const, and for a linear crack opening w(y): 
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GF can be obtained as: 
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With linear function ( ) wCCw 21 −=σ ,

hw
C

bhw
C

bG ijijijijijF αα 221
, 62

⋅−⋅=  . (4.67) 

With another shape of σ(w) relationship the expression for GF,ij  can be found in Appendix M2.  

Considering the beam, the increase in force, in the presence of a crack of length αij⋅h, leads to a new 
deformation state with a corresponding mid-span displacement δij. In order to quantify the 
deformations, an additional assumption in this analysis concerns the description of the region 
influenced by the crack. Based on numerical simulations, it was seen that the length of the crack 
influenced region, li,cr, increases with crack propagation (Figure 4.39 b)), and that it can be assumed 
as a linear function of crack length: 

 li,cr = f ( ai·h )= nli,cr ·ai ·h      (4.68) 

with nlicr in the range of 0.5-1. Similar observations regarding the crack-influenced zone can be 
found in [Casanova 1996]. It is important remember that the region around the crack should not be 
confused with the crack process zone; as explained, the FCM hypotheses assume that the process 
zone is situated along the very line of the crack.   
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Figure 4.39:  Stress regimes in a beam in bending, with plastic yielding in tension and crack 
opening: a) position of examined points on force-dispalcement diagrame; 
b) propagation of region influenced by crack opening (regions of stress decrease) 
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Due to the change in stress field, influenced by the local stress decrease, defining the stress-strain 
relationship for the section in this region becomes less straightforward. However, in order to assure 
the continuity of deformations, the curvature in this region is assumed as being a parabolic function: 

2/2/2 LxlLcxbxa icrcr
≤≤−∀++= χχχχ  (4.69) 

with a smooth connection with the curvature of a plastic section at x = L/2- li,cr, and the value at L/2
corresponding to the curvature of the cracked section, χcr,ij. Coefficients aχ, b and cχ, in 
Equation 4.69 are obtained by solving the following system of equations:  
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where χcr,ij is obtained for the imposed force and assumed crack length, from Equation A 2.11 
(Appendix M2), and χpl is the function given by Equation 4.11. The expressions for coefficients aχ, 
b and cχ, are given in Appendix M2 (Equation A 2.23). Incorporating Equation 4.69 into Equation 
4.61 available energy release rate, G, can be calculated for every αij.

Before maximal force is reached, there is a unique value for crack length, αi⋅h, for which the released 
energy is equal to the energy consumed by the crack (the intersection of G and GF, Figure 4.38 b), 
Equation 4.62). This also allows the displacement at any point of the element to be calculated. For 
the point of application of the force (x=L/2), displacement δi is calculated as: 
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The algorithm of the procedure and the equations considered are given in Appendix M2.

Examples of obtained force-displacement curves are plotted in Figure 4.40 (black lines) against the 
numerically obtained curves (grey lines) using the FEM model1 of the UHPFRC beam 
(Appendix M2). It can be seen that a very good prediction of the maximal load is obtained, and that 
the obtained deformations follow very well the trend of deformations obtained by the numerical 
simulation.  
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Figure 4.40: Prediction of maximal force with crack propagation governed by energy balance, for 
beams of different heights in three-point bending; beam geometry and material 
properties correspond to tested UHPFRC beams, and the value  
li,cr = nli,crα ·h = 0.75 α ·h is used 

                                                     
1 The hypothesis of the numerical FEM model are presented in Appendix M2 
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In order to obtain further points of force-displacement response for the element, the procedure must 
be performed under deformation-controlled loading.  

Deformation control 

Let us consider that imposing a deformation in the system is affine with imposing a curvature in the 
cracked section, χi, χi > χpl,max. The imposed deformation is associated to a force level, Pi, as a 
function of a parameter describing the crack (wi or αi). As in the previous procedure, the solution for 
a crack parameter is found from the equilibrium of G and GF. In case of decreasing force, the 
definition of the released energy function need to be changed. This is because the part of the beam 
outside the crack influenced region can no longer exhibit any increase in deformation, but actually 
starts to unload, providing the energy that can be consumed by the fictitious crack. The part of the 
beam that was in pseudo-plastic yielding undergoes inelastic unloading which can be evaluated using 
Equation 4.28, with maximal curvatures in the sections imposed by the maximal force, Pmax. Any 
further increase in deformation is thus localised in the cracked section only (Figure 4.41 b)). 

The total energy released for further propagation of the crack, after Pmax was achieved, is 
shematically presented in Figue 4.41 a). Similar assumptions are made by [Petersson 1980] for 
linear-elastic materials, and applied in the RILEM recommendations [Hillerborg 1985]; here the 
approach is extended here to non-linear materials:    
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where Kd is the unloading stiffness of the microcracked beam that can be obtained using the 
procedure developed in Appendix M1. To calculate displacement of the element, the inelastic 
unloading should also be considered in the microcracked region:  
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The algorithm of the procedure and the equations considered are also given in Appendix M2.  
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Figure 4.41: Softening of beam: a) energy released in softening; b) increase in deformations with 
decrease in global force: increase in deformations only locally, in the cracked region, 
and unloading of the rest of the beam 
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The deformation-controlled solution has two advantages: both pre and post-peak behaviour are using 
one single procedure, and the solutions are easily found since, for the given curvature, both G and GF

can be explicitly written as a function of wi. The solution can be found without any other iterative 
procedure than the search for the root of the function G(wi)= GF(wi) for wi.

The results of the deformation-controlled procedure in the form of force-displacement diagrams are 
shown in Figure 4.42 a) for beams of various heights. The results of the model (black lines) are 
plotted against numerical simulations (grey lines), using FEM analysis. The procedure gives the 
same results for the pre-peak behaviour as those obtained using the force-controlled algorithm, and it 
can be seen that a good prediction of the results in the descending part of the force-displacement 
curve is obtained. The results are also plotted as normalised values (Figure 4.42 b)), as load-point 
displacements over element height against the equivalent bending strength. It can be noted that 
elements of smaller height exhibit more ductile bending response, that will be further discussed in 
§ 4.4.3.
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Figure 4.42:  Force-displacement relationship according to model for beams of different heights 
(h = 25-75 mm); a) model (black lines) against numerically obtained results using 
FEM model (grey line); b) bending stress according to model against normalised mid-
span displacement 

Crack propagation can also be accurately described using the developed model. Figure 4.43 a) shows 
the development of crack opening as a function of crack propagation, α, for beams of different 
heights. The crack occupies a greater portion of the cross-section height in thinner beams. In all 
beams it can be seen that crack length tends to stabilise around a certain value, after which it is 
principally the crack opening that increases. Figure 4.43 b) shows the ratio between crack opening 
increase rate, w, for force/deformation increase, and crack length increase rate, α h. It can be seen 
that, at the beginning of crack propagation, the crack increases faster in length than in opening, while 
later the increase in opening becomes greater, which is in agreement with the experimental 
observations and the results of the numerical model. 
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4.3.5.2.1 Discussion of the hypotheses  

The value of the length of the crack-influenced region, licr, is a parameter that may be questioned 
with regard to the developed model. For this reason the influence of the length of the crack- 
influenced region licr= nlicr·α ·h  on the modelled force-dispalcement response is studied by varying 
the parameter nlicr within the range of possible values observed during numerical analysis 
(Figure 4.44 a)). It can be seeen that the model is not highly sensitive to the variation of this 
parameter, as observed with some other models (Section 4.2), and the smaller values of nlicr slightly 
increase the resistance. The difference in terms of bending strength can be seen in Figure 4.44 b). 
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Figure 4.44: Influence of length of the crack-influenced zone, licr,= nlicr α h, on prediction of force-
displacement response; diagrams are plotted against numerically obtained results 

4.3.5.3 Simplified approach    

A simplified relationship between the sectional forces and deformations can be obtained by 
introducing a parameter relating the curvature of the uncracked part of the section, ,χ to the opening 
of the crack, wi. This actually amounts to passing from the stress-crack opening relationship to the 
stress-strain relationship that definines the cracked zone. The crack opening is related to a 
“fictitious” plane deformation εwi that would be exhibited by the section with no discontinuity 
(Figure 4.46): 
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iwwi lw ε⋅=  .  (4.74) 

Parameter lw is principally a size-dependent value, as assumed by many authors and demonstrated 
with the analytical model (Figure 4.46). It can be expressed as a function of section height, by 
introducing a parameter β : 

χαβεβ ⋅⋅⋅=⋅⋅= 2hhw
iwi  (4.75) 

and the crack opening can then be related to strain using the relationship: 
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The significance of fictitious strains εwi and εcr in a cracked section is shown in Figure 4.45.  
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Figure 4.45: “Fictitious” strains, εwi, and εcr, related to crack opening in cracked section in bending 

The analytical model enables the value of parameter β to be quantified using Equation 4.75. This 
parameter is not a constant with the evolution of the crack, but yields to a certain value when the 
force yields to a peak force, Figure 4.46. The evolution of β as a function of crack opening is plotted 
for the sections of various heights in Figure 4.46. Obtained values for β give the values for lw that are 
similar to values for the “equivalent specific length”, Lw, according to the Japanese recomendations 
[JSCE 2006], Equation 3.28. Values for Lw in [JSCE 2006] are obtained from numerical simulations, 
using the FEM analysis of a numerical model similar to the one developed in the present study. For 
thin elements, these obtained length values are lower than those proposed by the French 
recommendations [SETRA, AFGC 2002], see Section 3.3.2.7 of this thesis. 
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Once the value of parameter β is known, the analytical formulation of the proposed model allows a 
direct relationship between parameters describing the cracked section to be defined. This enables the 
moment-curvature relationship to be expressed using a closed form solution. Equations already 
developed for sectional equilibrium (Appendix M2) will be used. Substituting Equation 4.75 in one 
of the expressions relating wi, α, and χ, (Equations A 2.8 to A 2.10) and solving it for α , the 
relationship )(  χαα = is obtained. For [ ]1,0 ww∈  and 0>χ  : 
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Substituting Equation 4.77 in ( )αχ ,MM = ,
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the bending moment is expressed as a function of the curvature uniquely, ( )χMM = .
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Figure 4.47: Moment-curvature relationships from the analytical model using σ(w), (black line), 
and obtained relating the fictitious deformation and crack opening (σ(w) transferred to 
σ(ε) using parameter β , grey line) 

The introduction of parameter β enables a unique relationship of bending moment and curvature in a 
cracked section to be formulated, which, for the simple functions of material laws, can be expressed 
in a closed form. The plausibility of the results obtained from the analytical model and by applying 
relationship 4.78  with a constant parameter β is shown by means of M-χ diagrams in Figure 4.47. 
The moment-curvature diagrams obtained by the analytical model are plotted as black lines, while 
the plots of the simplified model (Equation 4.78) are represented by grey lines. The results are 
compared for thin elements of different heights, using β = const = 0.4. It can be seen that the 
simplified approach enables the M - χ relationship to be followed very well.   

It should be noted that for the small crack openings, characterising the resistant moment, the values 
of β are smaller than 0.4. Applying a higher value of β than that actually corresponding to peak force 
slightly decreases the resistance, but enables the integral M-χ curve to be followed more accurately, 
keeping the simulated values on the safety side (Figure 4.48). 
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Figure 4.48: Influence of the choice of β  constant value on the M-χ relationships  

For a given set of material properties it is now possible to find the resisting moment from the 
equation  

( ) ( )
maxmax max0 MM MM

M
χχ

χ
χ

=⇒⇒=
∂

∂
  (4.79) 

It is also possible to find the deformational capacity i.e.χ  of a section in softening regime, for a 
desired bending moment, Mi, as: 

( )
ii MiM MM χχ ⇒=   (4.80) 

which is a necessary piece of information when a certain rotation of the element has to be assured, 
typically in statically indeterminate systems (Chapters 5 and 6).  

Force-displacement relationship 

With the defined M-χ relationship of the cracked section (Equations 4.77 and 4.78), the deflections 
of the beam can be obtained using Equations 4.71 for the pre-peak phase and Equation 4.73 for the 
post-peak phase.   

4.4 Application of the developed model  

4.4.1 Validation of the model with experimental data: BSI® UHPFRC 
The results of the model are compared with experimental results obtained in the test programme on 
thin beams made of BSI® UHPFRC, performed at the EPFL (Appendix T1). Beams of heights 
varying between 25 - 75 mm are tested in three point bending, with a constant span L = 420 mm. 
Some of the experimental results in terms of force - mid-span displacement are shown in Figure 4.49 
a), together with results from the analytical model (black line) and numerical model (grey line). The 
results are obtained with material properties in tension based on results from uniaxial tensile test 
(§ 3.3.2.8). Experimentally achieved bending strengths are plotted in Figure 4.49 b) against 
element’s height.  

A significant dispersion in measured bending strengths, and in the force-displacement response in 
general, was also noted considering the elements of constant height, Figure 4.50 b). More remarkable 
scatter of the results is noted in the region of higher solicitations, characterised by macrocrack 
opening, while the non-linear response due to microcracking shows less dispersed results.  

β = 0.2 

β = 0.4
            model 



                                                                                                             4. UHPFRC elements in bending                        

91

a) b) 

0 2.5 5 7.5

Δ �mm�

0

25

50

P
�k

N
�

0 50 100

h �mm�

0

15

30

f e
q

u
�M

P
a
�

Figure 4.49: a) Measured and simulated force-mid-span deflection response for UHPFRC beams of 
different heights h =25-75 mm; b) measured bending strength for beams of different 
heights 

For the material with a pseudo-plastic phase up to εu = 2.5 ‰, the fictitious crack is assumed to start 
propagating at σequ = nfct fct =2.4 fct = 21.6 MPa (Figure 4.50, dashed line). A similar dispersion in 
results of bending test, applying similar materials, is reported by other researchers (e.g. [Reineck, 
Greiner 2004], [Graybeal 2006]). 

a) b) 

0

5

10

15

20

25

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

deflection [mm]

mean value

characteristic v.

σ
[MPa]

equ

4.0

Figure 4.50: Beam in four-point bending: a) comparison of results of numerical model (black line) 
and the mean value of test results (grey line); b) test results on plates, h=50 mm, in 
four-point bending, with span L = 420 mm [Simon 2006]; tensile resistance 
fct = 9 MPa and pseudo-plastic plateau in tension  

The scatter in the results can be explained principally by the non-uniformity of the material 
resistance influenced by the effective fibre volume, which varies along the element. For the same 
reason, it can be expected that the bending response, modelled with a single crack opening, and the 
tensile material law obtained from uniaxial test (characterising the weakest section along a tie1), will 
not precisely follow the behaviour of every tested sampler. However, a mean value is very well 
represented with the model using mentioned material properties (Figure 4.50 a)). The results of the 
bending response of five beams of constant height h=50 mm made of BSI (Figure 4.50) are obtained 
from the test performed at the LCPC. The experimental programme performed at EPFL included 

                                                     
1 In uniaxial tension, there is a greater probability of localised deformation in the weakest section 
(due to element size), than in an element in bending where the maximal force concentrates in a 
smaller region.  
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elements of variable heights (Figure 4.49) but did not include more than three specimens of the same 
size, and the mean value given in Figure 4.50 is found more representative)  
a) b) 
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Figure 4.51: Simulated and measured response for a beam of h = 25 mm: a) simuation with tensile 
material properties obtained from uniaxial tensile test; b) variation of tensile strengths, 
corresponding to a constant stress of pseudo-plastic plateau; c) variation of strain 
softening slope;  d) simulation with strain hardening (fctm=9 MPa,  fct=10 MPa) 

Several phenomena characterising UHPFRC elements enable the scatter in measured bending 
response once the macrocrack starts to propagate to be explained, and can be demonstrated using the 
developed models (Figure 4.51 to 4.53 ):  

- statistically, more resistant sections are present in the region of maximal solicitation, due to 
locally increased fibre effectiveness; consequently a crack starts to propagate in the most 
loaded section for a higher load level, as if a positive tensile hardening slope had developed; 
alternatively, due to the gradient of bending moment, a crack may start to propagate in an 
asymmetric section (Appendix T1); 

- the crack pattern is irregular, dissipating more energy than the idealised linear crack; the tested  
beams had a relatively large width (200 mm), and the crack in some samples propagated along 
a very irregular line (Appendix T1); a longer  crack line dissipates more energy, resulting in 
increased bending resistance; 

- more than one macrocrack develops; similarly to the previous phenomenon, by dissipating 
more energy, more macrocracks enable a slight increase in resistance, and most of all a 
significant increase in deformations at peak-force; two or three macrocracks developing prior 
to peak-force were observed in some of the tested beams by means of  photogrammetry 
analysis. 

The simulations presented in Figures 4.51 to 4.53 demonstrate that a slight change in tensile material 
properties, respecting the range of possible tensile properties according to the tensile tests on notched 
ties for example (§ 3.3.2.8), enable the behaviour of some samples to be approached more 
accurately.  In Figure 4.51 a), the modelled response is plotted against the experimental curve for a 
beam 25 mm thick. It can be seen that resistance is slightly underestimated, while deformations are 

fct = 10 MPa 

fct = 9.5 MPa  

fct = 9 MPa  

 dσ / dw= 
3.34 MPa/mm 

    5  MPa/mm 

      6.8 MPa/mm 
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less accurately predicted. The same Figure b) shows the influence of increase in the constant-stress 
pseudo-plastic plateau, while in c) the influence of the decrease in the strain-softening slope, dσ/dw, 
is shown. It can be noted that the increased pseudo-plastic stress, obviously increasing the strength, 
overestimates stiffness in the pre-peak part, while the decreased softening slope (increased initial 
part of GF) shows a tendency to increasing deformability. (According to uniaxial tensile test
dσ/dw= 6.8 MPa/mm, 5 MPa/mm is a possible value for UHPFRC, and 3.34 MPa/mm is a value that 
corresponds to a slope that would be obtained using a well accepted strain-softening curve given by 
Equation 3.33,  with γ = 4.) Finally, assuming a tensile strain hardening with a slope rising from 
fctm = 9 MPa to fct = 10 MPa, and maintaining the maximal strain prior to crack opening and the 
tensile softening slope, the measured curve is well simulated (Figure 4.51 d)). 
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Figure 4.52: Simulated and measured response for a beam of h = 38 mm  (nominal h = 40 mm) 
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The behaviour of  38-mm high beam is well modelled with tensile behaviour obtained from uniaxial 
tensile test (Figure 4.52). 

The behaviour of beams of thicknesses 50 and 60 mm is presented in Figure 4.53. Two very closely 
spaced macrocracks were observed in the sections close to mid-span, before Pmax is attained, in the 
case of the beam of h=50 mm, explaining its higher strengths and deformability.  

4.4.2 Validation of the model with experimental data: other materials  
The model is validated for other materials both with and without tensile strain hardening. Two cases 
of strain hardening materials are studied:  

- a material with a more pronounced tensile strength than that of the tested UHPFRC, and with a 
similar ultimate hardening strain; 

- a material with a lower tensile strength and a more pronounced ultimate hardening strain. 

An SFRC is studied as a material without tensile strain hardening but with a pronounced bending 
hardening, due to significant GF

4.4.2.1 Application to materials with strain-hardening 

Multi-scale fibre-reinforced concrete 

A UHPFRC known as CEMTECmultiscale©), mentioned in Section 3.2.3, [Rossi et al. 2005], is used 
here as an example of a strain hardening material with a high tensile strengths, in the range of 
20 MPa, (Figure 4.54 a)), which is approximately two times greater than the tensile strength of the 
majority of UHPFRCs. The strain hardening slope is low, as is usual for UHPFRCs, with ultimate 
tensile strain εu= 2.5 ‰. The compressive strength is fc=220 MPa and modulus of elasticity Ec = 55 
GPa. More information on the material, data on tested elements and the numerical FEM modelling 
can be found in [Tailhan et al. 2003], [Parant 2003].  

a) b) c) 

Figure 4.54: Measured data for multi-scale fibre-reinforced concrete CEMTECmultiscale©: a) uniaxial 
stress-strain relationship in tension, b) bending stress-mid-span displacement curve of 
beams h = 40 mm in four-point bending test; c) bending stress-mid-span displacement 
curve of beams h = 200 mm in four-point bending test; Data from [Tailhan et al. 2003] 

The simulation of element behaviour using the non-linear beam analysis developed in this thesis is 
shown in comparison to measured data in Figure 4.55. The analysed element is a beam of 
40 x 100 x 600 mm, subjected to four-point bending, with 3 x 140 = 420 mm of the span. Analysis is 
performed with the above-mentioned material properties, assuming various constant levels of 
pseudo-plastic tensile stress (18 -22 MPa).  



                                                                                                             4. UHPFRC elements in bending                        

95

a) b) 

0 0.5 1 1.5

Δ �mm�

0

20

40

60

Σ
e
q
u
�M

P
a
�

0 1 2 3

Δ �mm�

0

20

40

60

Σ
e
q
u
�M

P
a
�

Figure 4.55: Simulated force-displacement curve (black line) for 40-mm thick beam with different 
levels of pseudo-plastic tensile stress, fct, and average measured curve (grey line): 
a) zoom in the region before localisation of deformation in the cracked section; 
b) position of the proposed design level at ULS (without safety factor) for different fct

It can be seen that both force and deformations are satisfactorily simulated with the proposed 
modelled. Maximal equivalent bending stress prior to crack localisation can be estimated using 
Equation 4.16: 
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which, for tensile strength fct = 19 MPa, results in σequ,(Mpl.max) = 2.14 fct = 40.7 MPa, or, for 
fct = 20 MPa, σequ,(Mpl.max) = 2.12 fct = 42.5 MPa. Similar to the behaviour of BSI UHPFRC, 
measured bending strength, achieved with crack opening, is only slightly higher than the value 
σequ(Mpl, max), considering  elements of heights of 40 – 200 mm (Figure 4.54 d) and c)). Moreover, the 
pseudo-plastic behaviour was considered as the representative material behaviour according to 
authors [Tailhan et al. 2003], and it was used to model numerically the complete pre-peak behaviour, 
allowing an increased length of the quasi-plastic plateau.  

Engineered cementitious composite  

Engineered cementitious composites (ECC) are cementitious fibre-reinforced materials characterised 
by a very pronounced tensile strain before strain softening occures. In this paragraph, the behaviour 
of elements made of an ECC presented in [Kunieda et al. 2002] is simulated. Material characteristics 
in tension are given in Figure 4.56 a) and b), with tensile strength equal to 4.8 MPa, εu= 3.5‰ and 
Ec = 23.3 GPa. 

a) b) c) 

Figure 4.56: Data for ECC: a) uniaxial stress-strain relationship in tension, elastic and hardening 
region; b) stress-crack opening relationship; c) Force-mid-span displacement of tested 
beams and plates, h=100 mm; from [Kunieda et al. 2002] 
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The model is applied to elements of various sizes corresponding to the geometry of tested samples, 
tabulated in the mentioned literature source. Examples of the modelling of element behaviour in 
four-point bending are plotted in Figure 4.57. The beam of dimensions 100 x 100 x 400 mm, height, 
width and length, subjected to forces introduced with a span of 3 x 100=300 mm, is simulated using 
the analytical model (Figure 4.57 a)), assuming various levels of constant pseudo-plastic tensile 
plateau. In the same Figure b) the same element is modelled using strain hardening slope as defined 
in Figure 4.56 a), and the predicted response of a triple-height element (300 mm) is also shown. 
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Figure 4.57: Simulated force-displacement curves (black lines) and lower and upper limits of 
measured response: a) beam in four-point bending, h=100 mm, modelled assuming 
different levels of constant pseudo-plastic stress, fct ; b) beams in four-point bending, 
h=100 and 300 mm, modelled using strain hardening 

Even in the case of more pronounced strain hardening deformations, the model can be seen to 
predict well the response, and strain hardening dominates in achieving bending strengths, with only 
a slight additional increase in bending stress with crack opening. With a tensile strength of 4.8 MPa
and an elastic tensile stress 0.8·4.8 = 3.8 MPa, for an average pseudo-plastic strain fct = 4.3 MPa, 
the macrocrack can be assumed to start propagating at σequ(Mpl, max) = 2.43 fct = 10.5 MPa, according 
to Equation 4.16 (dashed line in Figure 4.57a)). The bending stress is increased for a lower 
percentage with the macrocrack opening in comparison to materials with lower εu.  

4.4.2.2 Application to materials without strain hardening 

Results of the developed model are compared with the results of other models for bending in the 
presence of a fictitious crack, published in [RILEM 2002], and some of them presented in §4.2. The 
studied element is a beam subjected to three-point bending, with a constant cross-section 
(150x150 mm), with a span L = 500 mm. Tensile behaviour is modelled as linear elastic, with 
ft=3MPa and the initial strain softening curve has a slope of 30 MPa/mm up to to w= 0.05 mm and 
zero stress at wc= 10 mm: The modulus of elasticity is Ec=35 GPa.

The comparison of predictions of various models is presented in Figure 4.58 a), and the comparison 
of an average prediction and the model developed in the present study are ploted in Figure 4.58 b, as 
gray and black line respectively. It can be concluded that the model enables also good prediction of 
bending response of quasi-brittle materials withouth hardening plateau.  
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Figure 4.58: Bending response of SFRC: a) prediction of various models rapported in [RILEM 
2002]; b) comparison of the average prediction by the models presented in a), grey 
line, and the model developed in the present study (black line) 

4.4.3 Size effect of UHPFRC elements in bending 
In the previous section, the proposed analytical model was validated by a number of test results on 
beams made of different cementitious materials. In this section, the model will be used firstly to 
compare the bending behaviour of UHPFRC and FRC as a function of the element thickness. A 
parametric study will then be carried out to assess the influence of variations in the UHPFRC tensile 
behaviour on bending response. The relative influence of the tensile pseudo-plastic plateau and 
softening on the size effect in bending will be demonstrated. 

4.4.3.1 Size effect on bending strength and ductility for UHPFRC and FRC 

It is well known that both unreinforced ordinary concrete and fibre reinforced concrete are sensitive 
to size effect in bending, i.e. bending strength and ductility decrease as element thickness increases. 
This behaviour is typical of quasi-brittle materials with tensile behaviour characterised by a softening 
stress-crack opening relationship that directly follows the linear-elastic uncracked stage. For 
UHPFRC, cracking of the matrix is followed by a pseudo-plastic tensile plateau with relatively low 
stress increases and the development of high strain deformations; moreover, the post-peak softening 
behaviour is significantly more ductile than in ordinary and fibre reinforced concrete. 

In this section, the influence of the pseudo-plastic plateau and the softening behaviour of UHPFRC 
on size effect in bending will be studied by comparing the behaviour of UHPFRC elements to the 
behaviour of FRC elements as a function of their thickness. The case of a beam in three-point 
bending will be considered: the slenderness of the beam is kept constant, with a span to depth ratio 
L / h of 8. Beams depth is varied from 25 to 500 mm to investigate size effect in a range of 
thicknesses of interest for structural applications. To help distinguish the influence of the pseudo-
plastic plateau and the softening behaviour, three different materials are considered: 

- the BSI®, UHPFRC used in tests carried out during this research (Figure 4.59 a)); 
- a hypothetic material with the same elastic and softening behaviour as the UHPFRC, but 

without the pseudo-plastic plateau; 
- an ordinary FRC with a Young’s modulus of 30 GPa, a tensile strength of 3 MPa and 

F=dσ/dw equal to 20 MPa/mm (Figure 4.59 b)). 
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a) b) 

Figure 4.59: Tensile behaviour of: a) BSI; b) FRC 

The results of the analysis are plotted in Figure 4.60 as equivalent bending stress versus nominal 
deflection, defined as the ratio between the deflection δ at mid-span of the beam and its value δel at 
cracking of the matrix. Comparing the peaks of the different curves, it can be noted that for 
UHPFRC (Figure 4.60 a)) the equivalent bending strength depends only slightly on the size of the 
elements, whereas for FRC (Figure 4.60 c)) the size effect on the bending strength of the member is 
more significant. Figure 4.60 also shows that the ductility of members strongly depends on their size: 
thick elements reach bending strength for smaller nominal deflections and show a shorter and much 
steeper post-peak behaviour than thin members. 

a) b) c) 

Figure 4.60: Bending behaviour of beams made of: a) UHPFRC with pseudo-plastic phase; 
b) UHPFRC without pseudo-plastic phase; c) FRC 

Ductility also depends on the mechanical properties of the materials, as can be seen by comparing 
the nominal deflection at peak for UHPFRC (δ/δel = 6 - 11) and FRC (δ/δel = 1 - 5). However, for all 
considered materials the size effect on ductility is qualitatively similar. It is also interesting to note 
that, for the material with the same softening as UHPFRC but without the pseudo-plastic plateau, the 
behaviour is similar to that of UHPFRC in thin members (25 to 150 mm), with limited size effect on 
strength. On the other hand, it is similar to that of ordinary FRC in thicker elements, for which size 
effect becomes more pronounced (Figure 4.60 b), 4.61 a)). 

In Figure 4.61 a), the results of the simulations are plotted for the different materials as the ratio 
between the equivalent bending strength and the tensile strength of the material versus element 
thickness. The upper value on the vertical axis (fequ / fct = 3) corresponds to a perfectly-plastic 
behaviour in tension. The results are also given for an ordinary concrete that, for significant sizes, 
can be considered the limiting case of an elastic-perfectly brittle material (σequ / fct  1). This graph 
clearly shows that for UHPFRC size effect is less significant than for FRC and OC. Figure 4.61 b) 
shows the experimental results of tests carried out at the EPFL on UHPFRC beams of thicknesses 
ranging from 25 to 75 mm: based on test results in this range, no conclusions concerning size effect 
on bending strength can be drawn. As already suggested by Bazant and Cedolin [Bazant, Cedolin 
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1991] in the case of very slender ordinary concrete members, size effect in thin UHPFRC elements 
can be disregarded since it has less influence than the scatter of test results. Figure 4.61 c) shows 
experimental and analytical results for ECC members of thicknesses up to 300 mm [Kunieda et al. 
2002], and similar results were also obtained by [Rossi et al. 2005] for CEMTECmultiscale with 
thicknesses up to 200 mm (§4.4.2.1), confirming the validity of the predictions of negligible size 
effect, obtained with the proposed model. 

a) b) c) 

   

Figure 4.61: a) Theoretical size effect for UHPFRC, UHPFRC without pseudo-plastic plateau, FRC 
and OC; b) experimental size effect on bending strength for UHPFRC beam made of 
BSI; b) experimental and analytical results for ECC [Kunieda et al. 2002] 

The limited influence of size effect on the bending strength of UHPFRC can be explained by the fact 
that most of the bending strength is activated during the development of the pseudo-plastic phase in 
concrete, whose behaviour is size-independent (Figure 4.62 a). Analytically, it was shown that for a 
typical UHPFRC with εfct = 2 – 3 ‰ the equivalent bending stress attained before the beginning of 
tension softening is between  2.2 - 2.5 times the tensile strength, fct. The additional limited increase 
in strength develops in the course of a local tension softening (Figure 4.62 b)), which is size-
dependent.  

In addition to the strains developed prior to tension softening, the slope of the stress-crack opening 
law also plays a major role. For instance, when considering a material with the same softening as a 
UHPFRC, it was shown in that size effect on the strength of thin elements is considerably reduced 
even without a pseudo-plastic phase (Figure 4.60 b)). This can be understood with the help of 
Figure 4.62 c): if the slope of the descending branch is small, the stress distribution in the tensile 
zone is similar to that obtained with a pseudo-plastic behaviour in tension (Figure 4.62 a)). 
Consequently, for thin elements a pseudo-plastic behaviour or a strain softening with a small slope 
lead to similar results regarding size effect.  
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4. UHPFRC elements in bending                                                                                                             

100

For modelling and design purposes, however, the two phenomena differ. With a dominant pseudo-
plastic behaviour, the sectional and structural responses can be modelled using a continuum 
approach based on stress-strain relationships [Tailhan et al. 2003]. When softening behaviour 
dominates however, strain localisation develops and models based on fracture mechanics theories 
have to be used. 

4.4.3.2 Influence of pseudo-plastic phase and tension softening on bending behaviour 

To better understand the relative importance of the effect of the pseudo-plastic phase and softening 
behaviour of a material on the strength and ductility of a member, a parametric analysis is 
performed. The strain εfct prior to tension softening and the initial slope of the stress-crack opening 
law are the main parameters used for this study. The choice of the latter parameter is justified since, 
for most structural applications, bending strength is reached with small crack openings and thus the 
initial slope of the stress crack opening relationship is more significant than the value of the fracture 
energy GF. The parametric study is performed based on the same tensile behavior as shown in 
Figure 4.59. The values of εfct and the initial softening slope are varied according to Figure 4.63. The 
values chosen for the softening slope F=dσ/dw are: 3.3 MPa/mm, 6.8 MPa/mm (representing the 
UHPFRC used in this study) and 20 MPa/mm, which reasonably approximates the initial slope for an 
ordinary FRC.  

Figure 4.63:  Variation in material properties in tension: strain εfct at end of pseudo-plastic phase 
and initial slope of stress-crack opening law  

Figure 4.64 shows the results of the analysis for the element thicknesses varying from 25 to 500 mm. 
The influence of εfct while the tension softening slope is constant is shown in Figure 4.64 a). It can be 
clearly noted that size effect on bending strength is very limited for a pseudo-plastic plateau with 
strains up to 2.5‰ (black line). The same applies for εfct = 1.5‰, whereas for smaller values of εfct

size effect is more pronounced.  

a) b) 

Figure 4.64: Influence of pseudo-plastic plateau and strain softening slope on the bending response: 
a) influ-ence of εfct on size effect, with constant F; b) Influence of F on size effect, for 
εfct = 2.5 ‰ (solid lines) and εfct = εel   (grey lines) 
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However, if the tensile softening slope is small, the bending strength of elements without a softening 
plateau (Figure 4.64 b), grey line with F = 3.3 MPa/mm) is similar to that of elements with a pseudo-
plastic plateau (black lines). For small values of εfct (grey lines) variations in the softening slope have 
a significant influence on bending strength, while for greater value of εfct (black curves) the 
contribution of the softening slope to bending strength is less significant. Softening slope plays 
however important role in providing element’s ductility. 

4.5 Conclusions 

4.5.1 Developed analytical model  
An analytical model describing the non-linear inelastic bending response of a UHPFRC member has 
been developed. The model takes into account the multi-microcracking phase, modelled as pseudo-
plastic tensile yielding, and a localised macrocrack, modelled using the hypothesis of the fictitious 
crack model. The problem is reduced to monodimensional expressions.  

The analytical expressions developed in this work allow the non-linear relationship between the 
forces and deformations of a beam to be expressed in a closed form before propagation of the 
macrocrack. Good agreement is shown with experimental data for elements with a strain hardening 
of zero or low slope, covering the range of typical UHPFRC tensile behaviour. Expressions for the 
prediction of stiffness decrease caused by microcracking damage are also developed, showing good 
agreement with experimental results.  

Expressions describing bending behaviour in the presence of a fictitious crack are obtained by 
introducing an additional condition based on energy equilibrium. The results are in good agreement 
with experimental data and with the prediction of a numerical finite element (FEM) model. Good 
agreement is also shown with the predictions of other models for materials without strain hardening. 
For practical applications, an explicit formulation of the force-deformation relationship is developed 
by introducing a parameter relating sectional deformations and crack opening. This simplified 
approach also provides satisfactory results. 

The advantage of the proposed approach is that the non-linear force-displacement relationship and 
ultimate loads for bending failure mode are more easily obtained than with time-consuming solutions 
for FEM models.  

4.5.2 Behaviour and design of UHPFRC in bending  
The bending behaviour of a UHPFRC member is characterised by multi-microcracking (causing 
tensile strain hardening) and macrocrack propagation.  

For a UHPFRC element in bending, tensile strain hardening is the principal source of the increase in 
the element’s bending strength. For typical material properties, with tensile deformations ranging up 
to 2.5 ‰, the bending resistance achieved due to strain hardening is approximately 2.4 times the 
tensile strength. This contribution is size-independent as long as sufficient compressive strength is 
provided and compression softening is avoided, as is the case for members in pure bending.  

The propagation of the macrocrack, characterised by tensile softening, makes a minor contribution to 
bending strength (up to roughly 10%), but plays an important role in providing ductility in bending, 
as a function of element size. According to experimental and theoretical results, bending strengths 
are attained for small macrocrack openings.   

Finally, the existence of the multi-microcracking and fictitious crack propagation in UHPFRC result 
in a less pronounced size-effect on strength in comparison to other FRCs, due to tensile strain 
hardening (with positive or zero slope); this is also demonstrated experimentally. The size effect on 
ductility is however evident, even in the small range of variation of element height.  
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A parametric study was performed to investigate the size effect of UHPFRC members in bending, 
and identify the principal parameters influencing size effect. The results were compared to those 
obtained for members made of FRC and OC. On this basis, the following conclusions are drawn: 

- in a range of thicknesses of interest for structural applications (25 to 500 mm), size effect on 
bending strength is limited for a typical UHPFRC, characterized by a pseudo-plastic behaviour 
in tension with a deformation capacity of 2 to 3 ‰; 

- for very thin members (25 to 75 mm) it is demonstrated that size effect on bending strength is 
practically negligible; 

- in the presence of a significant pseudo-plastic behaviour, the influence of post-peak tension 
softening on bending strength is not very significant, since most of the bending strength is 
developed while the concrete is in the pseudo-plastic tensile phase. The post-peak tensile 
behaviour is however relevant to the ductility in bending; 

- in the case of a limited or non-existent pseudo-plastic phase, the bending response of 
UHPFRC elements is similar to that of ordinary FRC. However, if if the tensile softening 
slope is low, thin members can exibit a rather ductile behaviour and a limited size effect, even 
if there is no pseudo-plastic phase. 
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5.   Application of the theory of plasticity in the design of 
statically indeterminate UHPFRC beams 

The non-linear bending behaviour of statically indeterminate UHPFRC beams without ordinary 
reinforcement is studied in this chapter. A procedure for simulating the bending response in the 
presence of pseudo-plastic tensile yielding and the propagation of fictitious cracks is developed. 
Based on the results of this static analysis, the possibility of applying the theory of plasticity in 
predicting the load-bearing capacity of UHPFRC elements is investigated. 

5.1 Introduction  

Statically indeterminate beams or elements whose behaviour can be represented using a beam model 
(Figure 5.1) are common structural elements, and for this reason it is important to study their 
behaviour and provide easily applicable theories for assessing their resistances. 

Thin UHPFRC beams without ordinary reinforcement exhibit pronounced deformations while 
maintaining a sufficiently high portion of the resisting moment, as shown by the previous analysis 
(Chapter 4). Owing to multi-microcracking and the propagation of the fictitious crack characterised 
by a low tensile softening slope, UHPFRC allows the development of a high degree of ductility in 
thin bending members, and the question arises as to whether it is possible – and if so, to what extent - 
to apply the theory of plasticity in the design of UHPFRC members. The application of the theory of 
plasticity is nowadays well accepted in the ultimate design of RC structures, since it provides good 
results and, at the same time, allows simple formulation of the final expressions. The required 
ductility in RC members is provided by the reinforcement in tension and the concrete in 
compression; in UHPFRC elements, the particular tensile properties of the material are the source of 
ductility. Since the tensile behaviour of UHPFRC is characterised by cracking, the element size and 
material fracture properties (h and GF) have a significant influence on the possibility of developing a 
plastic response in a member. 
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Figure 5.1: Statically indeterminate elements: a) thin UHPFRC slab failing in bending; b) 
clamped beam failing in bending and the corresponding failure mechanism (developed 
plastic hinges) 
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5.2 Theory of plasticity in design of concrete structures  

The interest in the application of the theory of plasticity in structural design is mostly due to its 
practical aspects: if the hypotheses of the theory are respected, failure loads are found easily and 
accurately. 

The background to the theory may be found in the first mathematical studies of stress and strains in 
plastically deformed solids, especially metals, and in works on yielding conditions (Coulomb 1773, 
Rankine 1853, Tresca 1864, Saint-Venant 1870), [Hill 1998]. Two schools were dominant in the 
development of the theory: the Russian (Gvozdev, Kachanov), and the German (Prandtl, Nadai, 
Lévy, and later Prager, Drucker). The purpose of the method is to predict the load which leads to the 
failure of the entire structure.  For this purpose, the formulation of two theorems of limit analysis 
represented an important step towards the practical use of the theory of plasticity as a design tool. 

Originally developed basically for metals, the theory was successfully extended to reinforced 
concrete structures: recognising the plasticity in RC members, and adapting the concept of plastic 
yielding to concrete, made the plastic approach a viable design method. According to [Nielsen 1999], 
the first traces of the application of the principles of plasticity in design of RC structures can be 
found in Danish codes as far back as the beginning of the 20th century. Nowadays, the theory of 
plasticity is suggested for limit analysis in the design of RC structures by many authors [Chen 1982], 
[Muttoni et al. 1997], [Nielsen 1999], [Alvarez et al. 2000], and also by current structural design 
codes [SIA 2003b], [Eurocode 2004].  

5.2.1 Fundamentals of the theory of plasticity applied to concrete  
Yielding criteria  

The first step in the application of the theory of plasticity at the structural level is the definition of 
plastic yielding criteria for materials. Plasticity in RC structures is related to a certain ductility of 
concrete in compression that enables the reinforcement ductility in tension to be exploited. Therefore 
the yielding behaviour of both materials must be considered. The simplest and, in the analytical 
formulations, the most widely used hypothesis is to model the behaviour of concrete in compression 
and reinforcement in tension in accordance with rigid-perfectly-plastic laws (Figure 5.2 a)). Based on 
this assumption, the yield condition for a structural member failing in bending can be expressed with 
a rigid-perfectly-plastic moment-curvature relationship [Muttoni et al. 1997] (Figure 5.2 b)).  
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Figure 5.2: Uniaxial behaviour of ordinary concrete, reinforcement, UHPFRC, and behaviour of 
RC and UHPFRC elements in bending; corresponding idealised rigid-perfectly-plastic 
behaviours are plotted as grey lines 
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A rigid-perfectly-plastic material in a uniaxial state of stress is characterised by the yielding 
condition I(σ)=0. For fy being a yielding stress e.g. the same in tension and in compression, 
for σ = fy any strain increment dε in the load direction is admissible, while no deformations are 
associated to σ < fy and I(σ)>0 is an inadmissible state. For points where the yielding condition is 
respected, stress and strain variations are related by the normality flow rule: 

σ
λε

∂
∂

⋅=
I

dd , (5.1) 

where dλ is a positive scalar proportionality factor, which is nonzero if plastic deformations occur.  

According to the above, it can be concluded to what extent the representation of concrete 
compressive behaviour as a rigid-perfectly-plastic behaviour is a simplification: the deformations in 
the concrete are not of a real plastic nature, but result from a progressive microstructure failure with 
aggregate interlock effect; however, for monotonically increasing strains, the amount of energy spent 
for concrete deformation is similar to that for idealised perfectly-plastic deformation (surfaces below 
σ(ε) curves, Figure 5.2 a)). The hypothesis of rigid-perfectly-plastic behaviour of RC structures is 
thus an important simplification of the reality, but it relies on consistent scientific bases, and is well 
accepted in current codes of practice [SIA 2003b], [Eurocode 2004].   

To extend the rigid-perfectly-plastic model to UHPFRC without ordinary reinforcement, the yielding 
properties of the material need to be considered in both compression and tension. The compressive 
behaviour can be regarded in a similar manner to the case of ordinary concrete (OC), with the 
difference that the “ductility” in UHPFRC is provided by the fibres. Behaviour in tension, exhibiting 
high deformations with a slow or no variation in stress, strongly resembles a plastic behaviour, as 
already discussed (Figure 5.2 c)). Finally, with regard to the moment-curvature relationship, 
modelled with real material properties, it can be noted that, especially for thin elements, it is 
characterised by a plateau (Figure 5.6), similar to that of an RC section, which extends up to a certain 
deformation with an almost constant moment-bearing capacity (Figure 5.2 d)). These observations 
indicate that the bending behaviour of thin UHPFRC members could be described using the theory of 
plasticity. It must be remembered, however, that the physical background of this moment-curvature 
relationship differs from that of an RC member: in the case of UHPFRC members, ductility is 
provided by progressive crack opening while fibres allow a significant stress-bearing capacity to be 
maintained, and the compressive deformations exhibited around the peak load only slightly exceed 
elastic deformations; in RC, however, ductility is achieved due to the plastic yielding of the 
reinforcing bars in tension, followed by significant compressive deformations in the concrete. In the 
first case, the size effect on ductility is much more pronounced than in RC structures. Moreover, 
there is a significant difference in the ductility capacity that can be achieved in UHPFRC and RC 
structures.  

Limit analysis theorems 

In addition to yield conditions, limit analysis is used to determine the load-carrying capacity of a 
structural element, avoiding complex calculations that take into account the progressive yielding that 
occurs in reality. The limit analysis is based on limit analysis theorems [Nielsen 1999]: 

- the lower-bound theorem: the structure will not collapse or will be just at the point of collapse 
if the load is of such magnitude that it is possible to find a statically admissible stress 
distribution equilibrated with the applied load and characterised by stresses below or at yield;  

- the upper-bound theorem: the structure will collapse if there is a kinematically compatible
displacement field of plastic deformations for which the rate at which the external forces 
perform work exceeds the rate of internal work dissipation. 

The coincident static and kinematic solution is easily developed for structures of a low static 
indeterminacy, e.g. by using the plastic hinge approach for beams and frames, where the position of 
plastic hinges coincides with points of maximal moments. In order to determine the value of the 
ultimate load according to the upper bound theorem, a sufficient number of plastic hinges to allow a 
structure to become a mechanism is required. In statically redundant systems, a kinematically 
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compatible collapse mechanism can only be developed if more than one hinge exists at the same 
time, meaning that the first plastic hinges to form should have sufficient deformational capacity to 
allow other hinges to form, thus avoiding a sudden brittle failure. Energy principles (principle of 
virtual work / virtual displacement) are often applied to determine the failure load, e.g. if an 
equilibrated system is subjected to a virtual displacement, the sum of the external and internal work, 
Ai and Ae respectively, is equal to zero. Assuming that the deformations are concentrated in plastic 
hinges (coherent with the theory of plasticity), for a one-dimensional system the principle of virtual 
work can be expressed by the following relationship: 

dxxwxqM
L

j

n

i
ii ∫∑ ⋅=

= 01

)()(θ , (5.2) 

where Mi represents the plastic moment of a plastic hinge i and θi represents its rotation and q(x) is a 
function of ultimate load, performing work on displacements along the element, wi(x).

Applicability of the theory of plasticity 

Practically, the theory of plasticity can be applied on the assumption that materials are sufficiently 
ductile to sustain large deformations, while the deformations of the structure must be sufficiently 
small for the second-order effects to be disregarded. The following conditions must be met in a 
plastic solution:  

- equilibrium conditions (static equations) 
- compatibility (kinematic equations) and 
- plastic moment (comprising constitutive law).  

While the equilibrium conditions remain the same as in the elastic analysis, the compatibility 
conditions differ significantly, due to the fact that the formation of a plastic hinge causes a 
discontinuity. However, the failure load of a structure can be easily predicted by applying the 
principle of virtual work (Equation 5.2) for example.  

5.3   Non-linear analysis of statically indeterminate beams in 
bending  

5.3.1 Analysis approach    
To study the behaviour of a statically indeterminate member up to bending failure, the analysis must 
take into account the progressive change in stiffness due to multi-microcracking and the propagation 
of fictitious cracks at the most loaded sections.   

A change in stiffness along a statically indeterminate member (e.g. Figure 5.3 a)) leads to a change 
in the distribution of internal forces in relation to the distribution under the initial (e.g. constant) 
stiffness (Figure 5.3 b)). Consequently, previously less loaded parts of the member start to 
progressively assume higher portions of the applied load. The force redistribution phenomenon 
generally has a favourable effect on structural behaviour, if the required sectional capacities are 
available. In this section, the capacity of UHPFRC members to redistribute forces will be addressed; 
the aim is to determine whether the plastic-like bending behaviour observed on thin statically 
determinate UHPFRC beams allows a sufficient redistribution of internal forces to occur and plastic 
behaviour in a statically indeterminate system to be achieved. The practical conclusion provides the 
answer to whether the theory of plasticity can be applied in the designing of UHPFRC elements. 
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Figure 5.3:  a) Statically indeterminate system under load ; b) possibility of redistribution of 
internal forces (bending moments); c) relative increase in rotation; in b) and c) case 1
corresponds to constant stiffness distribution along member length, and case 2
corresponds to decreased stiffness in support region 

The study is performed on beams with a constant cross-section along the length, with two clamped 
edges, under a symmetric uniformly distributed load (Figure 5.4). The hypotheses of the beam theory 
detailed in Chapter 4 are also assumed in this analysis.  

q

L

h h

b=1

x

Figure 5.4: Boundary conditions of case study: clamped beam subjected to uniformly distributed 
load.  

The beam is analysed under monotonically increasing deformation. Up to the moment when the 
maximal elastic deformation level, δ el, max, is attained (Figure 5.7) all sections have the same initial 
bending stiffness. The corresponding load level is qel. For δ >δ el, max the material in the most loaded 
sections starts to exhibit pseudo-plastic tensile behaviour. This causes a progressive change in the 
stiffness of the sections and distribution of moment changes as a function of stiffness. The latter is 
based on the moment-curvature relationship, M(χ). For a given section and material law, the M(χ)
relationship is established based on the equations developed in § 4.3.5. The characteristic points of 
this curve (Figure 5.5) are: 

- maximal elastic moment Mel, max and corresponding curvature χel, max,
- maximal plastic moment Mpl, max and corresponding curvature χpl, max,
- resisting moment Mmax and corresponding curvature χMmax; this point characterises only the 

section with the macrocrack,  
- curvature χpl,u in the softening region, for which the bending moment is equal to Mpl, max

(designated curvature at failure, characterising only the section with the macrocrack). 
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Figure 5.5: Characteristic points of moment-curvature diagram (solid curve) and idealised 
moment-curvature relationships (dashed line) 

For an imposed deformation in the member, the corresponding non-linear state of stresses (internal 
forces) is found based on the algorithm below.  

5.3.2  Algorithm for the simulation of non-linear load-displacement 
behaviour   

For a symmetric load and symmetric material and geometric characteristics of the beam with respect 
to the mid-span, if the moment at the clamped edge, Ms, is known, the internal forces at any point of 
the beam can be determined from the equilibrium conditions. The moment function along the length 
of the element is:   

22
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Disregarding the contribution of shear deformations, the work of internal and external forces, Ai and 
Ae respectively, can be calculated as:  
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respecting the given boundary conditions, i.e. 
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For an imposed deformation in the element the corresponding load level can be found from the 
energy conservation principle: the work of internal forces must be equal to the work of externally 
applied forces, 

ei AA = . (5.10) 

The curvature of the section at the clamped edge is chosen as the governing degree of freedom to 
control the deformation of the beam. The algorithm for the calculation of the force-displacement 
response is then based on the following steps: 

- for an imposed curvature at the clamped edge, χi, the corresponding bending moment is 
defined based on the moment-curvature relationship, Ms = M(χi), (§ 4.3.5); 

- a corresponding load level qi is assumed (e.g. using the relationship between the load found 
for χi-1 and the load causing the same Ms(χi-1) if stiffness were constant); 

- if Ai,i(χi, qi) = Ae,i(χi, qi), calculated using Equations 5.4 and 5.5, the solution is found. 
Otherwise, a new load value qi  is sought until the Relationship 5.10 is satisfied. 

Both the moment-curvature, M(χi), and its inverse function, χ(M), are required in Equations 5.4 and 
5.5. To express curvature as a continuous function of moment, two regimes must be distinguished:  

- before the first macrocrack opens, while χi ≤  χpl,max , thus Ms ≤ Mpl, max, χ (M(x))=χ(x)
function, defined in a closed form (Equation 4.11), characterises the sections along the length;  

- for χi >χpl,max, the M(χi) relationship (Equation 4.78) characterises only the macrocracked 
section and the curvature function in the crack-surrounding region is represented by an 
approximating function, as defined in § 4.3.5 (Equations 4.69 and 4.70), while the rest of the 
beam is characterised by χ(x) (Equation 4.14) as long as the load continues to increase.  

It is possible to integrate the defined curvature functions using the close form solutions. However, 
since the considered functions are monotonic, standard numerical integration procedures are found 
more appropriate for the calculation of internal and external work (right sides of Equations 5.4 and 
5.5). The numerical integration is particularly convenient for the double integration of the curvature 
(Equation 5.7) to obtain the displacement function along the length of the beam, w(x):  
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Similarly, the integral in Equation 5.5 can be replaced by the sum:  
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5.3.3 Results of analysis  
The static system with the boundary conditions presented in Figure 5.4 is analysed based on the 
procedure developed in Section 5.3.2.  The characteristic points of the force-displacement and 
moment-curvature diagrams of the sections at the support and in the mid-span are presented 
qualitatively in Figure 5.7. The state of deformations along the element will be discussed based on 
the example of a beam of a rectangular cross-section of 50-mm  height, a unit width, and the same 
length as the statically determinate beams studied in Chapter 4, L=0.42 m. The analysis is also 
performed for the beams of various heights, maintaining the same span-to-depth ratio. The moment-
curvature relationship for the section of h=50 mm made of UHPFRC (Table 3.3) is plotted in 
Figure 5.6. This relationship characterises both the positive and negative bending moments.  
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Figure 5.6: Moment-curvature relationship of UHPFRC section of height h = 50 mm and unit 
width, used in case study; a) relevant region with level of moment at macrocrack 
opening (dashed line); b) entire curve up to χ = 1 m-1
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Figure 5.7:  a) Force-mid-span displacement relationship for clamped beam and characteristic 
points; b) moment-curvature relationship of section at clamped edge (M<0, χ <0); c) 
moment-curvature relationship of mid-span section 

The following regimes are distinguished in the beam response (Figure 5.7 a)):

1) Linear-elastic regime up to q = qel, max, qel, max being the load at which the maximal elastic 
moment is reached at the clamped end:  

Ms = Mel,max ⇒ qel, max = 12· Mel,max  /L2.  (5.14) 
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2) Non-linear behaviour up to load q1pl for which the maximal pseudo-plastic moment is 
reached at the clamped edge, Ms = Mpl,max . The pseudo-plastic tensile yielding in the 
region of negative moment (clamped edge) influences the behaviour in this regime, and the 
maximal load level achieved can be defined as 

 q1pl = k1·12· Mpl,max /L2,  k1 > 1. (5.15) 
The coefficient k1 (for the given material and boundary conditions k1 1.1) shows that the 
increase in maximal negative moment Ms is lower than in the elastic regime, since the 
corresponding curvature increases (stiffness decreases) with a higher gradient than in the 
elastic regime (Figures 5.6 and 5.8 a)). Consequently the moment at the mid-span section 
increases with a higher gradient, Mm=Ms+qL2/8, (Figure 5.8 d)). When Ms = Mpl,max the 
sections in the mid-span are also in pseudo-plastic yielding in tension. The regions of the 
beam in pseudo-plastic yielding can be distinguished in Figure 5.8 c), where the ratio of 
actual to elastic curvatures is plotted along the beam length. This diagram remains the same 
for various section heights, if slenderness is maintained. The concentration of curvature (i.e. 
deformation) at the clamped edge is similar in its effects to that of the formation of a plastic 
hinge (Figure 5.8 a) and c)), as already seen during the non-linear response of statically 
determinate systems (§ 4.3.4). This phase ends with the beginning of macrocrack 
propagation in the section at the clamped edge.  
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3) A non-linear part characterised by the propagation of a fictitious crack at the clamped edge is 
first studied up to q = qM1max, qM1max being the load value for which the maximal moment is 
reached at the clamped edge, Ms = Mmax . (A symmetric behaviour is implicit, meaning 
that a fictitious crack starts to propagate at the second clamped edge simultaneously.) During 
this phase a more pronounced concentration of the curvature in the vicinity of the 
macrocrack occurs (Figure 5.9 a) and c)). With an increase in deformations in this regime, 
the load increases more slowly than in the previous phase (Figure 5.11); the bending moment 
at mid-span increases with a higher gradient (Figure 5.9 b)), enlarging the zone in pseudo-
plastic yielding (Figure 5.9 c)). The maximal moment at the support Ms = Mmax is 
reached for the load level qM1max ,

 qM1max = k2 ·12·Mmax/L
2, with k2> k1> 1,  (5.16) 

with k2=1.13 in the case study for h=50 mm. Since the Mmax and the curvature for which it is 
attained are size-dependent values, as discussed in Chapter 4, the value of k2 and the moment 
and deformations in the mid-span sections are also functions of section height. For this 
reason the graphic c) in Figure 5.9 is influenced not only by material properties and span-to-
depth ratio, as in the previous regimes, but also by element size.  
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Figure 5.9: a) and b) distribution of curvature and bending moment along length of beam for 
q= q1pl  (grey lines) and q=qM1max (black lines); c) ratio of curvature χ(M(x,)) to elastic 
curvature for q=qM1max; d) Μ(x) and Μel(x)  for q= qM1max

4) Non-linear regime up to failure (q = qmax) is characterised by an increase in curvature at the 
clamped edge with a decrease in the corresponding bending moment Ms < Mmax , while 
the load q can still increase 

qmax ≥ q1pl .  (5.17) 
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This phenomenon is already studied in RC and prestressed concrete structures, known as 
softening hinge, where the crashing of concrete in compression also contributes the softening 
[Muttoni 1990], [Bazant 2003]. The structural behaviour in this regime is strongly influenced 
by the gradient of the decrease in Ms which is influenced by element size and the fracture 
toughness of the material. For elements of small height the curvature at the clamped edge 
increases considerably in this regime, with a very small decrease in bending moment Ms

(Figures 5.6 and 5.10). Consequently a significant moment redistribution occurs, the Mm and 
deformations at mid-span (Figure 5.10) continuously increase with an increasing q and the 
values of the two moments become more equal. If the section at the clamped edge can 
increase deformations with only a low decrease in Ms,  the pseudo-plastic moment Mpl,max can 
be reached in the mid-span while Ms > Mpl,max . In this case the deformations increases 
at an almost constant load rate, and the behaviour resembles that of a plastic beam 
(Figure 5.11).  
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Figure 5.10:  Distribution of curvature along beam (h =50 mm) when maximal load is reached 
(q = qmax, black line) and that from previous phases (q = qM1max and q = 
q1pl, grey lines) 

5) A further increase in deformations (δ >δ q max) is followed by a decrease in load. It is 
interesting to note that, in the case of beams of small height, the moment at the mid-span can 
continue to increase even if the load decreases because stiffness decreases faster at the 
clamped edge, and for a slow q decrease, the stiffer mid-span sections sustain higher 
moments.   

The complete behaviour of the studied UHPFRC clamped beam in terms of force-displacement is 
shown in Figure 5.11 a). It can be seen that non-linear behaviour is dominant, and that the first non-
linear part of the curve, up to the point when the maximal pseudo-plastic moment is reached at the 
clamped edge (q=q1pl), deviates slightly from the linear behaviour (Figure 5.11 b)), while further 
deformations, governed by the fictitious crack opening, become more pronounced and, as will be 
shown in § 5.5, influenced by element size.  
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Figure 5.11: Force-displacement relationship of clamped beam h=50mm, b=1, L=420 mm, with 
levels of maximal elastic load, qel, max, and maximal load prior to crack opening at 
clamped edges, q1pl; b) zoom of plot a) on region prior to first macrocrack opening 

The progressive redistribution of internal forces as a function of load increase is shown in 
Figure 5.12. The graph is plotted as the ratio of the absolute value of moment at the support, Ms , 
to the moment in the mid-span, Mm. When this ratio yields 1 before qmax is achieved, plastic-like 
behaviour can be exhibited. In the same graph it can be seen that the redistribution occurring due to 
multi-microcracking in a typical UHPFRC is not sufficient to cause Ms = Mm, but for elements of a 
small height this can occur with propagation of the macrocrack. 
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Figure 5.12: Redistribution of bending moments caused by  change in stiffness due to multi-
microcracking and fictitious crack opening; moment at clamped edge Ms over moment 
in mid-span, Mm, with relative load increase q/qel

The increase in curvature for the section at the clamped edge and the mid-span section is plotted 
against the load level in Figure 5.13. It can be noted that the behaviour in the region close to the peak 
load is characterised by a significant increase in both curvatures, a small load variation, which is 
compatible with previous observations on the force-displacement relationship, and indicates the 
plastic-like behaviour in elements of small height. 
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Figure 5.13: Development of curvature with load increase: a) curvature at support, b) curvature at 
mid-span section

5.4 Plastic solutions for a clamped beam  

Instead of calculating the progressive failure of a member (Figure 5.15 a) and b)), as in the previous 
non-linear analysis, the theorems of limit analysis can be used to determine the load-carrying 
capacity of sufficiently ductile materials (§ 5.2). It is assumed that a rigid-perfectly-plastic moment-
curvature relationship characterises the sectional behaviour of the studied element (Figure 5.14). 

M -

M R

 χ

 χ

-M R

M 

Figure 5.14: Idealised moment-curvature relationship corresponding to rigid-perfectly plastic 
behaviour  

Limit analysis solutions 

1) A statically admissible solution according to the theorem of the lower bound enables a lower limit 
of the failure load, qlb, to be determined. For the given moment-curvature relationship characterising 
the element (Figures 5.14 and 5.5, dashed line), a statically admissible stress state can be assumed as 
being the one which is equilibrated with the applied load and never violates the yield condition i.e. 

M(x) § MR (Figure 5.15 c)). With the bending moment at the clamped edges Ms = MR  and the 
resistant moment MR attained at the mid-span section, Mm = MR, a lower limit of the failure load is 
found as:  

qlb = 16·MR /L
2 .  (5.18) 
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Figure 5.15: Clamped beam in bending: a) boundary conditions; b) non-linear deformations; 
c) assumed statically admissible moment field 

2) A kinematically admissible solution according to the theorem of the upper bound can be found by 
applying the principle of virtual work on a kinematically admissible mechanism (Figure 5.16 b)). 
Respecting the definition of internal Ai  and external Ae work,   

∑
=
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jji MA

1

θ   (5.19) 
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e ∫ ⋅=
0

)()(   (5.20) 

where Ai is the total energy dissipation in the plastic hinges and Ae is the work of externally applied 

forces, with +− = RR MM , and q(x)=const, for the assumed mechanism shown in Figure 5.16 b) and 

for the imposed virtual displacement δ=1, it follows: 

22
24

δ
θ ⋅⋅=⇔=

L
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Based on Equations 5.18 and 5.22 it can be noted that, for a perfectly plastic behaviour, the lower 
and the upper bound solution are equal, and henceforth referred to as the plastic solution.  
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Figure 5.16: Clamped beam in bending: a) boundary conditions; b) assumed kinematically 
admissible mechanism  
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Plastic solution for UHPFRC: plastic moment   

The concept of plastic yielding associated to UHPFRC elements in bending is mentioned in § 5.2. 
The source of ductility in a UHPFRC is related to material tensile properties which, being governed 
by cracking, cause the ductility to be influenced by material fracture properties and element size. The 
corresponding moment-curvature relationship will then also be dependent on these two parameters. 
As demonstrated in the previous analysis of bending members (Chapter 4), due to the presence of the 
multi-microcracking, element size has a limited influenced on resistance, whereas the deformational 
capacity is strongly affected by element size.  

The greatest increase in deformations in a UHPFRC element in bending is related to macrocrack 
propagation, while the corresponding bending stresses remain almost constant (Figure 5.17). For this 
reason the moment corresponding to the maximal moment before propagation of the macrocrack 
starts, Mpl,max, is assumed to represent the resistant plastic moment of a UHPFRC section:  

MR = Mpl max .  (5.23) 

The value of Mpl,max can be calculated from the material properties and geometry of the section 
(§ 4.3.4). For a rectangular cross-section  

6

2

max,
bh

fnM ctfpl ct
⋅⋅=   (5.24) 

where nfct represents the ratio of the maximal bending stress achieved prior to crack localisation to 
tensile strength, fct, defined by Equation 4.17, 
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It should be remembered that the nfct·fct, the bending resistance achieved before the macrocrack starts 
to develop, is shown to be a size-independent, and thus the nfct is a function of material properties 
only.    
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Figure 5.17: Comparison of moment-curvature response of a UHPFRC section and moment-
curvature response of an idealised rigid-perfectly-plastic material 

As seen in the analysis of statically indeterminate systems, the deformational capacity of the plastic 
hinges is the other relevant parameter that affects the development of a failure mechanism 
(e.g. Figure 5.16) and determines whether the behaviour of a UHPFRC element will approach a 
plastic behaviour. Using Equations 4.79 and 4.80, the maximal curvature χpl,u (Figure 5.17)
characterised by the condition  

( ) ( )inipluplinipl MM ,,,, χχχχχχ ≥⇒≤≤∀  (5.25) 

can be defined for a section of a given height. The χpl,ini is the curvature characterising the beginning 
of plastic moment Mpl,max (Figure 5.17). As mentioned, the value of the χpl,u, designated curvature at 
failure, is strongly affected by element size (Figure 5.20). The value of this curvature is directly 
related to the deformational capacity of the plastic hinge.   
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During formation of the kinematic mechanism the value of χpl,u must not be exceeded if plastic 
behaviour is to be developed (Equation 5.25). In this case, limit analysis can be used to determine the 
failure load.  

Plastic solution for UHPFRC: failure load

For the observed boundary conditions (Figure 5.16), the failure load obtained based on the lower- 
and upper-bound theorems (Equations 5.18 and 5.22), designated qpl, with Relationships 5.23 and 
5.24, can be expressed as a linear function of maximal elastic load, using parameter nfct, as: 

elfpl qnq
ct
⋅⋅=

3

4
  (5.26) 
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For the UHPFRC used in this study nfct = 2.4 (§ 4.3.4), and for the given static systems  

elpl qq ⋅= 2.3 .  (5.28) 

The obtained plastic solution for failure load can now be compared to the failure load obtained by 
non-linear analysis.  

5.5 Comparison of results: non-linear and plastic analysis 

UHPFRC beams of various heights are analysed using the algorithm presented in Section 5.3.2 and 
their response in terms of force-displacement relationship is compared to the plastic solution 
(Equation 5.28). Before presenting these results, the load-bearing capacity of the clamped beam 
studied in Section 5.3 (Figure 5.18, black line) is compared to the failure load obtained according to 
the plastic solution (grey line). 

0 0.5 1

Δ �mm�

500

1000

q
�k

N
�m
�

h 	50.‘mm

Figure 5.18: Force-displacement curve of UHPFRC beam of h=50 mm and failure load obtained 
using plastic analysis (grey line) 

As indicated in Figure 5.18, the maximal load predicted for a beam of small height by the non-linear 
static analysis is slightly higher than the failure load predicted by the plastic analysis. This may be 
considered a solution that does not comply with the hypotheses of the theory of plasticity, since it 
implies that a higher value for the resistant moment, MR , than the assumed plastic moment is 
achieved. However, this must not be interpreted as a violation of the yield condition, since the 
difference is due to the assumption made for the plastic moment value MR = Mpl, max, (Equation 5.23), 
while in the non-linear analysis Mmax > Mpl.max occurs and, as will also be seen for other elements of 
small height, qmax>qpl can be obtained.    

qpl
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Beam height, h, is varied in the range of 10 to 250 mm, while span-to-depth ratio is kept constant, 
corresponding to the slenderness of the first case study L/h=0.42/0.05=8.4. The boundary conditions 
are also maintained (Figure 5.4).  

The results are presented in Figure 5.19. In Figure 5.19 a) obtained load values q are normalised with 
the value of maximal elastic load qel, max and plotted against the mid-span displacement normalised by 
element height (δ / h). The corresponding level of plastic failure load, qpl, is also indicated. In the 
same Figure b) the results are plotted as the redistribution of bending moments (ratio of support 
moment to moment at mid-span, Ms / Mm,) against the normalised load value (q/qel, max). In 
Figure c) the difference between the failure load predicted by the non-linear analysis and the plastic 
failure load is shown as a function of element height. 
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Figure 5.19: Bending response of elements of various heights (h=10, 25, 40, 50, 60, 100, 150, 

250 mm, L/h = const): a) normalised force-displacement relationships; b) moment 
redistribution as function of load increase; c) maximal load from non-linear static 
analysis against plastic failure load 

It can be noted that, for the given material properties, the elements of smaller height exceed the 
plastic load predicted by Equation 5.28 with MR = Mpl, max. In the case of elements of h>100 mm, the 
lower bound of failure load is not attained. These results are explained by the different deformational 
capacity of elements of different heights: in Figure 5.20 a) normalised moment-curvature 
relationships are plotted for the different element heights and the significant difference in capacity to 
increase curvature during macrocrack propagation can be noted. The intersection of the normalised 
M-χ curves with the horizontal line (M/Mel=nfct=2.4 for the given UHPFRC) represents the position 
of the curvature χpl,u, after which moment decreases below value of MR. Very thin elements (e.g. 
h=25 and 50 mm) exhibit a significant increase in χ with almost no change in moment-bearing 
capacity, while for thicker elements (e.g. h=150 mm), the moment born by the section quickly 
decreases with an increase in χ. This results in a more pronounced redistribution of internal forces in 
thin elements, leading also to a more pronounced influence of size effect on bearing capacity 
(Figure 5.19 a)) than in the case of statically determinate elements. This is mainly because the effect 
of size on bending strength is limited, whereas it is more pronounced on ductility (Figure 5.20 a)) 
which influences the bending resistance of statically indeterminate members. This phenomenon 
restrains the application of the theory of plasticity to elements of small size. With the proposed 
concept of the plastic moment in UHPFRC elements (Figure 5.17, Equation 5.23), the failure loads 
for elements thicker than 100 mm overestimate the ultimate loads obtained by non-linear static 
analysis.  

As already mentioned (Chapter 4), the curvature χpl,u for which the moment starts to decrease, being 
a plasticity-relevant parameter for UHPFRC, is also a function of the fracture properties of the 
material, namely of the tensile softening relationship slope (dσ/dw). The influence of this parameter 
on the increase in χpl,u is shown in Figure 5.20 b) for the case of a beam of h=100 mm: a lower 
tensile softening slope increases the capacity of a cracked section to deform, and the M-χ

h=10mm
               qpl

          h=250mm        
             qlin.el
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relationship approaches the M-χ relationship of a thinner section. Thus, the enhanced fracture 
properties of the material lead to a more ductile behaviour, making it possible to reach the predicted 
plastic failure with thicker members. In the same manner, a higher tensile softening slope approaches 
a brittle behaviour, with a faster post-peak decrease in load-bearing capacity and reduced possibility 
for developing plastic behaviour at the element level.  
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Figure 5.20: Curvatures characterising UHPFRC sections with a macrocrack: a) influence of 
variation of element size on ductility;  b) influence of variation of initial slope of 
stress-crack opening curve on ductility 

The presented study is performed using the initial slope of the stress-crack opening curve of 
6.8 MPa/mm, based on the data from uniaxial tests on the unonotched specimens. This value may be 
considered slightly conservative for bending, as already seen in the analysis on simple beams where 
bending behaviour, modelled with these tensile properties, never led to overestimation of bending 
strength. Consequently, the simulated behaviour of statically indeterminate members can be accepted 
as being on the safety side for the elements made of BSI.  

Regarding the influence of span-to-depth ratio, L/h, it should be mentioned that a slight loss of 
ductility is observed for an increase in L/h. However, for the L/h ratio range of interest for structural 
application, the results shown in Figure 5.19 can be considered representative.  

In addition, it can be noted that the resistance of thicker elements (e.g. h>100 mm, Figure 5.19 a)), 
though not reaching ultimate load predicted by the plastic analysis, can however exceed the maximal 
linear-elastic load, (slightly higher then nfct·qel= 2.4qel).  This signifies that the load can continue to 
increase in the system while the moment borne by the clamped edge Ms  decreases, and the mid-
span moment Mm increases. Eventually the value of Ms  and Mm can become equal. Thus, a lower-
bound plastic solution can be satisfied by assuming a value of resistant plastic moment MR’ smaller 
than MR =Mpl,max,(Figure 5.21). However, due to the lack of more precise definition for MR’, non-
linear analysis must be used to assess the ultimate load-bearing capacity of thicker elements.   
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Figure 5.21: Alternative condition determining resistant plastic moment, based on required χu
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The conclusions on the plastic behaviour of UHPFRC elements will be extended to slabs, as 
elements with a higher degree static redundancy, for which the experimental evidence is also 
presented (Chapter 6). 

5.6 Compressive membrane action 

In the above analysis the effect of membrane (arching) action was deliberately disregarded. The 
membrane effect was observed at the beginning of RC slab construction as a phenomenon allowing 
slabs with laterally restrained displacements (Figure 5.22) to carry higher loads than those predicted 
by plate theory. The effect was theoretically recognised by Ockleston [Ockleston 1958] and much 
theoretical and experimental work followed. The effect was also experimentally observed in frame 
structures [Beeby, Fathibitaraf 2001].  

According to current publications, this membrane action was not studied in UHPFRC elements. 
However, regarding the physical mechanism of bending resistance development, the same effect as 
in RC elements may be assumed to develop. Due to the specific tensile deformations, the neutral 
axis, initially at the section centroid, moves towards the compressive zone (Chapter 4); this is 
followed by the displacements and causes the element’s tendency to extend middle surface, which, 
being restrained, introduces the compressive force (Figure 5.22). Thus, the ultimate load in restrained 
systems is not carried by bending forces only, but also by the introduced arching action. Since the 
effect enhances element-bearing capacity, the fact to disregard it in models for predicting bending 
resistance leads to the results that are considered to be on the safety side. 

Figure 5.22: Schematic representation of compressive membrane (arching) action [Cope, Clark 
1984] 

5.7 Conclusion 

The behaviour of statically indeterminate beams made of UHPFRC without ordinary reinforcement 
is studied in this section. An analytical approach is developed to simulate the non-linear response of 
UHPFRC beams subjected to bending up to failure, and by analysing elements of various heights, the 
following conclusions may be drawn:  

- ductile tensile behaviour of UHPFRC allows redistribution of internal forces in statically 
indeterminate elements, leading to increase in load-bearing capacity; 

- the load-bearing capacity of statically indeterminate members is more sensitive to size effect 
than the bending resistance of statically determinate elements. Thinner statically indeterminate 
elements can sustain higher loads. This is because non-linear bending behaviour in statically 
indeterminate elements is influenced by ductility, which, for UHPFRC elements, is 
significantly influenced by element size. The ductility, being more pronounced for thinner 
elements, allows a more significant redistribution of internal forces to occur, increasing load-
bearing capacity; 

- since the material fracture properties, primarily the slope of the tensile softening law, 
influence the ductility of UHPFRC members, their effect on the bending resistance of 
statically indeterminate members can be considered equivalent to that of the size: a decreased 
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slope of the initial part of the tensile softening law increases the load-bearing capacity of the 
element. 

The possibility of the application of the theory of plasticity in the design of UHPFRC members is 
investigated, based on an introduced concept of plasticity in UHPFRC elements. The results from the 
non-linear static analysis are compared to plastic solutions, leading to the following conclusions: 

- if the resistant plastic moment of a section is defined as the moment prior to the start of 
macrocrack propagation, i.e. before the tension strain softening is exhibited, the theory of 
plasticity can be applied to predict failure loads for thin elements (e.g. h < 100 mm for the 
elements made of BSI). The plastic-like behaviour is due to the ability of thin elements to 
allow a sufficient redistribution of internal forces without loss of load-bearing capacities; in 
terms of plastic behaviour: the deformational capacity of the first hinges developed in thin 
elements is sufficient to allow the formation of other hinges that compose the mechanism; 

- unlike the deformations of a rigid-perfectly-plastic hinge, the deformations of a UHPFRC 
hinge are limited as a function of element size and material fracture properties, and as a 
consequence the theory of plasticity, using the proposed level of plastic moment, is not 
applicable to thick elements; 

- straight forward prediction of failure load for thin elements based on the theory of plasticity is 
an important advantage to non-linear static analysis, in particular for practical design.    
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6.   Bending and punching behaviour of thin UHPFRC 
slabs  

The behaviour of thin UHPFRC slabs without ordinary reinforcement is studied in this chapter. Both 
bending and punching failure are investigated. An analytical procedure is developed for simulating 
the non-linear bending response of slabs in symmetric boundary conditions. The results are 
compared with experimental results obtained during a test programme performed at EPFL, and 
results from other researchers. The possibility of the application of the theory of plasticity in the 
design of thin UHPFRC slabs is discussed.  

6.1  Thin UHPFRC slabs as structural elements  

This study focuses on the behaviour of thin slabs as an element of ribbed deck slab, which represent 
a concept for an advanced application of UHPFRC in bridge design (Figure 6.1 b)). As concluded 
from the previous analyses, due to ductility in tension, UHPFRC elements can provide high bending 
resistance even without ordinary reinforcement (Chapter 4). Furthermore, in Chapter 5 it was 
demonstrated that the ductility of thin elements is sufficient to allow plastic behaviour to develop in 
statically indeterminate systems, leading to increased load-bearing capacity. Thus, thin slabs, as 
static systems with a higher level of redundancy, are postulated as elements that enable the material 
properties offered by UHPFRC to be used to better advantage. The low bending stiffness of the thin 
slabs is compensated by the stiffness of the ribs (Figure 6.1), which at the same time limit the span of 
the thin slabs, resulting in a final structural system with a significantly decreased material volume. 
The bending resistance of these systems is generally provided by prestressing reinforcement. 

a) b) 

Figure 6.1:  Thin slab between ribs: a) Furukawa Viaduct, Japan; prefabricated concrete bridge, 
1999-2002 [JSCE 2003] ; b) UHPFRC slab of Seonyu footbridge in Seoul ( “Bridge of 
peace”), 2002, picture from from  [Ductal 2007] 

The concept of lightening a structure by combining thin slabs and shells with ribs was introduced for 
RC structures by Nervi (ribbed shells of Orvieto hangars, constructed in 1935, [Nervi 1997]). In the 
case of UHPFRC, this concept becomes more interesting since ordinary reinforcement is no longer 
required, thus there is less casting work involved, and the material strength and durability mean that 
element size can be significantly reduced. Moreover, the particular advantage of these UHPFRC 
elements lies in the possibility of applying a precasting procedure which, combined with decreased 
element weight, results in rapid and easy construction. Thin UHPFRC slabs are already in use in 
bridge design, principally as prestressed elements [Graybeal, Hartmann 2005] and mostly in 
footbridges (Chapter 7). A pilot project involving UHPFRC ribbed deck slabs is being conducted at 
the LCPC, within the framework of the MIKTI project [Toutlemonde et al. 2005], [Toutlemonde et 
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al. 2007]. These slabs are designed as part of a composite road bridge structure, 12 m width and 
spanning 90 + 130 + 90 m.  

Both analytical and experimental studies are conducted in the course of this thesis to assess the load-
bearing capacity of thin slabs. The final aim, as in the previous chapter, is to provide a simple theory 
that allows the resistance of these elements to be predicted. Two possible failure modes of thin slabs 
are investigated: bending and punching-shear failure (Figure 6.2). Bending behaviour and design 
possibilities are discussed in Section 6.2, while the punching-shear behaviour is presented in 
Section 6.3.  

a) b) 

Figure 6.2: Schematic presentation of failure modes of thin slab between ribs: a) flexural 
deformations and macrocracking; b) punching-shear failure 

6.2  Bending behaviour of UHPFRC slabs  

The bending response of thin UHPFRC slabs is characterised by a pronounced non-linear behaviour 
due to multi-microcracking and the propagation of macrocracks at failure (Figure 6.2 a)). An 
analytical procedure is developed, enabling the non-linear behaviour due to pseudo-plastic tensile 
yielding to be taken into account in predicting the bending response of a slab under symmetric 
boundary conditions. Bending behaviour is also important in the analysis of punching-shear 
(Figure 6.2 b)), since the slab deformations, which interact with punching-shear failure, depend on 
the flexural characteristics of the slab, as in the case of reinforced concrete structures [Muttoni, 
Fernández Ruiz 2008]. 

During the experiments on thin slabs subjected to a central point load (Figure 6.9 and Appendix T1) 
it was observed that the pattern of failure lines (macrocrack) was similar to that in plastic-like 
elements, such as RC slabs. This suggests that a plastic-like behaviour can develop in UHPFRC slab 
without ordinary reinforcement, which is consistent with the conclusions drawn in Chapter 5. Thus, 
the question of the applicability of the theory of plasticity is extended to UHPFRC slabs. 

Only a few theoretical and experimental works dealing with the behaviour of UHPFRC slabs have 
been published. Some experimental data can be found in [Harris 2004]. An attempt to model the pre-
peak bending response of UHPFRC slab using finite element method is presented in [Fairbairn et al. 
2005]. Considering the behaviour of SFRC slabs, an approach to predicting ultimate loads based on 
moment capacity can be found in [Mudhafar 1980], and numerical modelling of SFRC slabs-on-
ground, based on non-linear fracture mechanics, is presented in [Meda A, Plizzari 2004]. 

6.2.1 Bending theory of thin plates  
The procedure developed for the analysis of slabs taking into account material non-linearity is based 
on the hypotheses of the classic theory of thin plate bending.  
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Hypotheses of the elastic theory of thin plates 

The principle assumptions in the development of the force-deformation relationship are reviewed in 
this section, while more details concerning the classic theory of the bending of thin plates can be 
found in the literature [Timoshenko, Woinowsky-Krieger 1959]. 

For a slab in the x-y plane, the out-of-plane displacement of the slab’s middle plane is an equation of 
a continuous surface, δ, expressed, e.g. in Cartesian coordinates, as 

 δ = δ (x, y).  (6.1) 

In the case of linear-elastic material behaviour, this displacement is governed by the classic plate 
equation: 

),(22 yxpD =∇∇ δ   (6.2) 

with p being the load acting on the slab surface in the direction of δ, and D being the flexural rigidity 
of the plate (Equation 6.8).  

The equation for thin plate with small deflections, δ  << h (h being the slab thickness), is derived 
from kinematic, constitutive and equilibrium equations, based on the following hypotheses: 

- in-plane deformations of the middle plane are disregarded; 
- normals1 on the middle plane remain straight, unstretched, and normal during deformation 

(assumptions of Kirchhoff). 

The assumption of plane sectional deformations enables the displacement field to be expressed as a 
function of displacements of the slab’s middle surface, δ, and the curvatures of the middle surface in 
two orthogonal directions x and y, 1/rx and 1/ry respectively, can be derived. The assumptions of 
straight and unstretched normals allow the shear strain in z direction to be disregarded, and thus the 
influence of shear forces on deformations is not taken into account2.

Non-linear analysis of UHPFRC slab 

The analysis of bending behaviour will be performed for a circular slab in axisymmetric boundary 
conditions (Figure 6.3), which coincides with boundary conditions of the experimentally studied 
elements (§ 6.2.4). The notations and sign conventions used in the analysis are shown in Figure 6.3.   
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Figure 6.3: Circular slab in axisymmetric bending: notations, axes orientations and equilibrium of 
a slab element, adapted from [Timoshenko, Woinowsky-Krieger 1959] 

                                                     
1 Points lying initially on a normal-to-the middle plane remain points in a normal-to-the middle surface after 
deformation 
2 This hypothesis is acceptable for slender elements    
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For a circular slab of constant thickness h, with boundary conditions and the loads that are symmetric 
with respect to the axis passing perpendicular to the plane of the slab and through the centre of the 
slab, all points at the same distance from the centre, r, have the same displacement, δ. This signifies 
that the slope at all points A on the same perimeter r (Figure 6.3) is the same and, in the case of small 
displacements, the curvature of the mid-plane, 1/rr,, can be expressed as: 

rrrr
r ∂

∂
=

∂

∂
−==

ϕδ
χ 2

21
,  (6.3) 

as shown in Figure 6.3. The minus sign preceding the second displacement derivative is used 
because the curvature is considered positive if it is convex downward, whereas if deflection δ(x, y) is 
convex downward, the second derivative d2δ/ dx2 is negative. 

For the symmetric shape of the middle plane it can be concluded that the curvature 1/rr is one of the 
principal curvatures of the surface at the point A, and the second curvature, 1/rt, is perpendicular to 
plane r-z, passing through the normal AB (Figure 6.3). It can thus be stated that the radius of the 
second curvature is the AB and can be calculated as 

rrrrt
t

ϕδ
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−==
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.   (6.4) 

The plane deformation hypothesis enables the deformations in the radial and tangential directions to 
be defined: 
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Linear-elastic material behaviour 

The relationships between forces and deformations for a linear-elastic material behaviour are well 
known [Timoshenko, Woinowsky-Krieger 1959]:  
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and, in a similar manner, 
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where mr is the moment per unit length acting along the circular section of the slab, mt is the moment 
per unit length acting along a radial section (Figure 6.3), and D is the flexural stiffness of the slab in  
the linear-elastic regime: 

121

3

2

hE
D

ν−
= .  (6.8) 

Incorporating Relationships 6.3 and 6.4 into 6.6 and 6.7, with δ being a function of r only, gives the 
following: 
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Non-linear material behaviour 

The relationships between deformations and forces for the part of the beam exhibiting microcracking 
are no longer straightforward. In the beam analysis, it was shown that good correlation with test data 
is obtained when microcracking is represented by pseudo-plastic stress distribution and strain 
distribution based on the hypothesis of plane section deformations. Thus, the plane sectional 
deformations will also be assumed in this analysis, and Equations 6.5 are valid. Further, let us 
assume that, for the known curvatures of the mid-plane χr and χt, the deformations corresponding to 
normal stress can be estimated as a function of the linear combination of the two curvatures, χr + ν
χt, which for the moment remain uncertain in the microcracked region. This enables the position of 
the displaced neutral surface to be found from the normal force equilibrium, as in the equations 
developed in Appendix M1, 
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The relationship between the couple of orthogonal curvatures and the bending moment in one 
direction can then be established as: 
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and the moments expressed in polar coordinates as functions of the linear combination of curvatures 
are then obtained as: 
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 Based on Relationships 6.4 and  6.5, the moments are related to the displacement function as: 
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It should be noted that for ν  0 Equations 6.10 to 6.13 obtain the same form as the equations 
developed in Chapter 4 for beam analysis.  
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Equilibrium of a slab element   

The unknowns in Equations 6.9 and 6.13 are either the displacement or rotation function, and these 
can be obtained from the equilibrium equations of a finite element (Figure 6.3). The finite element is 
chosen as element abcd shown in Figure 6.3, so that the sections ab and dc are parts of the circle 
with a centre corresponding to the centre of the slab, with the same differential angle dθ and 
differing diameters for dr, with both dθ  and dr yielding zero. 

Bending moments acting on sections ab and dc are 

mt r dθ   (6.14) 

and 
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Shear forces acting on sections ab and dc are  

Q r dθ  (6.16) 

and 

( ) θddrrdr
dr

dQ
Q ⋅+⋅⎟

⎠
⎞

⎜
⎝
⎛

+ . (6.17) 

The difference in shear forces is negligible for a finite element, and the shear forces create a moment 
in the rz plane that is equal to  

Q r dθ dr  (6.18) 

Moments acting on sections ad and bc, mt dr, are equal and give the resulting moment in the rz plane 

mt dr dθ  (6.19) 

and the shear forces in sections ad and bc are cancelled due to symmetry.  

The equilibrium of the moments in the rz plane gives the following equation 

( ) 0=⋅⋅⋅+⋅⋅−⋅⋅−⋅+⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ drdrQddrmdrmddrrdr

dr

dm
m tr

r
r θθθθ ,  (6.20) 

which can be simplified by disregarding the infinitesimally small terms of higher order, resulting in  
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Slab equation for linear-elastic material behaviour 

Substituting the moment values for the linear-elastic regime given by Equations 6.9 in Equation 6.21, 
the equilibrium equation governing the behaviour of the slab is obtained:  
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For simple boundary conditions, the solution of the third-order differential Equation 6.22 can be 
found in a closed form. Let us consider a slab subjected to central point load V and simply supported 
at the perimeter rb (Figure 6.5). The fixed point of the slab is assumed to be the central point, while 
the linear support at the perimeter rb is free to displace vertically. The three necessary boundary 
conditions are 

 δ(0)=0, δ ’(0)=0, mr(rb)=0,  (6.23) 
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or, to avoid the singularity point at r = 0, assuming that the point load is introduced over a rigid 
surface of a small radius ra, as shown in Figure 6.5, 

 δ (ra)=0, δ’(ra)=0, mr(rb)=0 .  (6.24) 

These boundary conditions enable the differential Equation 6.22 to be solved. With  

Q(r)=V/(2π r),  (6.25) 

for the first set of boundary conditions (ra  0) the solution is 
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For the second set of boundary conditions (ra≠ 0): 
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The derivation of the obtained displacement function enables the curvatures and moments to be 
expressed as functions of radius and applied force. For comparison with non-linear behaviour, the 
relationships for a linear-elastic material are plotted in Figure 6.4 for the two boundary conditions: 
the curves for boundary conditions 6.23 (ra= 0), are plotted as black lines, and those for boundary 
conditions 6.24 (ra = 0.04 rb), are plotted as grey lines.  
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0 0.5 1

r�rb

�0.05

0

0.02

Ψ
�m

m
�m
�,

w
�m

m
�

0 0.5 1

r�rb

0

�0.0002

�0.0004

Χ
r
,
Χ

t
�m
�

1
�

0 0.5 1

r�rb

0

�0.2

�0.4

m
r
,
m

t
�k

N
m
�m
�

Figure 6.4: Slab in bending, distributions along the radius: a) rotations and displacements; b) 
radial and tangential curvature; c) radial and tangential bending moments; (radial: 
solid lines, tangential: dashed lines; conditions ra≠ 0: grey lines) 

The plots in Figure 6.4 a) show the distribution of the displacement and rotation along the radius, 
indicating hardly any change in the maximal displacement as a result of the difference between the 
two boundary conditions if ra << rb. However, a significant difference in curvature, and consequently 
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moment values, can be noted in the region close to load introduction (Figure 6.4 b) and c)). For the 
points distant from the load-point, this difference no longer exists, and for both boundary conditions 
the value of the tangential moment predominates (dashed lines).   

The correct estimation of the value of maximal local deformation or maximal moment attained is 
however important for the taking into account of non-linear behaviour and identification of the 
beginning of macrocrack opening in the UHPFRC element. The sensitivity of these values to 
boundary conditions in the region of force introduction should thus not be disregarded. For a more 
realistic representation, the point load introduction zone may be considered as a surface of a certain 
perimeter. An example is shown in Figure 6.5, where the point load is represented as a uniformly 
distributed load, acting over a surface of radius rc in the middle-plane. The loading conditions 
change, as will be explained (Equations 6.36 and 6.37), and the solution for these conditions, using 
numerical analysis (§ 6.2.3), is presented in Figure 6.7.  

It must also be remembered that the point-load introduction zone is characterised by a pronounced 
triaxial state of stress, and the hypotheses of classic plate theory do not allow this phenomenon to be 
taken into account. For this reason, the representation of slab behaviour is accurate only at a certain 
distance from point-load introduction. (The point load clearly indicates a load of sufficient intensity 
to create a non-negligible triaxial stress state.)  

Slab equation for non-linear material behaviour 

For non-linear material behaviour, substituting the developed relationships for moments 
(Equations 6.13) in Equation 6.21, the equilibrium relationship gives: 
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The solution of differential Equation 6.28, even for simple boundary conditions, must be found 
numerically. An additional problem concerning the bending of UHPFRC slabs is that, during 
loading, both elements exhibiting linear-elastic behaviour (described by equilibrium Equation 6.22), 
and elements exhibiting pseudo-plastic tensile yielding (equilibrium Equation 6.28) are present. To 
obtain the force-displacement response of a UHPFRC slab, an incremental procedure is developed 
(§ 6.2.3). 

6.2.2 Finite difference approach for non-linear behaviour of UHPFRC slabs  
A procedure enabling the solution of Equation 6.21 to be found taking into account both linear 
(Equation 6.22) and non-linear material properties (Equation 6.28) is presented in this section. This 
procedure is developed based on finite difference analysis, and the solution is found by an 
incremental calculation. A similar procedure applied to reinforced concrete can be found in 
[Guandalini 2005]. The relationships concerning the equilibrium of a slab element presented in the 
previous chapter remain valid.   
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Let us consider a differential element of the slab (Figure 6.3). If  

r
r mdr
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Δ= ,   (6.30) 

the radial moments at the perimeter r=ri and r=ri+1=ri+dr contouring the element i (Figure 6.5) are 
related as:  

iririr mmm ,,1, Δ+=+ .  (6.31) 

The forces equilibrating the element i are shown in Figure 6.5. From the equilibrium of moments 
acting on the element, similar to that developed in Equation 6.20, disregarding the small values of 
higher order and with dr = Δr, the increase in radial moment, Δmr,i is obtained as: 
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The boundary conditions of the observed slab are 

0)( =arδ   (6.33) 

0)()(' == aa rr ϕδ    (6.34) 

0)( =br rm      (6.35) 

where ra 0.

Loading conditions (Figure 6.5) are  
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bic rrrq ≤<∀=    0  (6.37) 

where rc is the radius of the surface over which the load, acting on the slab surface within a perimeter 
b, is introduced in the mid-plane, rc =(b+h)/2 (Figure 6.5).

The shear force Q is defined by Equation 6.25 as a function of the acting point load V and radius ri, 
valid for ri > rc, whereas for the region of the load introduction  

Q(r) = qV r/2  " ri < rc . (6.38) 

The incremental calculation starts at the point r=ra for which the boundary conditions are known. 
Equations 6.33 and 6.34 thus become the initial conditions for the procedure. The intensity of radial 
moment at the point ra, mr,i(ra), is then assumed. This assumption can be based, for example, on the 
linear-elastic solution, which in this case, for r 0 gives 
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The radial curvature, χr,i, corresponding to moment mr,i can be determined if the curvature in the 
tangential direction, χt,i, is known. Solving Equations 6.6 and 6.12 for χr, the following relationships 
are obtained  
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The curvature in the tangential direction, χt,i can be assumed from the geometry of the bent element 
(Equation 6.4), and the χt,i  for element i is calculated in the middle of the element, at ri+Δr/2, as  
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Substituting Equation 6.42 in Equation 6.40 or 6.41, curvature χr,i is obtained, and further, curvature 
χt,i (Equation 6.42) and the moment in the tangential direction is determined, using Equations 6.7 or 
6.12, depending on whether the elastic or microcracking phase is attained. 

The increment of the radial moment (Equation 6.32) can then be calculated, and the procedure can 
continue for the following element, i+1, with mr,i+1= mr,i+Δmr,i and Δmr,i+1 being the increment of the 
radial moment to be found by applying the same steps as for the Δmr,i.

Finally, for r = rb, the obtained radial moment must satisfy the boundary condition 
0)( =br rm (Equation 6.35). If this equality is not respected, a new hypothesis concerning the initial 

value of the radial moment at the starting point mr(ra) is made and the procedure is repeated until 
Equation 6.35 is satisfied for the given load V.

6.2.3 Results of the non-linear analysis 
The reliability of the results obtained using the developed finite difference procedure in comparison 
to the known analytical solution (Equation 6.26) is first shown for the linear-elastic domain (Figure 
6.6).      
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Figure 6.6: Comparison of analytical (grey lines) and finite difference-based solution (black lines) 
for thin slab in bending; distributions along radius: a) radial and tangential curvatures; 
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The results are plotted for boundary conditions ra  0 (Equations 6.23), with slab thickness 
h=50 mm, rb= 0.45 m, and material properties corresponding to the elastic properties of the 
UHPFRC used in this thesis (Table 3.3). The Poisson’s ratio is assumed as ν =0.2, in accordance 
with French recommendations [SETRA, AFGC 2002], Article 1.6. The results (Figures 6.4 to 6.7) 
are plotted for unit force V, and will be used to compare elastic predictions of slab behaviour to non-
linear analysis. It can be seen that the incremental procedure (black lines in Figure 6.6) and 
analytical solution (grey lines) give identical results for all considered forces and deformations, 
allowing the procedure to be extended to non-linear material behaviour. 
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Figure 6.7: Behaviour of slab in bending considering different load introduction conditions: 
a) displacements and rotations along radius; b) radial and tangential curvatures; c) 
radial and tangential bending moments and numerical solution for tangential moment 
from FEM analysis (dots);  black lines: numerical results for load uniformly 
introduced over a surface of perimeter rc, (rc 0.07rb ); grey lines: analytical results 
for point-load introduction, rc =ra=0 

The results of the finite difference approach are also plotted for the boundary conditions 
corresponding to the force introduction over a surface of a radius rc, as shown in Figure 6.5. No 
analytical solution is developed for these boundary conditione, but the results of finite difference 
approach (black lines in Figure 6.7) are plotted against the analytic solution for boundary conditions 
corresponding to point-load introduction, rc = ra=0 (Equations 6.23, shown by grey lines in Figure 
6.7). The plots in Figure 6.7 compare the displacements, rotations, moments and curvatures along the 
radius. The solutions are practically identical in the region of a principally biaxial state of stress, and 
the problem of the singularity point is avoided for rc ≠ 0. In Figure 6.7 c) the values for tangential 
moments obtained from a numerical finite element (FEM) model are also plotted (dark dots) against 
the analytical and the results of the finite difference procedure, also showing good plausibility. The 
point load in FEM models was introduced like a distributed load over a surface of a radius rc.

Response of a UHPFRC slab in non-linear domain 

The analysis is performed for the same case study (UHPFRC slab of 50 mm thickness, rb= 0.45 m) 
subjected to a central point load causing microcracking to occur. The results are plotted for load level 
V = 30 kN  1/ 2 Vmax,m  (Figure 6.8 a) to c)) and for V = 55 kN   0.9 Vmax,m (Figure 6.8 d) to e)), 
Vmax,m being the mean value of the experimentally obtained ultimate load (Table 6.1). The moment-
curvature relationship for a slab element of unit width is plotted in Figure 6.10, based on the 
hypothesis presented in Chapter 4 and using the same UHPFRC material laws for BSI as in the 
previous analysis (Chapter 4 and 5). Numerical values are given in Table 6.1.  
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Figure 6.8: Simulated behaviour of a UHPFRC slab, at different load levels: a) to c) V=30 kN, d) 
to f) V=55 kN; a) and d) displacements and  rotations; b) and e) radial and tangential 
curvatures; c) and f) radial and tangential bending moments (tangential values plotted 
as dashed lines) 

It is interesting to note that, according to the linear-elastic analysis, for the load level V=30 kN the 
beginning of macrocrack propagation is attained (mt = mpl,max = 9 kNm/m), and, according to the 
same analysis, the failure will occur for V=31 kN (mt = mmax = 9.54 kNm/m, Table 6.1). According to 
the non-linear analysis, however, the moment corresponding to the beginning of the macrocrack 
opening is still not reached for V=30 kN (Figure 6.8 c)), which also corresponds to the experimental 
data. This is clearly the result of the decrease in stiffness due to the development of pseudo-plastic 
tensile yielding, leading to force redistribution and less loading of the central (microcracked) region. 
Finally, the experimentally attained ultimate load is double that of the ultimate load predicted by the 
linear-elastic analysis, indicating considerable ductility of the element.  

The aspects of the non-linear behaviour are clearly apparent for the load level V=30 kN, e.g. by 
considering the ratio of radial to tangential moment, although the force-displacement response 
deviates only slightly from the linear-elastic response at V=30 kN (Figure 6.11 c) and d)). In 
Figure 6.8 b) and c) it can be seen that the tangential curvature and moment (dashed lines) increase 
much faster than the radial curvature and moment (solid lines) in comparison to the elastic regime 
(e.g. Figure 6.7). This difference obviously applies to regions where pseudo-plastic tensile yielding 
occurs (for smaller values of r).  

This difference becomes more pronounced with further increases in load, as seen in Figure 6.8 e) and 
f), where the distributions of radial and tangential moments and curvatures are plotted for load level 
V=55 kN. This load level corresponds to approximately 90% of the experimental failure load, and, as 
will be shown (§ 6.2.6), it is close to the failure load predicted by plastic analysis, with resistant 
plastic moment mR = mpl, max. In these figures it can be noted that the tangential curvature and 
tangential moment become much more significant than the corresponding radial values, indicating 
the localisation of tangential deformations, eventually causing the macrocrack opening along the 
radius (Figure 6.14 a)). In Figure 6.8 f) the maximal tangential moment value attains the level 
corresponding to macrocrack opening, mpl,max, and the maximal slab deflection increases more 
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significantly (Figure 6.8 d)): comparing values in Figure a) and d) it can be concluded that if the 
force is doubled, deformations increase approximately fivefold.  

It is important to note that, if the curvatures in the radial and tangential directions for the 
microcracked elements are not related as assumed in Equations 6.41 and 6.12, obtaining χt from the 
kinematic conditions taking into account the influence from the radial direction (Equation 6.42), 
suffices to provide the relationship between the deformations in two directions if the elements are 
sufficiently small.  

6.2.4 Comparison of theoretical and experimental results 
Thin UHPFRC slabs of various heights (h = 40 - 60 mm) and of square shape of  900 mm side length 
were studied experimentally (Figure 6.9, and also Appendix T1). The slabs were tested to bending 
failure with the boundary conditions consisting of 8 radial point supports (Figures 6.9 and 6.14), 
symmetrically placed at the perimeter rb=450 mm, and a centrally introduced point load, 
displacement -controlled, acting over a contact surface of 30x30 mm. The displacements are 
measured in the central and 12 symmetric points (Appendix T1).   

Figure 6.9: Thin UHPFRC slab without ordinary reinforcement subjected to bending test under 
point load 

The chosen disposition of the supports represents the boundary conditions as in the case of a 
continuous line support at the perimeter rb. This can easily be  concluded by analysing the slab with 
the two variants of support conditions using any standard finite element package. Thus, the analysis 
procedure developed in Section 6.2.3 can be applied to simulate the behaviour of tested specimens. 
A slight difference from axisymmetric behaviour exists due to the rectangular geometry of the slab, 
causing that the bending stiffness is higher in diagonal direction. 
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Theoretical moment-curvature relationships for the elements of unit width and height corresponding 
to the thickness of the tested slabs are plotted in Figure 6.10, with the level of the beginning of 
macrocrack opening indicated (m/mel,max=2.4).  

By performing the algorithm for non-linear slab analysis while increasing the force in the system, 
V=V+dV, the response of a slab, e.g. force-mid-span displacement, is obtained. The results of this 
analysis for slabs of 40, 50 and 60 mm thickness are plotted against the measured data in Figure 6.11. 
The thick black curves in Figure 6.11 represent the simulated force-displacement response, and the 
straight grey lines represent the linear-elastic response. For each figure on the right, the zoom on the 
non-linear part before the peak force is plotted on the left. 
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Figure 6.11: Measured and simulated force-displacement response of thin UHPFRC slabs subjected 
to central point load: a) and b) h=40 mm; c) and d) h=50 mm; e) and f) h=60 mm
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Based on the good agreement of experimental and analytical results (Figure 6.11), it can be 
concluded that the non-linear behaviour of UHPFRC slabs prior to peak-load, can be well predicted 
using the analysis that takes into account material non-linearity due to multi-microcracking. This 
tensile behaviour is modelled by pseudo-plastic stress-strain relationship, as in the previous beam 
analysis. A more significant increase in deformations for a low force increase characterises all 
samples when the load approaches its ultimate value, which coincides with the maximal tangential 
moment approaching the level of macrocrack opening (Figures 6.8 and 6.10). The analytically 
obtained load levels for which the value of maximal moment corresponds to the beginning of 
macrocrack propagation are plotted as dashed lines in Figure 6.11. With the localisation of 
deformations in the radial macrocracks, the proposed algorithm, based on homogeneous material 
properties, can no longer be applied. The behaviour approaches the behaviour of rigid blocks rotating 
between the discrete macrocracks, and, as observed experimentally, the force remains almost 
constant while the deformations increase significantly. The black dots in Figure 6.12 represent 
experimentally obtained displacements along the radius of the slab for various load levels. It can be 
seen that for load levels approaching the ultimate load (V=55 kN for the 50 mm thick slab) the 
deformations become more concentrated in the centre. The same results are obtained from the 
developed non-linear analysis (Figure 6.12, solid black lines).  

Beyond the level of deformations corresponding to macrocrack opening, deformations continue to 
increase with a very slight change in force level, indicating that the crack opening allows a plastic-
like behaviour to develop. Following these observations, the possibility to predict ultimate load for 
thin UHPFRC slabs based on the theory of plasticity will be studied.  
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Figure 6.12: Measured and simulated displacements along the slab radius (see Appendix T1) for 
three load levels: V=40, 50 and 55 kN, for the 50 mm thick slab; measured data are 
indicated as black dots, simulated data are plotted for one half only (solid black line) 

6.2.5 Theory of plasticity in design of thin UHPFRC slabs 
The principal assumptions of the theory of plasticity and its application to concrete and UHPFRC 
structures are discussed in Chapter 5. The theory of plasticity has found a practical application in the 
design of reinforced concrete slabs since the yield lines method was developed by Ingerslev, as far 
back as 1921 [Nielsen 1999]. The theory was further elaborated by Johansen. The yield line method 
enables the upper bound solution (§ 5.2.1) for a ductile element with axisymmetric boundary and 
load conditions to be found in an easy and accurate manner.  

V=40kN 
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Figure 6.13: Moment-curvature relationship for a UHPFRC element (thin line) and idealised rigid-
perfectly plastic moment (thick line) 

The assumptions used for the definition of the resistant plastic moment of UHPFRC element, 
presented in Chapter 5, are also respected in the present analysis (Figure 6.13): the plastic moment 
coincides with the beginning of macrocrack propagation, mR = mpl,max, and can be defined using 
Equation 5.24,  
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An upper bound solution for a slab can be found by applying the virtual displacements (§ 5.2.1) for 
the assumed yield line pattern forming a failure mechanism, resulting in the following relationship: 

( ) ∑∫∫
→→

⋅⋅=⋅
i

iii

A

smdxdyyxq θδ )(,   (6.43) 

where q is load function, δ is a slab displacement function (Equation 6.1), mi is a resistant moment 
acting along the yield line of length si, and θi is the rotation of the corresponding rigid segment 
(Figure 6.14).  

6.2.5.1 Failure mechanism in tested UHPFRC slabs 

A failure mechanism of the tested UHPFRC slabs, supported at 8 radial points subjected to central 
point load (Figure 6.9), can be assumed as being a mechanism formed of four yield lines and four 
rigid blocks, as presented in Figures 6.14 a). A kinematically possible failure mechanism consisting 
of two symmetric rigid blocks is a mechanism that dissipates less energy and characterises less 
ductile materials. All the tested UHPFRC slabs failed with the development of four yield lines, with 
the typical crack pattern as shown in Figure 6.14 b).  
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a) b) 

Figure 6.14: Crack pattern in UHPFRC slab and supports position (crosses): a) assumed crack 
pattern  (yield lines); b) typical crack pattern in tested slabs 

For the failure mechanism consisting of four symmetric rigid blocks rotating along indicated axes 
passing through two immediate support points (Figure 6.14 a)), the failure load can be calculated  by 
applying Equation 6.43, whose left side gives  

( ) δδ ⋅= Vdxdyyx
A

,  (6.44) 

with the concentrated force V being the only load, and the right side of Equation 6.43 yields  
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where mR  is the resistant plastic moment and a is the slab side length. The rotation of a rigid block 
is:
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Substituting Equations 6.44 and 6.45 in Equation 6.43, the failure load  is obtained as a function of 
mR : 
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Incorporating the developed relationship for plastic moment, the failure load of a slab is formulated 
as

6
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with nfct =2.4 and  fct = 9 MPa for the UHPFRC used in this study. It should be noted that, according 
to [Johansen 1972], in the case of point load and radial axysymmetric yield lines V=2π mR, which 
gives practically the same result as Equation 6.48. 

6.2.5.2 Comparison with experimental results  

Applying Equation 6.48 or 6.49, failure loads for thin UHPFRC slabs of various heights are 
calculated, and the obtained values are plotted against measured values in Figure 6.15, while the 
numerical results are given in Table 6.1. Figure 6.15 a) shows examples of a complete force-
displacement relationship for three of the six tested slabs (h=40, 50 and 60 mm), while in 
Figure 6.15 b) failure loads for all six slabs are plotted against the theoretical curve (Equation 6.49) 
predicting the ultimate failure load as a function of slab thickness. It can be noted that prediction of 
failure loads of thin slabs using plastic analysis, with the proposed limit of plastic moment, shows 
good agreement with actual failure loads.  
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Figure 6.15: Failure load, Vpl, based on the plastic analysis with mR = mpl,max: a) Vpl against actual 
force-displacement response of thin UHPFRC slabs; b)  Vpl as a function of slab 
thickness, and experimental failure loads (dots) 

Table 6.1: UHPFRC slabs failing in bending: measured and predicted responses 
specimen nom. 

height 
Pmax

maesured 
mmax mpl,max 

= mR

No. 
cracks*

Pel
** Pmacrocrack,el. Pmax,el. Ppl

 [mm] [kN] [kNm/m] [kNm/m]  [kN] [kN]  [kN] 

DAS 1 31.4 4 

DAS 4 
40 

38.6 
6.15 5.76 

4 
7.7 18.5 19.8 35.3 

DAS 2 58.5 4 

DAS 5 
50 

63.1 
9.54 9 

4 
12.2 29.3 31 55.1 

DAS 3 87.6 4 

DAS 6 
60 

88.8 
13.64 13 

4 
18 43.2 45.3 79.6 

* Number of macrocracks emanating from the central load-point participating in the failure mechanism 
** Elastic loads are obtained by considering average elastic moment, distributed along a distance 2(b/2+h), based on 
analytical or numerical analysis (Figure 6.7). Pmacrcrack,el is the force corresponding to mt= mpl,max, Pmax,el is the force 
corresponding to mt= mmax, obtained by linear-elastic analysis, and Ppl is the failure load according to plastic analysis. 

The prediction of failure load based on the yield line method is also shown against the actual failure 
load of thin UHPFRC slabs with clamped edges, tested at the Virginia Polytechnic Institute, USA 
[Harris 2004]. Slabs had various heights (h = 50 - 70 mm) and a square shape of  0.91 m side length. 
The material used in this study is Ductal UHPFRC, with properties similar to those of BSI, and more 
details can be found in [Harris 2004] and [Graybeal 2006]. The tested slabs developed the typical 
diagonal crack pattern in the central region of positive moment, while the crack pattern towards the 
supports was less regular. The same approach for defining the level of plastic moment was applied as 

Vpl, h=60 mm 
     

Vpl, h=50 mm 
     
              
Vpl, h=40 mm 
     

Vpl

Tests 
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for BSI, with fct having a value between 7 and 9 MPa, Ec=55GPa, fc=220 MPa. For the yield lines 
shown in Figure 6.16 a), for mR

+= mR
- = mR, the upper bound solution yields V=4π mR [Johansen 

1972]. With fct = 9 MPa the theoretical failure load slightly overestimates the actual failure load 
(Figure 6.16 b), black line), that can be explained either by the difference between the idealised and 
actual yield line patterns, particularly in the region of negative moment either by a smaller resistant 
moment, possibly influenced by element size. Theoretical prediction of failure load obtained with 
fct = 7 MPa shows better agreement with test results (Figure 6.16 b), grey line).  

a) b) 

mR
+

V    mR
-

   Figure 6.16: Bending failure of slab clamped at four sides subjected to central point load: a) yield 
line pattern; b) actual failure loads for slabs made of Ductal UHPFRC (dots) [Harris 
2004], and predicted failure loads with ftc=9 MPa and ftc=7 MPa

Restrained slabs made of BSI were tested to shear failure (§ 6.3), but one of the slabs, 50 mm thick, 
actually reached ultimate load in bending, at force V=110 kN. For the assumed crack pattern  shown 
in Figure 6.16 a) the theoretical failure load is V= 4 π  mR = 113 kN, thus very accurately predicting 
failure. 

Based on the above considerations, plastic analysis can be applied in the prediction of ultimate 
bending failure loads of thin UHPFRC slabs, and load-bearing capacities can be predicted as a 
function of boundary conditions and element thickness.  

6.2.6 Softening hinge in UHPFRC  
The softening branch of the force-displacement relationship for the cracked slab can be simulated 
based on the softening hinge approach, as presented in [Marti et al. 1999] for steel-fibre reinforced 
concrete. This approach has actually been developed by Marti and co-authors in order to derive the 
tensile properties of SFRC from the measured force-displacement response, based on the rotation of 
rigid blocks between the crack lines and the softening moment-crack opening (moment-rotation) 
relationship. However, in the present study, the softening branch was not the main focus of interest.  

6.2.7 Conclusions 
Based on the finite difference approach, a procedure for simulating the non-linear bending response 
of thin slabs with axisymmetric boundary conditions is developed. The results show good agreement 
with the experimental results obtained for thin UHPFRC slabs. It must be noted however that, 
because of the hypothesis applied, this procedure does not allow failure modes other than bending to 
be identified.  

The following conclusions concerning the behaviour of thin UHPFRC slabs can be drawn based on  
the obtained theoretical and experimental results: 

fct=9 Mpa 

fct=7 MPa  

Test  
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- the pre-peak behaviour of UHPFRC slabs is well simulated by representing multi-
microcracking as a homogeneous material behaviour, using the elastic-pseudo-plastic 
material law in tension;  

- a major part of the load-bearing capacity of the slab is achieved with multi-microcracking 
behaviour; this is confirmed by the experiment, where cracks become visible for a force 
level close to maximal force; 

- due to the system redundancy, the contribution of the tensile ductility of the material to the 
load-bearing capacity of slabs is much more significant than in statically determinate beams; 

- when the capacity to develop microcracking is exhausted, deformations start to localise i.e.  
discrete macrocracks form. For the given boundary conditions, the dominant tangential 
deformations obtained by non-linear simulation are in agreement with experimentally 
observed macrocracks opening along the radius. Once macrocracks open, deformations of 
the rest of the element become negligible, and a rigid block mechanism starts to develop; 

- finally, the ultimate load-bearing capacity of thin UHPFRC slabs without ordinary 
reinforcement can be well assessed based on the theory of plasticity, by applying the yield 
line method; 

- comparison with test results shows that the proposal of choosing the bending moment at the 
beginning of macrocrack propagation as resistant plastic moment can be used to predict the 
slab’s ultimate failure load; 

- the applicability of the theory of plasticity is experimentally validated for thin elements, with 
dimensions of interest for the proposed structural concept. Due to the difference between a 
perfectly plastic hinge and the actual hinge in a UHPFRC element, characterised by a limited 
rotational capacity for the resistant moment level, the applicability of the theory of plasticity 
must be limited, as a function of element thickness and geometry. To that end, more 
thorough analytical and experimental verifications are required.  

6.3 Punching shear strength of UHPFRC slabs  

For the structural application of UHPFRC in road bridges, investigated in this study, the resistance to 
punching shear failure of thin slabs between the stiffening ribs (Figure 6.2) subjected to wheel load 
must be assured. Punching shear is a non-ductile failure mode, and has been studied in RC structures 
since the beginning of the 20th century as a problem initiated by the development of slabs on 
columns, dating back to 1906 in the USA (Turner, [Gasparini 2002]), and 1908 in Europe (Maillart, 
[Bill 1947], [Fürst, Marti 1997]). Greater efforts in both experimental and theoretical research in this 
field were made in the second half of the 20th century [Kinnunen, Nylander 1960]. Some physical 
relationships were observed, and more sound theories describing the punching phenomenon in RC 
slabs were further developed [Muttoni, Fernández Ruiz 2008], and also applied to punching shear as 
a failure mode of RC bridge decks subjected to the action of wheel load [Vaz Rodrigues 2007].  

As to UHPFRC elements, resistance to a concentrated load action on slabs has not been extensively 
investigated. An experimental program was conducted at the Virginia Polytechnic Institute (VPI) on 
slabs made of Ductal UHPFRC [Harris 2004], and the results of punching shear tests on slabs made 
of both Ductal and BSI have recently been published in [Toutlemonde et al. 2007]. An attempt to 
cause punching shear failure in 30 mm thick UHPFRC slabs is reported in [Bunje, Fehling 2004], but 
all of the specimens failed in bending.  

The experimental results of UHPFRC slabs tested at the EPFL, presented in Section 6.2, showed 
significant resistance to a locally introduced load without exhibiting punching failure. To assess 
punching resistance, a series of tests was performed on thin slabs with clamped edges (Figure 6.19). 
The specimen size, smaller than the size of slabs presented in [Harris 2004] and [Toutlemonde et al. 
2007], led to smaller rotations attained at the peak force. This enabled the influence of structural 
properties (slab geometry and boundary conditions) on punching shear resistance to be identified.   
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6.3.1 Resistance models  
Resistance to punching is related to shear resistance, which, in the case of UHPFRC, is influenced by 
the presence of fibres across the shear crack. Due to the lack of experimental and theoretical work on 
the punching shear failure of UHPFRC slabs without ordinary reinforcement, reflections on the 
physical background of the phenomenon will be based on knowledge acquired on the punching 
behaviour of RC structures and the shear behaviour of SFRC beams without stirrup reinforcement. 
The research in SFRC has shown that both fibres and structural parameters can influence shear 
resistance [Lim et al. 1987], [Narayanan, Darwish 1987], [Gustafsson, Noghabai 1999] etc.  

Contribution of fibres to shear capacity 

Casanova and Rossi ([Casanova 1996], [Casanova, Rossi 1997]) proposed an approach for taking the 
contribution of steel fibres to shear capacity into account. The model assumes the formation of a 
block mechanism in a beam of rectangular cross section with bending reinforcement (Figure 6.17). 
The contribution of fibres to shear resistance, Vf, is added to the concrete contribution, VRd, as a force 
transferred between crack faces for a certain crack mouth opening, wm,
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where σ(w) is the material stress-crack opening relationship, S=0.9 b d in the case of a beam of 
width b and d being the distance between the extreme compression fibre and the tensile 
reinforcement (Figure 6.17). To define the ultimate shear resistance, the maximal crack opening 
must be defined. Casanova proposes directly relating the crack opening to the longitudinal 
deformation of the reinforcement bar, εs, as wm = 0.9 d εs, and considering two cases: the elastic limit 
of the steel reinforcement and the limiting yielding deformation value of 1%.

Figure 6.17: Shear crack in a rectangular SFRC beam [Casanova, Rossi 1997]

The fact that the limiting parameter for fibre contribution to shear strength is related to reinforcement 
properties means that this approach cannot be directly applied to UHPFRC without ordinary 
reinforcement bars. In addition, since crack propagation is influenced by structural properties, the 
limiting parameter wm in the case of UHPFRC should be a function of element size and geometry. 
French recommendations for UHPFRC [SETRA, AFGC 2002] actually adopt this approach, by 
imposing a limit for wm as a function of element thickness only.  

To assess the punching shear resistances of UHPFRC elements, models that take into account both 
material and structural properties are thus required.  
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Critical shear crack 

The critical shear crack model is a mechanical model describing the punching shear phenomenon in 
RC structures, presented in [Muttoni, Fernández Ruiz 2008]. The model relates punching shear 
strength to the opening of a critical shear crack, leading to the final formulation of a failure criterion 
based on slab rotation. In [Muttoni, Schwartz 19911] the width of the critical crack is assumed to be 
proportional to ψ d (rotation multiplied by the beam’s static depth, Figure 6.18). The influence of 
aggregates on shear force bearing capacity is also taken into account, and the final formulation of the 
failure criterion is  

gg

c

R

dd

dfdb

V

+
⋅

+
=

⋅⋅

0

0 151

43
ψ

, (6.52) 

with VR being the resistant punching shear force in [N], fc compressive strength in [MPa], and dg and
dg0 the maximal and  reference aggregate sizes in [mm], respectively, where dg0=16 mm. The model 
predicts well the experimentally observed fact that the punching shear strength in RC structures 
decreases with increasing slab rotation, explained by the presence of the critical shear crack whose 
opening reduces the strength of the concrete compression strut. 

critical crack 

Figure 6.18: Critical shear crack in flat slab, adapted from [Guandalini 2005]. 

The same phenomenon may be assumed for FRCs, in addition to fibre action along the crack, 
providing a beneficial effect on shear resistance. The force transferred by the fibres decreases with 
the increase in crack opening, and the relationship between a critical crack opening and the element’s 
capacity to sustain punching shear also seems physically justifiable in the case of FRCs. The 
question arises as to what extent the theory is applicable in the prediction of shear resistance in 
UHPFRC elements without ordinary reinforcement. The discussion will be based on existing 
experimental data, briefly reviewed in the following section. 

6.3.2 Punching shear resistance of thin slabs: experimental results 
a) b) 
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Figure 6.19: Punching shear test: a) test set-up; b) specimen geometry and position of measuring 
devices 
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Five UHPFRC slabs of thicknesses varying from 30 to 60 mm were tested at the EPFL Structural 
Laboratory. The slabs were of constant square shape, 350 mm side length, with restrained rotations 
along all four edges (Figure 6.19 a)) and the loading surface was 20 x 20 mm. The displacements 
were measured in the central and four symmetric points, as shown in Figure 6.19 b). 

The force-central point deflection relationships are shown in Figure 6.20 and the related values are 
given in Table 6.2. Four of the five tested slabs failed in punching shear, whereas one slab, 
designated PP 50b, reached the maximal force in bending, and attained the punching shear failure for 
slightly increased deformation, in the post-peak phase. After the test, specimens were cut along two 
axes of symmetry in order to observe the shape of the punching surface: all the punching cones 
developed in a symmetrical way (Figure 6.20 c)). This could not have been concluded based on the 
crack pattern on the tensile side of the slab (Figure 6.20 b)), which could be associated to an 
asymmetric failure. Only one specimen (a 30 mm thick slab) is shown in Figure 6.20 b) and c), while 
the other specimens are documented in Appendix T1.  

Resistance to punching shear is typically expressed by the average shear stress, v,  

v = V / (b0 d),  (6.53) 

V  being the maximal load, d the distance between the extreme compression fibre and the tensile 
reinforcement and b0 being the perimeter of the critical section. The perimeter of the critical section 
can be assumed to be based on the idealised punching surface. The majority of design codes ([SIA 
2003b], [ACI 2005]) suggest that the crack should be assumed to form a 45-degree angle with 
respect to the slab surface, leading to the relationship b0= 4 bc + π d for a square surface of punching 
load introduction, with bc being the side length. 

a) b) 
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c) 

Figure 6.20: Results of punching shear tests of slabs made of BSI: a)  force-mid-point displacement 
relationships; b) tensile face of a specimen; c)  section through punching cone 

Using Equation 6.53, the results of the test are plotted as a function of elements thickness in Figure 
6.21. In the same figure, results from other authors are also shown:  

- slabs made of Ductal [Harris 2004], tested at the VPI; the slabs were of square shape, with a side 
length 900 mm and clamped edges along all sides; thickness varied between 50 and 70 mm, and the 
punching shear surface also varied, between 25 and 50 mm (Table 6.3); 

- slabs made of BSI and Ductal [Toutlemonde et al. 2007], tested at the LCPC; the slabs were part of 
a prototype ribbed deck slab, restrained by the ribs at a distance of 600 mm; the applied load 
simulated wheel load, using a reduced introduction surface, 190x260 mm with corners cut at  40 mm
(Table 6.4). The ribbed slab was prestressed, with two T15S strands per rib in one direction and 
external cables in the perpendicular direction providing a compressive stress of 4 MPa.

h= 60 mm 

50 mm 

40 mm 

30 mm 
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Figure 6.21: Punching shear resistance of UHPFRC slabs: a) average shear strength against 
element thickness; b) nominal strength against rotations times element depth, and 
failure criterion according to critical shear crack model for ordinary concrete 
structures 

A certain dispersion of the achieved shear resistances can be noted based on the results of the above-
mentioned tests (Figure 6.21 a)). Regarding only the resistances of the BSI slabs (filled squares), 
average shear strains vary only slightly, with a mean v value of 10 MPa. The highest resistance is 
attained in the thinnest specimen (11.1 MPa). However, the variation in element thicknesses is 
insufficient to clearly demonstrate its influence on shear strength. It is also interesting to note that a 
significant dispersion in shear strength exists between elements of the same thickness 
(e.g. h=50 mm) and made of similar materials, but with different geometries. 

Tests at the VPI (filled triangles) were performed using a material with properties similar to those of 
BSI, as already mentioned in Section 6.2.5.2; however, significantly lower average shear strengths 
are attained. The resulting mean v value is 5.7 MPa.

The results for BSI slabs tested at the LCPC (voided squares in Figure 6.21 a)), show lower average 
shear strength than the specimens tested at the EPFL, whereas Ductal slabs tested at the LCPC 
(voided triangles) show higher resistance than slabs tested at the VPI. The difference between the 
shear strength of the BSI and that of the Ductal slabs tested at the LCPC is small (7.1 against 8 MPa
mean v value). This suggests that the significant difference between the resistances of the BSI slabs 
tested at the EPFL and the Ductal slabs tested at the VPI is probably not due to a difference in 
material strengths.  

Table 6.2: Results of punching shear tests on slabs made of BSI, performed at the EPFL 
Specimen 

350 x 350 x h 
nominal 

h
actual 

h
bc

actual 
P max 

δ P max 

 [mm] [mm] [mm] [kN] [mm] 
PP 30 30 31 20 61.51 1.13 
PP 40a 40 38 20 76.167 1.37 
PP 50a 50 51 20 117.74 1.37 
PP 50b* 50 50 20 110.735 1.51 
PP 60 60 60 20 162.842 0.95 

*  punching failure occurred after bending failure, at approx. V=102 kN and δ=1.9 mm; for a circular yield line pattern for a 
restrained slab [Johansen 1972] Vpl= 4π mR = 113 kN in the case of 50  mm thick slab; 

EPFL, BSI 
LCPC, BSI (prestressed) 
VPI, Ductal 
LCPC, Ductal (prestressed) 
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Table 6.3: Results of punching shear tests on slabs made of Ductal, performed at the VPI 

specimen 
nominal 

h
actual 

h
bc

actual 
P max 

δ P max 

Serie/test [mm] [mm] [mm] [kN] [mm] 
1/1 50.8 (2 in.) 55.12 38.1 103.64 18.39 
1/2 50.8 58.93 50.8 120.99 20.22 
1/3 50.8 53.85 25.4 100.52 No data 
2/1 63.5 (2.5 in.) 66.29 50.8 146.78 14.48 
2/3* 63.5 64.52 38.1 135.66 32.00 
3/2 76.2 (3 in.) 71.88 38.1 156.57 15.24 
3/3* 76.2 71.88 25.4 178.36 27.43 

* punching failure occurred after bending failure: for specimen 2/3 punching failure occurred at approx. V =115.648  and 
δ =32 mm; for the specimen 3/3 it occurred at approx. V =146.78  and δ =27.432. 

Table 6.4: Results of punching shear tests on slabs, performed at the LCPC 

specimen 
nominal 

h
bc

actual 
P max 

δ P max 

 [mm] [mm] [kN] [mm] 
BSI 50 190, 260*  365 3 
BSI 50 - / -  352 2.5 

Ductal 50 - / - 417 2.4 
Ductal 50 - / - 391 1.6 

*
the side dimensions of the steel plate for load introduction are 0.19 and 0.26 m with corners cut at 0.04m, giving a load-

introduction surface perimeter of 0.85 m. With h=d, the accepted critical perimeter concept gives b0=1m. 

6.3.3 Relationship between slab rotation and punching shear strength 
Based on the test results shown in Figure 6.21 a), it can be noted that specimens tested with the same 
boundary conditions and spans, with a slight variation in thicknesses, show a low dispersion in 
achieved resistances, whereas strengths change significantly with slab spans. This suggests that the 
parameters influencing shear strength are principally structural. For this reason, resistances are 
plotted in Figure 6.21 b) as a function of rotations, ψ , multiplied by element depth, d, and punching 
shear force is expressed as a nominal force V/(b0d◊fc). The results in Figure 6.21 b) are plotted with 
the rotation ψ outside the critical crack  obtained based on the assumption of conical deformation of 
the slab outside the force introduction region [Muttoni, Fernández Ruiz 2008], 

 ψ = δ P max/(rb – bc /2 ),  (6.54) 

where rb is the radius of the slab. Compressive strengths of fc=180 MPa and 220 MPa are used for 
BSI and Ductal respectively. For the slabs tested at the EPFL, rb=(0.3-0.05)/2 m (Figure 6.19 b)), for 
those tested at the VPI rb= 0.45 m and for those tested at the LCPS rb = 0.3 m. The other values for 
the considered slabs are provided in Tables 6.2 to 6.4.  

A correlation between nominal force and rotation similar to that observed for ordinary RC can be 
noted in Figure 6.21 b): the slabs tested at the VPI exhibited much higher deformations at failure, 
which may explain the reduced strength. (The specimens on the most right in Figure 6.21 b) are the 
specimens that actually failed in bending.)  

Consequently, the critical shear crack theory as defined for RC is tested for applicability to UHPFRC 
without ordinary reinforcement: crack width remains proportional to ψ d, aggregates are assumed to 
influence resistance as in an ordinary concrete, and thus dg=6mm and dg0=16mm are the values 
incorporated in Equation 6.52, and fibre action is disregarded. The criterion is plotted in Figure 6.21 
b) against measured data, and the concordance of the results can be concluded.  The criterion is also 
plotted in Figure 6.22 a) against the force-ψ d relationship for slabs failing in punching (black lines) 
and bending (grey lines).  
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Figure 6.22: Critical shear crack criterion (CSC) as defined for RC, and possible adaptation 
for UHPFRC (dashed lines): a) in comparison to response of specimens that failed in 
punching (black lines) and bending (grey lines);  b) in comparison to nominal 
resistance of specimens with low rotation 

It must be emphasized that the critical shear crack theory has been validated for ordinary concretes, 
and the question arises as to whether the contribution of UHPC to shear strength is characterised by 
the same relationships. However, assuming its general validity, the difference between the prediction 
according to the critical shear crack theory and the actual V in UHPFRC elements can be associated 
to fibre action, Vf (Figure 6.22). Moreover, this contribution progressively decreases for increasing 
values of  d, indicating that fibre contribution is influenced by structural parameters, i.e. depends 
on crack opening. In the following sections, the punching shear design method proposed in existing 
UHPFRC recommendations will be described (§ 6.3.4) and the dependency of fibre contribution on 
element size will be modelled by adapting the approach proposed by Casanova (§ 6.3.5). 

6.3.4 Punching shear in UHPFRC design recommendations  
In current recommendations for UHPFRC [SETRA, AFGC 2002], Article 2.3, ultimate shear 
strength Vu is given as the sum of concrete, VRb, reinforcement, Va, and fibre contribution, Vf:  

 Vu= VRb +Va +Vf,  (6.55) 

with  

ubf

p
f

S
V
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tan⋅

⋅
= ,  (6.56) 

and σp being average residual tensile stress transferred by the crack, defined as   
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S being the area of fibre effect S = 0.9 b0 d= b0 z, βu the angle of compression strut, assumed as π/4, 
K the fibre orientation coefficient for general effects and γbf=1 the partial safety factor for UHPFRC 
for ULS verifications. The crack opening is limited as wlim= max(wu, 0.3 mm), with wu = lc εu, and εu

limited to 3 ‰ according to Article 6.3.313 of the recommendations. The characteristic length, lc, is 
defined as lc =2/3 h (§ 3.3.2.7). The latter limitation actually gives a constant value wlim=0.3 mm for 
all h < 150 mm, signifying that size effect is not taken into account for this range of element 
thicknesses.  

According to the French recommendations, the tensile hardening phase characterised by multi-
microcracking is represented by the stress-crack opening relationship. In the concept of the present 
thesis, only the tensile softening relationship is defined using stress-crack law. However, to apply the 

CSC, RC 

fibre 
contribution 
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French approach, it is sufficient to associate a crack opening to the ultimate strain, εu, characterising 
the material prior to the softening part: according to Relationship 3.27,  

c

ct

c

i
u E

f

l

w
+=ε

for a 50 mm thick section and  εu =2.5 ‰, w= 0.078 mm. According to [Jungwirth 2006], based on 
the microcrack spacing estimated as  ¾ lf , crack opening at 2.5 ‰ is approx. 0.04 mm. Thus, the 
crack opening of 0.3 mm according to [SETRA, AFGC 2002] would correspond to the crack opening 
of 0.22 or 0.26 mm of crack in the softening branch defined for the UHPFRC used in the present 
study. On this basis, fibre contribution (Equation 6.57) is calculated as constant for all elements of 
heights smaller than 150 mm: 

MPa
Kp 44.8
1
⋅=σ

The integral of stress-crack opening law proposed in §3.3.2.8 is defined by Equation 3.39. According 
to Article 2.1 [SETRA, AFGC 2002] for local effects the orientation coefficient K=1.75 (for other 
than local effects K=1.25), but for thin plates, characterisation tests show that K=1. Both cases will 
be considered, leading to following nominal fibre contribution: 

- for K=1,       Vf /( b0 d◊fc)=1/K 1/γbf 8.44/◊fc= 0.629/γbf

- for K=1.75,  Vf /( b0 d◊fc)= 0.35/γbf

The contribution of concrete to shear resistance is defined as 

dbfkV c
bE

Rb 0
21.01
γγ

⋅=  (6.58) 

where the term γE is a safety coefficient such that γE γb =1.5. For fc=180 MPa, the concrete 
contribution is VRb=2.8 b0 d/(γE γb). Without safety factors, VRb/( b0 d◊fc)= 0.21. It should be noted 
that structural parameters are not taken into account in this part either.  

The values of VRb and Vu= VRb + Vf  are plotted in Figure 6.23 a), without safety coefficients, and in 
b) with safety coefficients. It can be seen that fibre contribution with maximal crack opening 0.3 mm
overestimates ultimate strengths for K = 1, whereas for K = 1.75 the ultimate strength for elements 
with small ψ d is well predicted, although for higher ψ d strength is still overestimated. It is clear 
however that the constant shear strength approach cannot satisfactorily reproduce the decreasing 
tendency of experimental data. 
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Figure 6.23: Shear strength according to [SETRA, AFGC 2002]: a) values without safety factors, 

for K=1 and K=1.75; b) values with safety factors, for K=1 and K=1.75

Vf + VRb , K=1  

Vf +VRd,K=1.75 

concrete, VRb

design, K=1  

design,K=1.75 

concrete
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Based on the results presented in Figure 6.23, it can be concluded that a more accurate approach for 
predicting shear resistance is required, especially enabling size effect to be taken into account.  

6.3.5 Fibre contribution to shear strength: a proposal 
Fibre contribution to shear strength is related to maximal crack opening, as in the model proposed by 
Casanova (Equation 6.51). Maximal crack opening is, on the other hand, assumed as being a 
structure-related parameter, as proposed for ordinary concrete [Muttoni, Schwartz 1991]: assuming a 
constant rotation of the slab outside the critical shear crack (Figure 6.18), crack opening can be 
obtained from the kinematics of the rigid block mechanism. The critical crack opening is then 
directly related to rotation, as wlim ∂ψ d. Assuming that the critical crack propagates up to 0.9 d, 
wlim=ψ  0.9 d and fibre contribution (Equation 6.57) can be expressed as a function of structural 
parameters:  
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 (6.59)  

Figure 6.24 shows a comparison between fibre contribution to shear strength based on Equation 6.59 
and test data for K=1 (solid lines) and K=1.75 (dashed lines). The curves are normalised with 
different compressive strength values: fc=180 for BSI (black lines) and 220 MPa for Ductal (grey 
lines). The relationship shows the same tendency as the experimental data: fibre contribution to shear 
strength decreases for thicker elements or elements that attain higher rotations. 

Figure 6.24: Fibre contribution to shear strength based on the proposed model; solid lines are 
plotted with K=1, dashed lines K=1.75; black lines  fc=180 (BSI), grey lines 
fc=220 (Ductal) 

Finally, the concrete contribution is added as a constant value, according to the French 
recommendations (Equation 6.58) and the resulting curves are plotted for K=1 in Figure 6.25 a), 
showing a remarkable improvement in prediction accuracy in comparison to that obtained for 
constant fibre contribution (Figure 6.23).    

The nominal concrete contribution can also be assumed as being a size-dependent 

function, ⎟⎟
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, leading to a general expression for punching shear resistance  
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The curves obtained on the basis of Relationship 6.60 are plotted as solid lines in Figure 6.25 b), 
normalised for fc=180 and 220 MPa, while the part corresponding to concrete contribution is plotted 
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as a dashed line. However, due to the lack of information on the behaviour of fibre-free UHPC as a 
function of ψ  and d, the concrete contribution cannot be quantified on a rational basis. 
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Figure 6.25: Punching shear strength of UHPFRC elements with fibre contribution related to 
element rotation and thickness: a) assuming constant concrete contribution (grey lines 
are normalised for 220MPa); b) assuming concrete contribution as a function of 
rotation and thickness 

6.3.6 Practical aspects of size effect on punching shear strength   
Although the actual participation of fibres and concrete in shear resistance still has to be more 
precisely quantified, the influence of structural parameters on shear strength is clearly shown in the 
proposed approach. Omitting size effect may lead to inaccurate estimations of shear resistance: for 
members thinner than 150 mm, the constant shear strength estimated according to the French 
recommendations may correctly predict the punching strength of one element (e.g. element c in 
Figure 6.26), whereas another may sustain higher shear strengths and fail in bending (element b), fail 
in punching shear for a higher level of shear strength (element a) or fail in punching before the 
predicted bending strength is attained (element d).

ψ 

punching criterion

punching failure

bending response

bending 
failure

ν

punching failure

a

b

c
d

d

Figure 6.26:  Size-dependent shear criterion (dashed line) and element response under concentrated 
load with indicated failures 

Rotation ψ is related to slab stiffness, i.e. slabs with shorter spans or stiffer boundary conditions will 
generally develop smaller rotations than long-span slabs with less constrained boundary conditions. 
In the case of thin slabs (small d) with a stiff behaviour (small ψ), the constant shear strength 
approach (Equations 6.57 and 6.58) provides a conservative estimation of punching shear strength. 

VRb + Vf

VRb

VRb + Vf

VRb
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For more deformable and/or thicker elements, but still below 150 mm-thickness, however, constant 
shear strength approach overestimates the effective contribution of fibres to shear strength, leading to 
unsafe predictions. This is probably because in these cases the opening of the critical shear crack is 
higher than the limiting value of 0.3 mm proposed by the French recommendation for thicknesses 
smaller than 150 mm, and consequently the average stress borne by the fibres (Equation 6.57) 
decreases. 

In the case of ordinary reinforced concrete, simple expressions exist to relate slab rotation to the 
applied load, enabling punching strength to be predicted as intersection point between the force-
rotation curve and critical shear criterion. To obtain a general load-rotation relationship of an 
UHPFRC slab a non-linear analysis, such as the one developed in §6.2, must be used. However, the 
range of available test data, and in particular that obtained at the LCPC, well represents the geometry 
and boundary conditions of interest for the case of a ribbed slab, considered in this study, and the 
ultimate strength can be based on the experimental data. In tests carried out at the LCPC, the failure 
load applied on a surface of 0.26 x 0.19 m was already 2-3 times the nominal wheel load prescribed 
by current codes of practice [Toutlemonde et al. 2007].  

6.3.7 Conclusions  
An analytical criterion for assessing the punching shear strength of UHPFRC members is proposed. 
It takes fibre contribution to shear strength and its dependency on element size and stiffness into 
account. Although current theoretical and experimental knowledge is still insufficient for a general 
model to be established, the predictions of the proposed approach are in good agreement with 
experimental results obtained in the framework of this research and by other authors. 

On the basis of theoretical and experimental evidence the following conclusions may be drawn: 
- fibre contribution to punching shear strength is a function of the opening w of the critical 

shear crack, which is a function of slab thickness and slab rotation outside the punching 
region ψ; 

- punching shear strength decreases for increasing slab thickness values; 
- punching shear strength decreases for slabs that develop higher rotations ψ, i.e. long-span 

slabs or slabs with free boundary conditions; 
- the influence of slab thickness, span and boundary condition should be taken into account to 

correctly evaluate punching shear strength; 
- current design recommendations poorly estimate punching shear strength for element 

thicknesses lower than 150 mm, and may lead to unsafe predictions in the presence of 
significant critical crack openings; 

With a view to the application of thin UHPFRC slabs in ribbed decks for road bridges: 
- it is experimentally and theoretically demonstrated that significant shear stresses can be 

sustained by UHPFRC elements; 
- analysed test results cover a range of sizes that is representative of possible structural 

applications in ribbed deck systems. 
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7.  Structural application of UHPFRC 
The structural application of UHPFRC to date is not very widespread, despite its obvious material 
advantages (Chapter 3) and its mechanical load-bearing potential in structural elements, as 
demonstrated by theoretical and experimental analysis (Chapters 4 and 5).   

In this chapter the main advantages and drawbacks of UHPFRC for structural application and the 
domains in which its properties can be best exploited are briefly summarised. A state-of-the-art 
review of the structural applications of UHPFRC is presented with a particular focus on current 
structural concepts of UHPFRC in bridge design. 

The case of a ribbed slab made of prestressed UHPFRC, identified as one of the most promising 
applications of UHPFRC in bridge design, is then considered in more detail. The slab design is based 
on the models developed in Chapters 4 to 6 and existing design recommendations. Finally, a 
discussion on optimal structural geometry is presented. 

7.1  Advantages and limitations of UHPFRC for structural 
application 

The most important advantages of UHPFRC for structural applications can be summarised as 
follows: 

- mechanical strengths are greatly improved in relation to those of ordinary concrete; 
- the use of ordinary reinforcement can be reduced and, in some cases, completely avoided due 

to the strength and ductility of UHPFRC in tension; 
- hardened UHPFRC is a very dense material, resistant to chemical and physical aggression and 

consequently far more durable and stable in time than ordinary reinforced concrete; 
- UHPFRC is generally self-placing and self-compacting. 

Thanks to mechanical strengths, reduction of ordinary reinforcement, and matrix density, very thin 
and light members can be made of UHPFRC, with advantages from both a structural point of view 
(e.g. reduction of dead load) and an architectural point of view, since thin members can be freely 
shaped and sized to meet a wide range of functional and aesthetic requirements. The second point 
means that working time for shaping and placing ordinary reinforcement is greatly reduced and 
production speed increased, with valuable effects especially in the precast industry. Light precast 
members can be easily stored, moved and placed, resulting in faster construction phases and a 
reduction in construction site size [Graybeal, Hartmann 2005], [Resplendino, Bouteille 2006]. The 
dense matrix, resistant to environmental aggression, allows maintenance costs to be decreased 
[Denarié et al. 2005]. To summarise all the above advantages, the integral quantity of material, 
labour and invested time are reduced, also resulting in significantly decreased environmental impact 
when constructing with UHPFRC.  

At the moment, however, certain technical aspects partly explain the limited use of UHPFRC in 
structures: 

- the high price of the material, mainly due to the high portion of costly constituents (fibres, 
cement, admixtures) and the small-scale production; 

- the sensitivity of the material to mixing procedure and mix proportions; 
- the variability of mechanical properties as a function of casting conditions (formwork shape, 

paste flow). 

It is interesting to note however that a study on cost effectiveness [Racky 2004], based on energy and 
raw material consumption and sustainability, shows the advantage of using UHPFRC rather than 
ordinary and high-strength concretes. The advantage is particularly significant when life cycle costs 
are considered.  
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The fact that, despite its outstanding properties, only a limited number of structures have been built 
using UHPFRC  may also be related to designers’ needs and habits and current knowledge on the 
subject: 

- UHPFRC has not existed long enough, from a civil engineering point of view, to overcome the 
strong influence of traditional design concepts characterising common engineering practice; 

- there is insufficient feedback from existing structures; 
- design rules are lacking and partial recommendations have been published only recently. 

7.2 Domains of application for UHPFRC 

The current initial price and the technology required for UHPFRC can only be justified if its 
mechanical or other material properties are well exploited. For this reason, UHPFRC should not be 
considered an all-field alternative to ordinary concrete: successful applications should be sought in 
domains where OC barely meets specific design requirements. In accordance with the discussion in 
the previous paragraph, UHPFRC can be successfully used when durable and strong but light 
members are required, or in cases where a considerable liberty with regard to form is desirable. From 
this point of view UHPFRC can be an interesting alternative to structural steel. 

Until now, UHPFRC has been used structurally mainly for: 
- roof elements 
- foot bridges 
- road bridges 
- protective elements in hydraulic or aggressive environments. 

The majority of applications benefit from the lightness and strength of the structural elements (1-3, 
plus for structural repair), while some exploit mainly the material durability and resistance to 
aggressive environments in order to protect new or existing structures. Several applications primarily 
based on material compressive strength for columns or highly stressed details, e.g. prestressing 
anchorages, exist. UHPFRC has also been found suitable for architectural applications. 

The first structural application of UHPFRC (1997-1998), and a good example of the use of UHPFRC 
in an aggressive environment, was the replacement of beams for the cooling towers of the Cattenom 
and Civaux nuclear power plants in France (Figure 7.1 a)). The prestressed UHPFRC beams had the 
shape of conventional concrete beams (Figure 7.1 a)), but with significantly reduced elements size, 
providing the required lightness and durability, [Resplendino 2004], [Acker, Behloul 2004]. 

The present study will deal in more detail with the application of UHPFRC in bridge design, but 
some of the other applications will be mentioned first as examples of the exploitation of material 
advantages.    

Roofs 

The most significant examples of the application of UHPFRC for roof elements are shown in 
Figure 7.1 b) to d). Figure 7.1 b) shows a roofing panels, 7.2 m long and 2.4 m wide, with a 13 mm
thick slab, used for a storage silo in Joppa (2001, Illinois USA). The elements are designed to act as 
ribbed plates, supporting a two-storey mechanical penthouse placed on the top of the roof 
[Nowodworski, Rosiak 2002]. The main advantages of this solution are durability and economy in 
construction time (11 days in comparison to 35 days for steel roofs). The roof of the Millau Viaduct 
tollgate (2004, France) is one of the best known and most architecturally interesting applications of 
BSI (Figure 7.1 c)): the roof is made of precast curved multicellular thin-walled segments, assembled 
by prestressing and relying on steel columns [Resplendino 2004]. The entire structure is 98 m long 
and 28 m with, with a thickness of 0.2-0.85 m. The roof of the Shawnessy station at Calgary (2005, 
Canada) was made of 20 mm thick shell elements, using Ductal UHPFRC with polymeric fibres 
[Vicenzino, Culham 2005]. The latter solution was found economically competitive in relation to a 
metallic solution and more durable and architecturally attractive, especially because of the possibility 
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of casting the elements with metallic shapes, due to the plasticity of UHPCFRC. The production of 
the precast shells requires significant conceptual work in order to make casting of the curved thin 
elements possible in the presence of the early age shrinkage of UHPFRC. However, these elements 
are of interest for structural application since, as redundant systems, they allow the advantages of 
material ductility to be exploited without additional ordinary reinforcement and result in very small 
sectional dimensions.  

a) b) 

c) d) 

Figure 7.1: Application of UHPFRC: a) Cattenom nuclear power plant (1997-1998, France), with 
details of primary and secondary beam cross sections, [Acker, Behloul 2004]; 
b) roofing panels for silo (2001, Joppa, Illinois USA), with plan and cross section of 
element [Nowodworski, Rosiak 2002]; c) roof of Millau Viaduct tollgate (2004, 
France) [Dolo et al. 2005]; d) Shawnessy station (2005, Calgary, Canada), [Vicenzino, 
Culham 2005] 

Footbridges 

Footbridges certainly represent one of the most interesting applications for UHPFRC because of the 
importance of lightness and the architectural requirements usually involved in their conception. At 
present, UHPFRC beams of various cross section shapes and space truss footbridges have already 
been successfully realised (Figure 7.2).  

The first UHPFRC footbridge was the Sherbrook footbridge (Figure 7.2 a)), constructed in 1997 in 
Canada. It is a 60 m long and 3.3 m wide longitudinally post-tensioned space truss bridge with no 
passive reinforcement, in which all structural elements of the superstructure (deck and truss 
members) are made of prestressed UHPFRC [Adeline, Cheyrezy 1998], [Blais, Couture 1999]. This 
bridge represents an important example of attempting to exploit material compressive strength, also 
taking advantage of the increased strength of the concrete confined in the stainless steel tubes of strut 
members. The ties of the truss are prestressed. A deck slab only 30 mm thick resists local loads. 
Innovations in the detailing of precast members and anchorages [Ganz, Adeline 1997] also 
characterise this structure. 

A space truss was also adopted for the more recent Gärtnerplatz footbridge in Kassel (2007, 
Germany) which has a total length of 133.2 m and a main span of 36 m (Figure 7.2 b)): the bridge 
deck and truss were constructed using a UHPFRC developed in Germany [Fehling et al. 2004]. The 
footbridge exhibits other interesting aspects, such as having glued connections between structural 
members. 

Footbridges were also conceived in the form of prestressed simply supported beams, as in the case of 
the Sakata-Mirai footbridge (Figure 7.2 c)): conceptually simple, requiring a shorter construction 
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time than ordinary concrete or steel solutions, and much more durable, the Sakata-Mirai footbridge 
could be considered one of the most successful applications of UHPFRC in footbridge design. It is a 
box girder structure with hollow webs, 50 m span, 2.4 m deck width and variable height, made of 
Ductal UHPFRC. According to [Tanaka et al. 2002a], the structure’s weight is approximately ¼ of 
the weight of an ordinary prestressed concrete girder (0.44 m2 of concrete per meter of structure).  

Another successful application of Ductal is found in the Seonyu footbridge in Seoul, known as 
Footbridge of Peace (Figure 7.2 d)), realized as a prestressed UHPFRC arch, 120 m span, consisting 
of one π-girder, 1.3 m high and 4.3 m wide [Behloul, Lee 2003]. The upper deck is 30 mm thick, 
transversally ribbed and prestressed. The structure is equipped with tuned mass dampers to avoid 
vibration problems. 

a) 

b) 

c) 

d) 

Figure 7.2: UHPFRC footbridges: a) Sherbrooke footbridge (1997, Canada); b) Gärtnerplatz 
footbridge (2007, Kassel, Germany); c) Sakata-Mirai footbridge (2002, Japan); 
d) Seonyu footbridge (2002, Seoul, Korea) 
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Columns in buildings 

There are several significant advantages when UHPC is used for the construction of high-rise 
building columns [Cheyrezy et al. 1997], [Tue et al. 2004a], [Sugano et al. 2007], [Kimura et al. 
2007] or in cases when thin columns are necessary to satisfy functional or architectural requirements. 
Compressive strength is not the only property of UHPC that offers advantages over other concretes: 
resistance to dynamic excitations [Kimura et al. 2007a], significantly decreased long-term 
deformations (§ 3.4.1), and fire resistance provided by the use of organic fibres (§ 3.4.4) are 
important properties required for column design.  

A research project “UHPC hybrid structures”, conducted at Leipzig University [Tue et al. 2004] 
dealt with the development of hybrid compressive elements made with UHPC, providing high load-
bearing capacity and adequate ductility owing to the use of steel tubes. This project also included 
comparative tests on HSC elements:  the number of required sections of both concrete and steel can 
be reduced when UHPC is used, while ultimate loads and behaviour with respect to deformations 
remain the same as with HSC. UHPC columns are characterised by a high stiffness and only small 
plastic deformations observed during cyclic loading within the upper range of the service load.   

It was shown [Foster 2001], [Foster, Attard 2001] that, by adding fibres, the cover spalling 
characterising high strength concrete in the presence of a high number of stirrups can be controlled. 
It was also experimentally shown that the addition of fibres can improve the strength and the 
stiffness of concrete-filled tubular columns [Campione et al. 2002].  

Reinforcement-free prestressing anchorage 

The anchorage of prestressing tendons generates intense local compressive efforts as well as 
transversal tensile stresses in the concrete surrounding the anchorage detail. Usually, transversal 
reinforcement in the form of a steel spiral is provided in the anchorage zones to control transversal 
splitting cracks and confine the concrete, thus improving its strength and ductility. The placing of 
spirals limits the slenderness of the detail, constituting a disadvantage in light and slender UHPFRC 
structures. It was shown that UHPFRC and, to some extent, FRC can develop confining actions 
under localised compressive stress and that, thanks to its compressive strength and to the fibre 
confinement, the anchorage of prestressing cables can be realised without any transverse 
reinforcement. This technology was used in the Sherbrooke bridge [Ganz, Adeline 1997] where 
special micro-anchorages were developed, and later also in the Seonyu footbridge [Behloul, Lee 
2003]. An experimental investigation of anchorage blocks made of UHPFRC, without any passive 
reinforcement is presented in [Toutlemonde et al. 2006].

7.2.1 Applications of UHPFRC in road bridges 
Two different fields of application of UHPFRC in road bridges must be distinguished: the 
construction of new road bridges with the entire superstructure, or certain parts, made of UHPFRC, 
and the rehabilitation of existing road bridges by means of locally applied UHPFRC layers, or entire 
UHPFRC elements. This section mainly focuses on new structures and only some examples of 
UHPFRC use in bridge rehabilitation will be mentioned. 

A fairly limited number of UHPFRC road bridges have been built up until now. Most of them are 
located in France, and significant research on the development of structural concepts for UHPFRC 
bridges is being carried out in the USA [Park et al. 2003], [Graybeal, Hartmann 2005], [Naaman, 
Chandrangsu 2004] and Canada [Braike et al. 2006]. Some applications also exist in Australia 
[Cavill, Chirgwin 2003] and Italy [Meda, Rosati 2003]. From a conceptual point of view, four 
solutions for UHPFRC structural elements have been proposed: 

- π-shaped girders, 
- I-shaped girders with ordinary concrete slab, 
- box girders, 
- composite bridges with steel beams as main girders and UHPFRC deck slab.
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The most important properties of these UHPFRC bridges are summarised in Table 7.1. To compare 
the effectiveness of the applied structural concepts, the equivalent height hequiv , which is the ratio of 
cross section area Auhpc to deck width, is used. All the beams are precast and longitudinally 
prestressed. The box girder of the PS34 bridge over highway A51 in France is prestressed only 
externally. 

Table 7.1: Main structural characteristics of UHPFRC road bridges 

Structure 
Bourg-lès- 
Valence, 
France 

Road Bridge 
Virginia, 

USA 

Shepherds 
Creek, 

Australia 

Saint-Pierre-la-
Cour 

France 

PS34, bridge 
over A51,  

France 

LCPC,  
Pilot project 

France 

built in 2001 2004 2004 2005 2006 - 

characteristic 
5 π-shaped 

girders 
per span 

2 π–shaped 
girders 

16 I-shaped 
girders with 

RC slab 

10 I-shaped 
girders with  

RC slab 

mono-cellular 
box girder 

ribbed deck slab 
on steel main 

girders 

span, l [m] 20.75, 22.75  21 15 19 47.4 90, 130 

width  [m] 12.2  4.8  20.8  12.6 4.4 12 .2 

l /h 23, 25 25  25 (girder) 25 (girder) 30 
17 1

7.2 2

hslab  [m] 0.15  0.076  - - 0.12, 0.14 3 0.05  

web 
width 

[m] 0.11  0.064, 0.076  0.10 0.14 0.14 0.07-0.1 (ribs) 

hequiv [m] 0.25 0.17 0.08 (beams) ≈ 0.12 (beams) 0.28 0.14 (slab only) 

material  
BSI, 3% steel 

fibres 
Ductal, 2% steel 

fibres 
Ductal, 2% steel 

fibres 
Ductal, BCV, Vinci BSI and Ductal  

1 slab’s span-to-depth ratio between longitudinal beams
2 span-to-depth ratio of slab’s cantilever part 
3 upper and lower slabs respectively 

Road bridge at Bourg-lès-Valence, France:  ππππ-girder 

This first road bridge made of UHPFRC was intended to serve as a reference and help establish 
design rules for further applications [Thibaux, Tanner 2002]. The bridge is composed of two 
statically determined spans of 22.75 and 20.75 m respectively (Figure 7.3 a)). The cross section 
consists of five precast -shaped girders, 0.9 m high and 2.2 m wide, for a total deck width of 12.2 
m. The bearing slab is made continuous in the longitudinal and transverse direction by cast-in-situ 
UHPFRC joints. Girders are prestressed with T15S prestressing strands (26 and 30 strands per girder 
of 20.75 and 22.75 m respectively). No transversal prestressing was applied in the deck and the 
bridge is completely free of passive reinforcement, except in the longitudinal and transversal joint 
areas. 

a) b) 

Figure 7.3: Bourg-lès-Valence road bridge: a) view on the two-span structure ; b) repetitive 
element of cross section (π-shaped prestressed beam [Thibaux, Tanner 2002]) 

The use of UHPFRC (BSI) resulted in 0.25 m equivalent height, which, according to the designers, 
reduced the dead weight of the structure by three times in comparison to optimised alternative 
solutions in OC (hequiv = 0.75 m) or high-strength concrete (heqiv = 0.37 m with fck = 80 MPa, 
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[Toutlemonde et al. 2002]). Upper deck and web thicknesses are 150 mm and 110 mm respectively. 
The contribution of the tensile strength of UHPFRC to resistant bending moment was not taken into 
account in the longitudinal direction but considered in the design of the unreinforced slab in the 
transversal direction [Thibaux, Tanner 2002].  

Road bridge in Virginia, USA: ππππ-girder 

The first UHPFRC road bridge in the USA, built in 2004, was based on concept similar to that of the 
French bridge at Bourges-lès-Valence, but with far smaller dimensions (Table 7.1). The bridge is 
constructed in a single span of 21.3 m, consisting of two simply supported prestressed π-shaped 
girders, with a total deck width of 4.9 m. The material used is Ductal UHPFRC.  

a) b) 

Figure 7.4: Road bridge in Virginia: a) placement of one of the two girders (π-shaped beam) 
b) details of main girder cross section [Graybeal, Hartmann 2005] 

The girder geometry was the result of an in-depth study conducted at the Massachusetts Institute of 
Technology [Chuang , Ulm 2002], aimed at defining an optimal cross section shape that would 
withstand structural and environmental loads while at the same time reducing erection and overall 
construction time. The height of the girder is 0.84 m, with 76 mm of upper slab thickness and a 1.39 
m distance between webs. The equivalent height of the girder is only 0.17 m. The optimised π-
shaped girder was validated by laboratory testing at the FHWA’s Turner-Fairbank Laboratory in 
Washington, DC. The UHPFRC solution was identified as being the most competitive solution for 
the long-term replacement of several road bridges [Keierleber et al. 2007], mainly due to the 
advantage of easy and rapid bridge construction.  

Road bridges at Shepherds Creek, Australia, and Saint-Pierre-la-Cour, France: I-girder 

A somewhat different concept to the previous two was developed by VSL and used with Ductal 
UHPFRC for two road bridges, one constructed in Australia in 2004 (Shepherds Creek bridge, 
Figure 7.5 a)), and one in France in 2005 (Saint-Pierre-la-Cour bridge, Figure 7.5 b)).  

The structural system is based on multiple prestressed UHPFRC I-girders with 25 mm thick precast 
unreinforced UHPFRC plates placed between the main girders (Figure 7.5, details on the right), and 
fulfilling two functions: serving as formwork for the cast-in-situ upper slab, made of ordinary 
reinforced concrete, and protecting the superstructure from environmental aggressions during the life 
of the structure. The two bridges have single spans of 15 and 19 m lengths respectively, with a total 
deck width of 20.8 m (Shepherds Creek bridge, 16 I-beams) and 12.6 m (Saint-Pierre-la-Cour bridge, 
10 I-beams). The slenderness of the beams in both cases is l/h=25.
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a)  

b)  

Figure 7.5: Road bridges with I-shaped UHPFRC girder and thin UHPFRC slabs used as 
formworks for ordinary RC slab: a)  Shepherds Creek bridge: cross section and detail 
of I-girder and thin slab [Cavill, Chirgwin 2003]; b) Saint-Pierre-la-Cour bridge: view 
of structure and cross section [Resplendino, Bouteille 2006] 

Bridge at La Chabotte, France: box girder  

The PS34 bridge crossing highway A51 at La Chabotte, France is made of UHPFRC produced by 
Vinci, with mechanical properties similar to those of previously mentioned UHPFRCs. Unlike the 
previous road bridges, this structure has a smaller width, 3 m, but a significantly longer span of 
47.4 m [Resplendino, Bouteille 2006]. The applied box girder concept (Figure 7.6 b)) allows more 
static height but limited material consumption and weight, as in the case of the Sakata Mirai 
footbridge. The bridge consists of precast segments, assembled in situ with glued joints and 
longitudinal external prestressing. The entire bridge was lifted and installed in one single operation. 
The segments were cast vertically with special hydromechanical and deformable formworks to allow 
early age shrinkage to develop without constraints. The bridge is free from passive longitudinal 
reinforcement. However, a certain amount of transversal reinforcement is provided in the lower slab 
in order to strengthen a section in which, during casting, opposing flows of fresh UHPCFR meet thus 
creating a possibly weaker joint. The thickness of the walled elements is 140 mm, and the equivalent 
height of the girder is 0.28 m for span-to-depth ratio l/h=30.
a) b) 

Figure 7.6: Bridge at La Chabotte, France, France: a) view of structure; b) cross section of bridge, 
[Resplendino, Bouteille 2006] 

Ribbed deck slab 

A concept of a composite plate-girder road bridge with UHPFRC ribbed deck supported by two 
longitudinal steel I-girders (Figure 7.7) is under investigation in the framework of the French 
National MIKTI project. . Unlike existing UHPFRC road bridges, in this case UHPFRC is used for a 
structural element that transmits traffic loads to steel girders, and not to span the longitudinal bridge 
opening. The developed concept of the UHPFRC ribbed slab applies to a three-span bridge with a 
total length of 310 m, a main span of 130 m and a total deck width of 12.2 m. The solution has been 
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developed principally as an improved alternative to steel orthotropic decks [Toutlemonde et al. 
2005]: the ribbed UHPFRC slab provides the advantages of both a concrete slab in terms of 
durability and stiffness, and those of an orthotropic steel plate in terms of lightness; problems related 
to the fatigue degradation of steel elements are avoided with the concrete solution.   

The slab consists of prestressed precast segments, assembled in the bridge’s longitudinal direction 
using cast-in-situ joints, and is additionally prestressed. This concept allows rapid construction. The 
thickness of the upper UHPFRC slab is designed to resist local bending and punching failure under 
concentrated wheel loading. Rib number and height are mainly calculated according to transversal 
bending strength and stiffness. The adopted solution with a 50 mm thick slab, regular rib spacing of 
0.6 m, and constant rib height of 0.38 m (Figure 7.7 b)) results in an equivalent slab thickness of 
0.14 m.

a) b) 

Figure 7.7: a) cross section of road bridge pilot project with UHPFRC ribbed deck slab; 
b) repetitive element of ribbed deck slab; [Toutlemonde et al. 2005]  

7.2.1.1 Repair of existing bridge structure 

The resistance of UHPFRC to chemical and physical attacks, as well as the possibility of casting it in 
very thin layers, make UHPFRC suitable for rehabilitation intervention on damaged or overexposed 
existing structures. Two additional advantages of this type of application are: the use of limited 
quantities of UHPFRC (reduced costs), and the very small additional load represented by thin layers, 
which is very important in existing structures with limited load-bearing capacity. 

Kaag bridge deck repair with UHPC panels, Netherlands 

Heavily reinforced UHPC precast panel elements were used to replace the wooden bridge decks of 
two movable bridges in the Netherlands [Kaptijn, Blom 2004]. The principal requirement was to 
keep the deck weight low: a solution using 45 mm thin panels, containing 5.6 % of mild 
reinforcement, with an only 9 mm concrete cover was adopted (Figure 7.8 a)). Panel dimension is 
increased along the joint line to 65 mm. The advantages of replacing the traditionally used wooden 
deck with the UHPC deck were sustainability and significantly decreased maintenance costs.   

Rehabilitation and widening of bridge over the river Morge, Switzerland 

Within the context of the European project SAMARIS (Sustainable and Advanced MAterials for 
Road InfraStructure) UHPFRC was applied for the rehabilitation of a reinforced concrete bridge over 
the river Morge in Switzerland [Denarié et al. 2005]. This intervention represents the first application 
of this kind in bridges: the structure was widened by using ordinary RC beam and a UHPFRC 
precast element, and protected with a 30 mm thick UHPFRC layer (Figure 7.8 b)). The innovations 
implemented are based on the concept of making the construction process simpler and quicker by 
avoiding waterproofing membranes and concrete compacting by vibrating, while the superstructure 
zones exposed to environmental and mechanical loads are protected thanks to the material 
advantages of UHPFRC [Brühwiler et al. 2005]. The UHPFRC used in this rehabilitation was a type 
of CEMTECmultiscale© (§ 3.2.3, [Rossi et al. 2005]) tailored at MCS-EPFL. 
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a)  

b)  
    

Figure 7.8:  Rehabilitation of road bridges using UHPFRC: a) Kaag bridge (2002, Netherlands) 
and detail of deck panel cross section [Kaptijn, Blom 2004]; b) bridge over the river 
Morge (2004, Switzerland) with cross section of bridge after rehabilitation [Denarié et 
al. 2005] 

Rehabilitation of columns of Valabres viaduct  

The rehabilitation of the columns of the Valabres viaduct in France [Eiffage 2005] is an example of 
the use of UHPFRC’s material properties for element strengthening and abrasion and shock 
protection. As in the previous rehabilitation example, UHPFRC allowed the simple execution of 
intervention work. 

7.2.2 Conclusions on the application of UHPFRC in bridge design 
Current UHPFRC bridge structures are designed to work in a conceptually similar way: the principal 
bending moment is borne mainly by the prestressing strands and UHPFRC in compression, the latter 
not being fully exploited. Shear strength and resistances to local loads are provided by UHPFRC’s 
strength and ductility in tension, eradicating the need for ordinary reinforcement. In some cases, 
transversal moments are also borne only by the UHPFRC. UHPFRC members are generally precast 
and assembled in situ with dry or wet joints and prestressing. According to designers, all existing 
structures represent competitive variants in comparison to ordinary solutions, with the advantages of: 
reduction in ordinary reinforcement (speeding up production time), reduction of the weight of the 
superstructure, (with positive effects on the design of the supporting structure, but also on transport 
and placing), and improved durability. 

However, considering the current initial costs of the material, in order to make UHPFRC structures 
competitive, their properties must be exploited to the maximum, requiring appropriate design 
methods and structural concepts based on material properties. In view of existing structural 
applications, some inductive conclusions concerning the potential of UHPFRC for application in 
bridge design can be drawn: UHPC is appropriate particularly when weight saving, rapid 
construction or resistance to highly aggressive environments are required.    
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7.3 Case study: design of a UHPFRC ribbed deck slab  

Ribbed slab, as a structural concept for bridge deck slab enabling the advanced properties of 
UHPFRC to be fully exploited, is studied in this section. The ribbed slab is conceived as a light 
precast prestressed element that enables easy and rapid fabrication and construction. 

The analysis and design of ribbed UHPFRC slab in this section are based on available experimental 
data (tests to failure for different failure modes), theoretical considerations presented in previous 
chapters, as well as available design recommendations. By performing the analysis for varying 
geometrical parameters of the slab, optimal dimensions and efficiency of the slab can be concluded.  

7.3.1 Structural concept  
Ribbed deck slab, as part of an advanced UHPFRC bridge system, enables the properties of the 
material to be fully exploited: thin slabs can provide sufficient resistance without ordinary 
reinforcement, and thin webs can sustain a relatively high prestressing force, due to material 
strengths. The ribs provide global stiffness to the deck slab, and limit the span of thin upper slabs. 
Thanks to the high material density and corrosion resistance, small concrete covers are sufficient. 
This leads to a structural element requiring very low material quantities.  

For application in highway bridges, the required width of the driving surface, bd (Figure 7.9a)), must 
be assured, while all other slab dimension (h, hts, br, Figure 7.9b)) are variables, defined to meet 
design requirements. A width of 12 m provides sufficient space for 2 highway lanes of 3.75 m [VSS 
1992], and it will be a constant in the present study. This deck width also provides sufficient space 
for pedestrian lanes in the case of road bridges, with a reduced driving surface.   

Figure 7.9: UHPFRC in bridge superstructure: a) ribbed-deck slab in complete bridge 
superstructure; b) zoom on ribbed slab and characteristic geometrical parameters 

The concept of the rest of the superstructure is not detailed in the present work. For small spans, 
ribbed slabs solutions with different geometry can be considered [Sorelli et al. 2007], [Resplendino, 
Bouteille 2007], or beams with deeper longitudinal webs, as the π-girders optimised at the MIT, can 
be considered, [Chuang , Ulm 2002], Figure 7.4. For longer spans, possible solutions for the design 
of UHPFRC webs, maintaining the idea of light structures, are shown in Figure 7.10: the concept of 
corrugated webs (Figure 7.10 a)) may be applicable for UHPFRC, due to its high strengths and the 
possibility of casting in irregular forms; similarly, voided webs (Figure 7.10 b)) as applied for 
ordinary concrete (Figure 7.2 c)) and also for UHPFRC in pedestrian bridges, may be of interest. 
Both these concepts need external longitudinal prestressing. Another interesting structural 
application of UHPFRC in superstructures may be in thin shells below the bridge deck 
(Figure 7.10 c)), forming an integral superstructure, suitable for precast construction [Fanous et al. 
1996].   

a) b) 
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a) b) c) 

Figure 7.10: Possible solutions for a light UHPFRC superstructure for higher spans: a) corrugated 
webs (as in the Altwipfergrund bridge, mixed design); b) voided webs – truss 
structures, Glacières and Sylans viaducts, 1988-89, France; c) shell-deck bridge 
[Fanous et al. 1996] 

7.3.2 Design basis  

7.3.2.1 Actions on the structure  

Permanent and variable actions on the structure are considered based on the Swiss structural codes 
[SIA 2003] and the French recommendations for UHPFRC structures [SETRA, AFGC 2002].  

Permanent actions 

a) External loads 

The self-weight of structural and non-structural elements and prestressing are the permanent actions 
considered in the present study. The self-weight of the bearing structure is a function of slab 
geometry, Auhpfrc, and average weight per unit volume of UHPFRC, γuhpfrc. As already explained, slab 
dimensions vary during the analysis, whereas γuhpfrc = 27.9 kN/m3 (Table 3.3). The actions of non-
structural elements are: 

pavement self-weight, with thickness equal to 40 mm and weight γ = 25 kN/m3. This layer, much 
thinner than in conventional design (80-90 mm according to [OFROU 2002]), is acceptable for 
UHPFRC due to the much improved resistance to degradation and water penetration: in 
rehabilitation work on a bridge superstructure, [Denarié et al. 2005], a 40 mm thick bituminous 
concrete pavement was placed over a UHPFRC layer, without a waterproofing membrane.   

guard rail self-weight: Δg = 3.5 kN/m. 

b) Prestressing 

The adhesive prestressing is applied in the structural element via prestressing strands. The 
characteristic value of prestressing force, Pk, is considered at time t , with prestressing losses due 
to shrinkage, creep and steel relaxation taken into account. 

Variable actions 

Road traffic is regarded as the only variable action in the present study. It is assumed as being in 
accordance to Articles 10.1 to 10.3 of [SIA 2003a]: Actions on Structures. The load model 1 of this 
standard is applied (Figure 7.11), comprising concentrated loads, αQi Qki  and uniformly distributed 
loads, αqi qki. The axle load, αQi Qki, is imposed on the structure over two square wheel surfaces 
(0.4 m side), and corresponds to values proposed by the Eurocode. The characteristic values of the 
loads are given in Figure 7.11. In the case of normal traffic load, αQi = αqi = 0.9.
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Figure 7.11: Traffic load “model 1” according to SIA [SIA 2003a]  

7.3.2.2 Materials  

UHPFRC

Material laws in compression and tension as defined in §3.3.1.4 and §3.3.2.8 are used. Partial safety 
factors for UHPFRC for fundamental combinations is γb=1.3, according to Article 2.1 of the French 
recommendations [SETRA, AFGC 2002]. The effect of placement method on strength values is 
considered using the reduction coefficient 1/K, which can be determined for a structural element 
based on test results or references for similar works. According to Article 2.1 [SETRA, AFGC 
2002], K=1.25 is applied for all loadings other than local effects, K=1.75 for local effects, and  K=1
for thin plates. 

Prestressing steel  

Characteristics of the prestressing steel used in the study are given in Figure 7.12. 

strands type T15S

characteristic

fpk 

σp 

fp01k 

fpd

εuk 

Ep

φp

Ap

gp1

[MPa]

[MPa]  

[%] 
[GPa]
[mm]  
[mm2] 
[kg/m] 

1770  
0.7 fpk 

1520  
fp01k /1.15 
≥ 3.5 
195  
15.7 
150 
1.18

Figure 7.12: Characteristics of prestressing strands and typical stress-strain diagram for 
prestressing steel, [SIA 2003b] 

Notations used in Figure 7.12:  fpk tensile strength, fp01k yielding strength, fpd design value of yield 
strength, εuk ultimate strain, φp, Ap and gp1 strand diameter, cross section area and weight 
respectively.

7.3.2.3 Strength and design models  

For a given design situation, design consists of verification of relevant limit states – ultimate limit 
states (ULS) and serviceability limit states (SLS). The partial factors are assumed in accordance with 
Swiss codes [SIA 2003] and the French recommendations for UHPFRC [SETRA, AFGC 2002]. The 
resistance of elements to various failure modes is determined in accordance to the recommendations 
for UHPFRC structures (§ 4.1) and the work presented in Chapter 4 to 6 of the present thesis. The 
applied models are recalled in § 7.3.3. 
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7.3.3 Design procedure   
For a preliminary design, the initial problem is the choice of the governing criterion. Considering 
design at ULS, all potential modes of failure must be identified and design is performed in order to 
exclude them. Two kinds of failure modes are identified for the ribbed slab: local and global failures.  
Local failures comprise bending and punching-shear failure of thin slabs, while global failures are 
related to the loss of bending and shear resistance of prestressed T girders, representing a unit 
element of the ribbed slab. According to Article 6.3,3 [SETRA, AFGC 2002], the fundamental 
design assumptions for the analysis at the ULS are that plane sections remain plane and that concrete 
and prestressing reinforcement are not subjected to any relative slip. According to the same article, 
sectional strength is reached before the cracks are too wide. Design at SLS includes verification of 
stress states attained in structural elements, as well as deformations. The tested concept of light 
weight structure exposed to, in proportion, much higher variable loads, may exhibit the problems 
related to fatigue, and consequently, the possibility of occurrence of fatigue failure should also be 
verified. More data on fatigue performance of an UHPFRC ribbed slab are presented in 
[Toutlemonde et al. 2007a].  

Structural model 

Sectional forces, elastic deformations and displacements are calculated using a developed parametric 
3D FEM model (Figure 7.13), using shell elements. The ribbed slab is treated as one-way slab, 
supported on two longitudinal bridge girders, assumed to be infinitely stiff. The one-way slab 
assumption is a correct model for most of the slab length, except in the vicinity of a support in 
transversal direction, e.g. diaphragms. The model is thus appropriate for the design of the slab in 
transversal direction, while no verifications in longitudinal bridge direction are performed in the 
present study. 

Figure 7.13: Parametric 3D model of the ribbed slab 

For the design at SLS, the assumption is that, for service loads, the calculations based on linear 
elastic theory provide sufficient accuracy for sectional forces, and remain in accordance with 
everyday structural design approach. Even though forces distribution at ULS might differ from the 
result of a linear elastic calculation, the FEM model will be used to provide a preliminary estimation 
of global sectional forces.  

a) b) 
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7.3.4 Design for local failures 

7.3.4.1 Bending failure of thin slabs 

It is demonstrated in Chapter 6 that plastic analysis1 using yield line method provides satisfactorily 
results for the prediction of failure loads of thin UHPFRC slabs, avoiding the non-linear analysis that 
is more demanding in terms of calculation.  The design of thin slab element is thus performed 
assuming the resisting moment mRd equal to the maximal plastic moment, with partial safety factor 
for the material γb=1.3 (case of fundamental combinations) according to SETRA, part 2, 2.1, and 
K=1 for thin plates. The value of mRd can be directly calculated, omitting the effect of normal force 
due to prestressing, as explained in Chapter 6: 
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Based on the assumed yield line pattern (Figure 7.14 c)), and given disposition of the loads acting on 
the thin slab (Figure 7.14 a)), the required resistant moment can be expressed as a function of 
ultimate loads: 
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Figure 7.14: Thin slab between the ribs subjected to traffic load: a) loads on thin slab; b) numerical 
simulation of thin slab between the ribs; c) yield line pattern of thin slab 

The loads in Equation 7.2 are: 
- self-weights of the slab and the pavement, acting over the whole slab surface with γG=1.35;
- traffic load αQ1 Qk1 / 2 = 0.9 150 = 135 kN, acting over a square surface of 0.4 x 0.4 m (qQd in 

Figure 7.14 c)) and αq1 qk1 / 2 = 0.9 9 = 8.1 kN/m2 acting on the rest of the slab surface; both 
loads are majored by γQ=1.5.

1 According to Article 6.3.1 of [SETRA, AFGC 2002], the design involving plastic hinges is authorised only if 
passive of prestressing reinforcement is capable of withstanding bending moment, and the participation of 
fibres is overlooked. However, in Chapter 4 it is shown that, even if no tensile strain hardening phase is 
present, fracture properties of a typical UHPFRC enable sufficient elements ductility to be developed in thin 
elements, allowing the plastic analysis to be applied in predicting failure loads.  
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It can be easily seen that the permanent loads are smaller than 1% of the wheel load, and, for a 
practical estimation, they can also be disregarded.  

Substituting value for mR, given by the Equation 7.1, into Equation 7.2, minimal slab thickness, 
hts,min, can be calculated for the given design load as a function of slab geometry. In Figure 7.15 
minimal slab thickness are plotted as a function of rib spacing, br.
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Figure 7.15: Minimal thickness of thin UHPFRC slab to resist bending failure under wheel load, as 
a function of rib spacing and resulting from ULS design based on the plastic analysis 

For rib heights and spacing considered in this analysis, the results of the FEM analysis 
(Figure 7.14 b)) indicate that the system can be considered sufficiently stiff with respect to out-of-
plane rib rotation, which allows to model the slab between the ribs as a clamped slab. As a 
consequence, a yield line pattern as shown in Figure 7.14 c) applies.  

In addition, it should be noted that, for a moderated compressive normal force N, as induced by 
prestressing, the resistant bending moment is higher than the value of mR given by Equation 7.1. 
According to [Greiner 2007], normal forces causing compressive stresses up to one third of 
UHPFRC compressive strength lead to an increase in resistant bending moment.  

7.3.4.2 Punching failure of thin slabs 

Based on the discussion presented in § 6.3, the limiting crack opening even for the elements of small 
thickness (smaller than 150 mm) in a deformable system seems to be higher than the suggested 
0.3 mm [SETRA, AFGC 2002]. Consequently, for the design of elements with the boundary 
conditions of the studied slabs (thicknesses 30-80 mm, and side dimensions 400-1000 mm), ultimate 
punching shear resistance Vu is 

fdRbdud VVV +=  (7.3) 
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Two cases are considered: potentially less safe limit with wlim=1.5 mm and K=1, and a case of a 
more rigid or thick slab with wlim=2 mm and a conservative value of coefficient K, K=1.75. The 
inclination of punching surface against the horizontal plane is set to 45°. The integral of stress-crack 
opening law proposed in §3.3.2.8 is defined by Equation 3.31, 
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In the first case, σp = 5.0 MPa, in the second case σp = 4.44/K = 2.54 MPa, and thus 

dbdbdbVud ⋅⋅=⋅⋅⋅+⋅⋅= 000 4.59.00.5
3.1

1
88.1   (7.8) 

and 

dbdbdbVud ⋅⋅=⋅⋅⋅+⋅⋅= 000 6.39.054.2
3.1

1
88.1 .  (7.9) 

For wheel load αQ1 Qk1 / 2 = 0.9 150 = 135 kN, acting over a square surface of 0.4 x 0.4 m thus 
b0 = 1.6 + h·π in [m], without considering the beneficial effect of asphalt pavement to load 
introduction on concrete surface. With partial load safety factor γp=1.5, minimal slab thickness 
required according to the first case (wlim = 1.5 mm) is hts = 25 mm, whereas, in the second case, 
hts=33 mm. Thus, slabs of thickness higher than 33 mm can be considered to satisfy the punching 
shear resistance. According to the previous section, bending strength of thin slabs will be 
determining for design at ULS (Figure 7.15).  

7.3.5 Design for global failure 
The representative element of the ribbed deck slab is a T-shaped beam consisting of a rib and a part 
of the upper thin slab, with a participating width beff (Figure 7.16).  

beff

brw

brbr

hts

h

Figure 7.16: T-beam as a representative element of ribbed desk slab 

According to the Swiss codes [SIA 2003b], the effective slab width (Figure 7.17 a)) is  

bbbb wieffeff ≤+=∑ , , (7.10) 

where 

00, 2.01.02.0 llbb iieff ⋅≤⋅+⋅= , (7.11) 

and l0 is distance between points of zero moments according to Figure 7.17 b). For the considered rib 
spacing (0.4-1. m) and spans (spacing of the longitudinal bridge girders) higher than 4 m, the 
effective slab width i.e. the width of the upper flange of the T-shaped beam is equal to rib spacing, 
br.
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a) b) 

Figure 7.17: a) Effective slab width; b) relevant distances l0 for determining the effective slab 
width, according to [SIA 2003b] 

7.3.5.1 Bending failure of prestressed T-shaped beam 

Sectional bending resistance  

The bending resistance of the element is obtained using a developed numerical procedure that 
enables the relationship between sectional curvatures and bending moment to be calculated, based on 
the equilibrium equations, using the hypothesis of Navier-Bernoulli (Equations 4.4, with contribution 
of prestressing strands). The developed algorithm enables arbitrary material laws, σ(ε), and variable 
sectional dimensions, b(y), to be considered (Figure 7.18). Prestressing is introduced as the initial 
deformation of the prestressing strand. When the localisation of deformations in a discrete crack 
occurs, crack opening and deformations are related using Equation 4.74, which is in accordance with 
[SETRA, AFGC 2002] and [JSCE 2006], as discussed in § 4.3.5.5. 
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Figure 7.18: Equilibrium of a cross section 

Prestressing concept  

In ordinary RC structures, prestressing is usually designed in order to restrict or eliminate cracking 
due to dead load (by limiting tension stress in the concrete section) or to fulfil ULS requirements 
with initially predefined ordinary reinforcement ratio [Menn 1990]. Following the same concept, in 
UHPFRC structures prestressing can be of much higher efficiency, due to higher admissible 
compressive stress in comparison to ordinary concrete, and a low creep coefficient in the case of 
thermally treated UHPFRC elements (0.2 instead of 0.5 to 0.8) [Toutlemonde et al. 2005]. However, 
in the present study, for the first design iteration, the quantity of prestressing will be imposed by the 
geometry of the slab, that is by the position of ribs. The prestressing force is designed to maximally 
exploit the strength of the strands, not exceeding allowed compressive stress in the concrete. 
According to technical documentation on Freyssinet prestressing strands and Article 4.1.5.2 of [SIA 
2003b], stress in the prestressing steel is limited to σp,max ≤ 0.75 fpk during prestressing, and to 
σp ≤ 0.7 fpk immediately after prestressing. Maximum compressive stress in the concrete, σc, must 
not be higher than 0.6 fck. At time t , prestressing force is calculated by taking into account 
prestressing losses due to concrete shrinkage (εcs), creep (εcc) and relaxation of prestressing steel. The 
losses are estimated using εcs(t)= 10μm/m, for thermally treated elements, as explained in § 3.4.1, 
and  
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with creep coefficient ϕ(t, t0) = 0.2  for thermally treated elements (§7.3.2.1) and  
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According to article 3.3.2.7 [SIA 2003b], prestressing losses due to strands relaxation, for 
σp,0 = 0.7 fpk, are estimated as Δσpr / σp,0 ≈ 7 %. Thus, total prestressing losses are  

 Δσp / σp,0 = (εcs Ep+εcc Ep+Δσpr ) / σp,0 . (7.14) 

For a minimal cross-section area, with closely spaced ribs and small rib height (beff=0.4 m and 
h=0.1 m), Δσp / σp,0=7.4%  with one strand per rib and Δσp / σp,0= 7.64 %  with two strands per rib. 
For distant high ribs (beff =1 m and h = 1 m), Δσp / σp,0 = 7.26 %  with one strand per rib and 
Δσp / σp,0= 7.33%  with two strands per rib. In case when no thermal curing is provided, the value for 
εcs(t)= 500μm/m  and ϕ(t, t0) = 0.6 result in an increase of losses, leading to  Δσp / σp,0 =15.6 % for 
the smallest section. For further analysis, the prestressing losses are considered to be 10% of the 
initial prestressing force.  

Design of bending resistance: case study 

Two critical sections are considered: a section at the support (longitudinal bridge girder), designed 
for the maximal negative moment, and the mid-span section, designed for the maximal positive 
moment. As an example, positive and negative resistant bending moments of a UHPFRC T-shaped 
cross section with dimensions h=0.4, br=0.6, brw=0.07, hts=0.05 (values similar to those of the 
ribbed deck slab presented in [Toutlemonde et al. 2005]) and without prestressing force are shown in 
Figure 7.19. It is interesting to notice that, due to material mechanical properties (tensile ductility in 
the first place), higher bending resistance is attained by the elements with a larger sectional surface 
subjected to tensile stresses, which is contrary to the concept of RC beams. The points corresponding 
to the end of the elastic phase, the beginning of local tensile softening, and the maximal bending 
moment are noted as A, B and C in Figure 7.19. It can be seen that in the beginning of the 
development of the pseudo-plastic phase in tension, significant increase in load-bearing capacity is 
achieved with a very slight decrease of the initial elastic stiffness, which is an important property at 
service states. 
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Figure 7.19: Simulated bending resistance of T-shaped cross section made of UHPFRC with 
neither ordinary nor prestressing reinforcement: positive bending moment (thick line), 
negative bending moment (tin line) 

Prestressing strands are placed as shown in Figure 7.20 for sections subjected to negative and 
positive bending moment respectively. Concrete cover of 25 mm is assumed as sufficient and 
minimal rib width is fixed at 70 mm.
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a) b) 
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Figure 7.20: Position of prestressing strands in ribbed deck slab and distribution of prestressing 
stress, for the section subjected to: a) negative bending moment; b) positive bending 
moment 

The contribution of the prestressing force to bending strength of a T-shaped beam is shown in 
Figure 7.21, using simulated moment-curvature relationship for the same beam geometry as in 
Figure 7.19. Figure 7.21 a) shows the response of the beam prestressed with one T15S strand, at 
σp=0.7 fpk and with prestressing losses of 10 % (black line), in comparison to the response obtained 
assuming an elastic-perfectly brittle behaviour for concrete in tension (dashed line), without 
prestressing strand (thin grey line) and with one prestressing strand T15S with no initial prestressing 
force (thick grey line). The relative contributions of strands and concrete in tension to ultimate 
moment, as well as the contribution of prestressing force to elements stiffness, clearly result from the 
plot. Figure b) shows the contribution of prestressing with variable number or disposition of strands: 
a section with no strand (thin grey line), with one strand in the lower part of the rib (black line) or 
with two strands with different positions, one at the lower part of the rib and one in the thin slab (thin 
black line, nearly coinciding with the response of the cross-section with one strand), or two strands 
in the lower part of the rib (thick grey line). 
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Figure 7.21: Simulated bending resistances of UHPFRC sections: contribution of prestressing 
strands, prestressing force and concrete tensile force 

It must be noted that the maximal concrete compressive stresses remains very low, also in the case 
when two prestressing strands are used, and bending strength is governed by the capacity of 
prestressing strands and concrete in tension. This suggests that strands of higher yielding strength 
could be beneficial in these sections.  

It is assumed that the design value of the resistant moment, MRd, corresponds to the beginning of 
yielding of prestressing reinforcement. Figure 7.22 shows a comparison between the nominal 
moment-curvature relationship (grey line) and the design moment-curvature relationship (black line) 
obtained with K=1.25, γb=1.3 and γp =1.15. The maximal nominal moment (MR) and the design 
value of the resistant moment MRd are also indicated in the same plot. It is important to note that, in 
both cases, yielding of prestressing steel is attained before the tensile softening in concrete occurs, 
due to the pre-compression of concrete. As a consequence, the assumed definition of MRd is not 
influenced by the stress-crack opening relationship, neither for concrete nor for prestressing steel. 
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This do not always apply, when strands of higher strengths are used or in case of sections with a 
different geometry. 

0 0.01 0.02

Χ �m�1�

0

50

100

150

M
�k

N
m
�

Figure 7.22: Design value of resistant bending moment (MRd, black line), in comparison to nominal 
resistant moment (MR, grey line) 

A variation of the slab thickness in the interval 40-60 mm (§ 7.3.4.1) changes insignificantly the 
value of MRd (for h=100 mm, ΔMRd= ± 6 % with respect to MRd for hts=50 mm, while for h=800 mm
there is no change in MRd). Influence of variation of rib spacing br on MRd expressed per T-girder is 
also not significant (Figure 7.23 a)), however, when MRd is represented per unit slab with 
(Figure 7.23 b)) the influence of rib spacing on slab bearing capacity is obvious. Two cases of design 
values of resistant bending moments are presented in Figure 7.23: for rib height h = 200 mm (grey 
line) and h = 400 mm (black line), with one prestressing strand per rib. As expected, the most 
relevant geometric parameter for MRd is the depth of the rib, h. Differently from ordinary concrete, 
this is not only due to the increased level arm, but also to the increased contribution of the tensile 
force sustained by concrete and to the fact that a sufficient compressive strength is provided.  
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Figure 7.23: Influence of rib spacing on design value of the positive resistant bending moment: 
a) resistance per one T-girder;  b) resistance per unit slab width.  

Similar considerations apply to negative moment bending resistance, for which the results will be 
shown in the context of the following design step  

Comparison of design and resistant moment values  

Design values of bending moments due to dead and traffic load are obtained using the previously 
described 3D FEM model (§7.3.3). The number of ribs, nb (Figure 7.24) is varied whereas the slab 
width is kept constant, bd=12m. The considered geometries consisted of 14 to 28 ribs, with the rib 
height 0.2 to 0.4 m, resulting in equivalent slab thickness, hequiv in the range of 0.07-0.1m for 0.2 m
ribs and 0.1 to 0.15 m for 0.4 m high ribs. The length of the cantilever parts of the slabs varies in the 

        MR

MRd
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range of 2.3 to 3.5 m, as a function of rib spacing. For the same rib spacing, two different positions 
of the supports (main bridge girders, defined as a function of rib na1 position in Figure 7.24) are 
considered. Examples of disposition of traffic wheel loads are presented in Figure 7.24 a): L1, 
causing maximal negative moment on the cantilever part and L2 causing maximal positive moment 
for the mid-span section; the rest of the traffic load is disposed according the model presented in 
Figure 7.11. An illustration of simulated response of the slab under wheel loads is shown in  
Figure 7.24 b). 

a) b) 

L1
L2

Figure 7.24: Numerical slab model: a) parametric definition of slab geometry and example of 
disposition of concentrated traffic loads L1 (grey squares) for maximal negative 
moment, L2 (voided squares) for maximal positive moment; b) view of a beam 
response – deformations obtained using 3D finite element model of ribbed deck slab

The results of the analysis for the slab with 0.4 m high ribs are presented in Figures 7.25 and  7.26. In 
Figure 7.25 design moment values (dots) issued from the calculation are compared with previously 
calculated design values of resistant moments (lines), for the mid-span section (Figure a)), and for 
the section at the support, (Figure b)). It can be noted that slabs with ribs height of 0.4 m and ribs 
spacing up to 0.7 m can be designed to sustain and transfer loads to the main girders. Presented 
design resistance moments are obtained with one strand T15S, thus, the small difference that exist 
between the design values can be overtaken by a slightly change in geometry or by application of 
prestressing strands of higher yielding strength. Thus further optimisations are possible, but the 
principal trends are well illustrated by the presented results. Slabs with ribs of smaller heights, on the 
contrary, are less appropriate to meet ULS design requirements for the given support disposition; for 
different support arrangements however, slabs with less deep ribs can represent attractive solutions. 
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Figure 7.25: Resistant design moments (line) and design moments (dots) per unit slab with: a) in 
the mid-span; b) at the support 
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7.3.6 Serviceability states  
Displacements under service loads, issued from the numerical simulation, are compared to 
admissible displacements, wadmiss, according to [SIA 2003b], and the results are presented in Figure 
7.26. It can be seen that the design requirements are respected in the mid-span sections, while the 
displacements of cantilever of approx. 3 m do not meet minimal displacement requirements 
suggested by the recommendations. Maximal tensile stresses in thin slabs under service loads are 
verified using the results of the FEM model and adding the contribution of the prestressing force.
Based on the results, prestressing force is indispensable in order to keep tensile stresses in service 
below the cracking level. 

a) b) 

0 0.5 1

br �m�

0

1

w
�

w
a
d
m

is
s

0 0.5 1

br �m�

0

1

w
�

w
a
d
m

is
s

Figure 7.26: Comparison of slab displacements, w, and admissible displacements wadmiss  according 
to [SIA 2003b]: a) mid-span displacements; b) displacements of the cantilever 

7.3.7 Conclusions  
A design case of structural application of UHPFRC is studied on the basis of existing design 
recommendations and the theoretical considerations presented in previous chapters. The same 
mechanical properties of the material as in the previous chapters are assumed and simplified 
hypothesis are made on the long term behaviour of UHPFRC. The study shows that thin-walled 
UHPFRC structural elements can be designed to satisfy ultimate limit states for road bridges. A 
concept of ribbed desk slab, with thin UHPFRC slabs and prestressed ribs is analysed: 40-60 mm thin 
UHPFRC slabs, with spans up to 1 m can sustain traffic load without ordinary reinforcement. With 
ribs of approximately 0.4 m height, 12 m wide slab supported on two longitudinal girders (main 
bridge girders) can be conceived to fulfil strength requirements for road bridges, resulting in 0.12-
0.14 m of equivalent slab thickness, that is up to three times smaller slab thickness compared to 
ordinary reinforced concrete. More slender slabs could be designed for different support disposition, 
but problems related to serviceability limit states and to the shear strength of the ribs need to be more 
thoroughly considered. Further optimization of the geometry and of the exploitation of material 
properties seems possible, thus making the application of UHPFRC in ribbed desk slabs a promising 
field for future research. 
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8. Conclusions and prospects   

Studies performed during this research contribute to better understand structural behaviour of ultra-
high performance fibre-reinforced concrete (UHPFRC) and to reveal the possibilities for its 
application in bridge design. The research focuses primarily on bending behaviour of thin UHPFRC 
elements without ordinary reinforcement. Analytical and numerical models are developed to predict 
the non-linear bending response of beams and slabs governed by multi-microcracking and 
propagation of macrocrack. This allows the assessment of element behaviour at service states, the 
prediction of failure loads and the identification of the influence of material properties on bending 
response. It is demonstrated that the theory of plasticity can be applied to predict bending failure load 
for thin elements. 

The theoretical study is supported by experimental research on beams and slabs. The UHPFRC used 
in the study is BSI, with 2.5 % in volume of 20-mm long fibres. It has mechanical properties of a 
typical UHPFRC, which allows the conclusions drawn in the framework of this research to apply in a 
more general way for UHPFRCs.  

8.1 Conclusions of the research 

Based on the theoretical and experimental parts of this research, relevant conclusions on element 
behaviour and on possibilities for modelling and design of UHPFRC members are presented. 

Bending in simply supported UHPFRC beams 

Testing and modelling 

• a test series has been carried out on simply supported UHPFRC beams with thickness 
varying between 25 and 75 mm and tested in three-point bending; 

• an analytical model describing the non linear behaviour of UHPFRC beams has been 
developed; 

• a finite element model (FEM) describing the non linear behaviour of UHPFRC beams has 
been developed; 

• the results of the analytical model are in good agreement with experimental data and with the 
prediction of the FEM model. Good agreement is also shown with test results from other 
authors on beams made of tensile strain hardening materials or materials without strain 
hardening phase; 

• based on the comparison between theoretical and experimental results, multi-microcracking, 
causing tensile strain hardening with low stress increase, can be well modelled using pseudo-
plastic material behaviour in tension for the thickness range of tested elements; 

• explicit analytical expressions have been developed to describe the non-linear force-
deformation response of a beam exhibiting multi-microcracking. Explicit expressions have 
also been developed to predict progressive reduction of the unloading-reloading stiffness 
caused by damage during microcracking; 

• the propagation of a macrocrack, characterised by stress-crack opening relationship, can be 
simulated using the hypothesis of the fictitious crack model; 

• a simplified formulation of the model is proposed to describe the bending behaviour in 
presence of macrocrack opening. 
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Behaviour of UHPFRC beams 

According to the result of the analytical model and in agreement with experimental evidence, it is 
concluded that: 

• the pre-peak behaviour and bending strength are mainly governed by multi-microcracking; 
for typical material properties, with tensile deformations ranging up to 2.5 ‰, the equivalent 
bending stress achieved due to strain hardening is approximately 2.4 times the tensile 
strength; this contribution is size-independent as long as sufficient compressive strength is 
provided and compression softening is avoided, as is the case of rectangular members in 
pure bending. 

• the propagation of the macrocrack, characterised by tensile softening, provides a minor 
additional contribution to bending strength (up to roughly 10%), which is a size dependent 
value; bending strengths are attained for small macrocrack openings (smaller than 0.2 mm
for the tested beams); 

• in the case of thin beams, propagation of the macrocrack plays an important role in 
providing ductility at bending failure as well as post-peak toughness;  

• from experimental observations, it must also be pointed out that more than one macrocrack 
can develop prior to peak-force, even though a gradient of moment existed; 

• an important portion of the initial elastic structural stiffness of a beam is maintained for a 
load range that covers service conditions: for up to nearly 80% of the ultimate load, the 
residual stiffness equals more than 80% of the elastic one for specimens in three-point 
bending and approximately 60% for specimens under uniformly distributed load.

Influence of material properties and structural size on bending behaviour 

The main results of a parametric study carried out using the analytical model can be summarized as 
follows: 

• the size effect on bending strength is much less significant for UHPFRC than for other quasi-
brittle materials: experimental results for thin members tested by the author (25 to 75 mm)
confirm that size effect on bending strength is practically negligible; similar results are also 
reported by other authors for thicknesses up to 300 mm and for materials characterised by 
pronounced pseudo-plastic tensile deformations;  

• the size effect on ductility is evident, even in a small range of variation of element 
thicknesses.  

• even if the pseudo-plastic tensile phase is not pronounced, thin elements can develop a 
behaviour similar to that of elements with high pseudo-plastic tensile deformations, owing to 
the low stress decrease during tensile softening. As a consequence, if only force-
displacement response of thin elements in bending is known, it is unreliable to characterise 
the material tensile hardening capacity by back analysis;

• in absence of pseudo-plastic tensile deformations, the behaviour of thick elements 
approaches that of typical quasi-brittle materials, with a pronounced size effect both on 
bending strength and ductility;

• the influence of the tension softening behaviour on bending strength is limited if the pseudo-
plastic phase is pronounced, since most of the bending strength is developed while the 
concrete is in the pseudo-plastic tensile phase. The tensile softening is however important in 
providing ductility at failure and post-peak. 
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Statically indeterminate systems: beams and slabs  

Numerical procedures have been developed to simulate the non-linear response of statically 
indeterminate UHPFRC beams and slabs subjected to bending. Firstly, the case of a clamped beam 
has been theoretically studied and the following conclusions are drawn: 

• load carrying capacity of statically indeterminate members is positively affected by the 
ductility in bending of thin UHPFRC beams, which allow a significant redistribution of 
internal forces; 

• load carrying capacity of statically indeterminate members is more sensitive to size effect 
than the bending strength of statically determinate elements. This is due to the fact that the 
load carrying capacity of a statically indeterminate system depends on the possibility to 
redistribute internal forces. Redistribution is strictly related to ductility in bending that, as 
demonstrated for simply supported beams, is controlled by the opening of a macrocrack and 
is thus much more affected by size effect. 

A test series has been carried out on thin UHPFRC square slabs (40-60 mm thickness, 900 mm side 
length) supported on eight symmetrical points and subjected to central point load: all of the slabs 
failed in bending. The experimental behaviour was modelled using the same hypotheses for the 
behaviour of UHPFRC as the hypothesis used for modelling beam elements. The following 
conclusions are drawn: 

• good agreement of experimental and theoretical results on pre-peak behaviour of UHPFRC 
slabs is shown; this confirms again that multi-microcracking can be well represented as a 
homogeneous material behaviour using an elastic-pseudo-plastic material law in tension; 

• a major part of the load-bearing capacity of the slab is achieved with multi-microcracking 
behaviour; this is also confirmed by the experiment, during which cracks become visible 
only for a force level close to maximal force; it seems thus viable to predict the service 
response of a thin UHPFRC slab using elastic-plastic material tensile law and commercial 
FEM models; 

• when the capacity to develop microcracking is exhausted, deformations start to localise i.e.  
discrete macrocracks form and a rigid block mechanism starts to develop. For the given 
boundary conditions, the non-linear simulation predicts dominant tangential deformations 
that are in agreement with experimentally observed macrocracks, opening along radii.

Application of the theory of plasticity in design of UHPFRC elements in bending  

• A concept of plasticity for thin UHPFRC elements without ordinary reinforcement has been 
defined based on the bending response in statically determinate systems: the moment-
curvature relationship during the first phase of macrocrack opening in thin elements is 
characterised by an almost constant moment with increasing curvatures. Thus, the moment 
level at the beginning of macrocrack propagation is assumed as plastic resistant moment, and 
a rigid-perfectly plastic moment-curvature relationship is defined with a limiting value for 
the curvature.  

Based on this definition, the applicability of theory of plasticity in the design of statically 
indeterminate UHPFRC members has been thus evaluated: 

• according to the results of the non-linear beam analysis, the applicability of the theory of 
plasticity to UHPFRC elements in bending depends on element size; 

• with the proposed definition of plastic resistant moment, the theory of plasticity can be 
applied to predict failure loads for thin UHPFRC beams up to approximately h <100 mm.
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For thicker beams, the deformational capacity of the first developed plastic hinges may not 
be sufficient to allow the formation of other hinges and the development of a mechanism; 

• the ultimate load-bearing capacity of thin UHPFRC slabs without ordinary reinforcement is 
well assessed based on the theory of plasticity, by applying the yield line method: for the 
investigated span and thickness range, the comparison with test results validates the 
proposed definition of plastic resistant moment. 

Punching-shear in thin UHPFRC slabs 

• A test series has been carried out on small square slabs (300 mm side length and 30-60 mm
thickness) clamped on the edges and subjected to central point load on a 20x20 mm2 surface; 

• an analytical approach for assessing the punching shear strength of UHPFRC members has 
been proposed: fibre contribution to shear strength is taken into account as a function of 
element size and stiffness. 

Although current theoretical and experimental knowledge is still insufficient for a general model to 
be established, the predictions of the proposed approach are in good agreement with the experimental 
results obtained in the framework of this research and by other authors. On the basis of theoretical 
and experimental evidence, the following conclusions can be drawn: 

• significant shear stresses can be sustained by UHPFRC elements; 
• fibre contribution to punching shear strength is a function of the opening of the critical shear 

crack, which is a function of slab thickness and slab bending stiffness at failure; 
• punching shear strength decreases for increasing slab thickness; 
• punching shear strength decreases for slabs that develop higher deformations, i.e. long-span 

slabs or slabs with free boundary conditions; thus, the influence of slab thickness, span and 
boundary condition should be taken into account to correctly evaluate punching shear 
strength; 

• current design recommendations poorly estimate punching shear strength for element 
thicknesses lower than 150 mm, and may lead to unsafe predictions in the case of slabs with 
pronounced deformations;  

Structural application of UHPFRC 

A state of the art of existing structural application of UHPFRC has been made with specific attention 
to bridge design. It can be concluded that: 

• current structural application of UHPFRC in bridge design often considers classical 
prestressed concrete shapes, sized with respect to increased material strengths. Principal 
bending solicitations are sustained in a manner similar as in ordinary concrete, with tensile 
forces being sustained by prestressing steel. However, savings in concrete quantity in the 
range of up to three times in comparison to ordinary concrete are achieved and shear 
reinforcement is usually completely avoided thank to the shear carrying capacity of the 
fibres; 

• the concept of thin walled structures is particularly gainful for application of UHPFRC, since 
very thin elements can be conceived, providing local resistances, while a sufficient stiffness 
and global resistance are assured by the prestressed elements, resulting in significantly 
decreased weight. 

The design and optimization of a ribbed deck slab against local and global failure in bending and 
punching shear is considered as a case study, showing that: 
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• thin slabs (40-60 mm) restrained by the ribs can safely resist both bending and punching-
shear failure introduced by design wheel-load;  

• depending on rib spacing and the span between principal girders i.e. slab supports, a ribbed 
slab with an equivalent height in the range of 110 to 140 mm can be designed for road bridge 
applications;  

• for the design resistance level of prestressed elements coinciding with strand yielding, a high 
percentage of the initial element stiffness is maintained at service states; 

• investigated ribbed deck allows significant material savings (up to three times), that could 
not be achieved with ordinary concrete. 

8.2 Prospects for further research  

UHPFRC being a relatively new building material, lot of subjects still need to be studied for a more 
rational structural application of UHPFRC. Larger experimental information should be provided both 
from laboratory tests and from monitoring of real structures behaviour. At the same time, phenomena 
influencing the structural response of UHPFRC must be theoretically analysed.  

Unreinforced members in bending 

• it has been demonstrated that the bending response of UHPFRC members can be 
satisfactorily modelled if the tensile behaviour in the multi-microcracking phase is 
considered as a homogeneous stress-strains relationship, independent of the size of the 
structure. However, existing recommendations suggest the multi-microcracking phase to be 
considered as size dependent, like the macrocracking phase. Further theoretical and 
experimental investigation should be carried out to allow the size-dependency of the multi-
microcracking phase to be assessed.  

• up to present, experimental research on beams without ordinary reinforcement mainly 
focused on very thin elements. In thin members, however, the influences of the 
microcracking and macrocracking phase on structural response can not be clearly separated. 
To gain a clearer information, future experimental investigation should consider also deeper 
beams (>200 mm);  

• this would also give the opportunity to study size-effect on bending strength and ductility on 
a wider range of thicknesses and to provide upper limits for a safe application of UHPFRC 
elements without additional reinforcement or normal force.  

Prestressed members in bending 

• the interaction between fibres and prestressing reinforcement in carrying tensile forces after 
cracking should be studied in more detail: reinforcement is supposed to influence crack 
propagation as well as the crack pattern along a beam. As a consequence, existing design 
relationships between crack opening and equivalent tensile strain, developed for members 
without reinforcement, should be validated in the case of reinforced members;  

• the effective importance of fibres contribution in tension should be evaluated as a function of 
sectional geometry and the amount of prestressing reinforcement;  

• bond behaviour between reinforcement and concrete should be investigated in order to 
assess whether the bending response can be modelled by assuming homogeneous strains and 
no relative slip between concrete and steel, or the slip with strain localisation in 
reinforcement should be considered;  

• the pre and post-peak compressive behaviour of UHPFRC should be better investigated to 
allow the ductility of prestressed beams to be predicted;  
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Design relevant aspects for beams in bending  

• if the behaviour of a prestressed beam can be modelled with continuum mechanics 
(dominating multi-microcracking and no relative slip between reinforcement and concrete), 
simplified analytical expressions can be provided to predict the behaviour in service and 
estimate the load bearing capacity of prestressed beams;  

• in cases where more refined models are needed and simplified analytical expressions can not 
be drawn, tabulated data on the bearing capacities of “standardised elements” could be 
provided as a support for designers. To that aim casting procedures assuring material quality 
must also be provided;  

• service states requirements should more specifically be defined for UHPFRC; e.g. to what 
extent should multi-microcracking be allowed in service for prestressed and non-prestressed 
members;  

• design prescription for UHPFRC should be associated with proper limits of applicability in 
terms of material properties, e.g. the slope of the tensile softening curve, and in terms of 
structural and geometrical properties, e.g. member size, type of prestressing.  

Bending behaviour of slabs 

• the slabs with larger spans, different boundary conditions and thickness should be 
investigated experimentally to study if the multi-microcracking develops in a similar manner 
and to assess the limits for the application of the theory of plasticity in presence of various 
kinematical mechanisms;  

• failure mechanisms should be studied in order to quantify the interaction between the 
rotation capacity in bending and the geometry of the structure on the development of a 
plastic-like mechanism;  

• the existence of a state of compression in the slab, as it might result from prestressing or 
from an arching effect in case of constrained boundary conditions, should result in an 
increase its load-bearing capacity.  

Prospects for structural research  

On the basis of the results of this work, structural systems made of thin walled UHPFRC elements, 
with or without prestressing, seem the most promising and feasible applications for UHPFRC in civil 
engineering. Further optimisations of slab systems seem to be a realistic possibility, both from the 
point of view of statics and construction. However, it needs to be remembered that particular care 
should be taken to casting procedure for UHPFRC elements, and further detailing, e.g. joint regions.     

Some interesting conceptual approaches might be considered for future work: 

• several UHPFRC road bridges have already been realised with box-girder or π-shaped 
girders and reinforcement-free upper decks. Up to present, quite thick upper decks have been 
realised in order to carry transversal bending moment: the concept of a transversally ribbed 
slab might represent an effective alternative solution;  

• investigate possibility to exploit UHPFRC as a tensile-force bearing element, disposing a 
higher amount of concrete in tensile structural part, exhibiting deformations in the range of 
admissible ultimate tensile deformations prior to failure  

It finally has to be considered that thin and light structures as those made possible by UHPFRC could  
face problems that are usually not associated with concrete but rather with steel structures. Thin 
walled elements loaded by in-plane compression, like webs or upper slabs in positive moment zones, 
could be affected by the risk of local instability. Serviceability limit states, in terms of maximal 
admissible deformation as well as vibration, and problems related to fatigue, might overcome other 
design requirements: and research effort should also concentrate on these domains. 
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List of Abbreviations 

materials: 

DSC  Densified Small particle Concrete 
ECC  Engineered Cementitious Composites  
FRC  Fibre Reinforced Concrete 
HPC  High-Performance Concrete 
HPFRC  High-Performance Fibre Reinforced Concrete 
HPRC   High-Performance Reinforced Concrete 
HSC  High-Strength Concrete     
MDF   Macro Defect Free concretes 
NSC  Normal Strength Concrete   
RC  Reinforced Concrete 
RPC  Reactive Powder Concrete  
UHPC  Ultra-High Performance Concrete 
UHPFRC Ultra-High Performance Fibre-Reinforced Concrete 

CH  Calcium Hydroxide, portlandite, Ca(OH)2

C-S-H  Calcium Silicate Hydrate,  3CaO⋅2SiO2⋅4H2O

mechanics: 

CMO  Crack Mouth Opening 
CMOD  Crack Mouth Opening Displacement  
COD  Crack Opening Displacement 
FCM  Fictitious Crack Model 
FEM  Finite Element Method 
FM  Fracture Mechanics 
LEM  Linear Elastic Mechanic 

SLS  Serviceability Limit State 
ULS  Ultimate Limit State 

institutions and projects:   

AFGC  Association Française de Génie Civil des routes 
DAfStB   Deutscher Ausschuss für Stahlbeton / German Association for Reinforced Concrete 
LCPLC  Laboratoire Central des Ponts et Chaussées  
RILEM  Réunion Internationale des Laboratoires et Experts des Matériaux, systèmes de construction 

et ouvrages (The International Union of Laboratories and Experts in Construction Materials, 
Systems and Structures)  

SIA    Swiss Society of Engineers and Architects 

MIKTI  French national project on steel-concrete composite bridge innovation 
NR2C  New Road Construction Concept  
SAMARIS Sustainable and Advanced MAterials for Road InfraStructure 
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List of Notations: 

Capital Greek letters 
Δ variation 
Δf variable non-linear hinge length 
Δl length increase 
Δlfo elongation corresponding to strain level εu

Δlm elongation of measurement base 
ΔUf increase in fibre elastic strain energy 
ΔUf-mc increase in fibre strain energy during first crack opening  
ΔUf-mu increase in fibre strain energy during macrocracking 
ΔUfr frictional energy, dissipated by matrix sliding over the fibres 
ΔUm decrease in matrix strain energy  
Π potential energy  
 
 
 
Small Greek letters 

α relative crack length (ratio of crack length to element thickness); fibre orientation factor 
 used in stress-crack opening law 

αQi  concentrated traffic load factor  

αqi  distributed traffic load factor 

β parameter relating crack opening and fictitious sectional deformation; parameter used in  
 Carreira’s concrete compressive law 
γ weight per unit volume; parameter used in stress-crack opening law 
γbf partial safety factor for UHPFRC 
γc partial safety factor for concrete 
γG partial safety factor for permanent load 
γQ partial safety factor for variable load 
γuhpfrc weight per unit volume of UHPFRC 
δ displacement; fibre pullout length  
δel maximal linear-elastic displacement 
δi arbitrary displacement 
δi0 displacement of the element without crack or macrocrack 
δif additional displacement of the element due to crack or macrocrack opening 
δL/2 mid-span displacement 
δp crack opening corresponding to maximal crack-bridging stress 
δPmax displacement at maximal force 
δpl,max displacement under maximal pseudo-plastic load 
δres residual displacement 
δx displacement at point x
ε strain 
εc concrete compressive strain 
εc1 concrete compressive strain at maximal stress 
εcc creep strain in concrete  
εcm strain in concrete matrix 
εcr “fictitious” strain related to crack mouth opening 
εcs shrinkage strain in concrete  
εel maximal elastic tensile strain  
εequ equivalent bending strain 
εfct, εu tensile strain attained at tensile strength, fct, before softening  
εr residual strain  
εs strain in reinforcement steel 
εt tensile strain 
εuk ultimate strain of prestressing cable  
εwi “fictitious” strain related to crack opening 
εxx strain in x direction 
η reduction factor for fibre volume fraction, Vf ; normalised compressive strain (εc /εc1)
ηi  relative density parameter (pseudodensity) 
θ rotation 
ν Poisson’s ratio 
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ξ ordinate in direction of y axis, with the origin at the neutral axis  
ρ radius 
ρxx radius of the beam’s mid-plane 
σ normal stress  
σ1 stress at the point of slope change of the softening curve 
σc concrete compression stress  
σc,pl minimal compressive strength attained in bending at the end of pseudo-plastic phase  
σequ equivalent bending stress 
σp stress in prestressing strand; average residual tensile stress transferred by the crack   
σp.0 initial stress in prestressing strand   
σ(w) stress-crack opening relationship 
σxx normal stress in x direction 
τ shear stress  
τf frictional stress at the matrix-fibre interface 
φ fibre orientation angle with respect to crack 
φp diameter of prestressing strand 
χ curvature at a section 
χc, χcr curvature at a cracked section 
χel elastic curvature at a section  
χel, max  curvature at a section at the beginning of pseudo-plastic tensile behaviour 
χm average curvature  
χpl curvature at a section with pseudo-plastic tensile behaviour 
χpl, max curvature at a section at the end of pseudo-plastic tensile behaviour 
χpl, u curvature at a cracked section in bending softening regime at M=MR

χr middle plane curvature in radial direction 
χt middle plane curvature in tangential direction 
χunload curvature during inelastic unloading  
ψ slab rotation 
ϕ rotation 

Capital Roman letters 

A cross-section area 
Ae work of external forces 
Ai work of internal forces 
Ap cross-section area of prestressing strand 
C structural compliance 
C1 parameter of the bilinear stress-crack opening curve 
C2 initial slope of the stress-crack opening curve 
CV stress variation coefficient 
D diameter; flexural plate rigidity; parameter in Sargine’s concrete compressive law 
E total energy; Young’s modulus (modulus of elasticity) 
E* modulus of elasticity at unloading of multi-microcracked concrete prior to softening 
E1-2 energy needed to grow the first microcrack sufficiently to reach the softening  
Ec concrete modulus of elasticity (initial tangential stiffness in uniaxial loading)  
Ec1 secant modulus of compressive stress-strain curve, corresponding to maximal stress 
Ed modulus of elasticity at unloading of multi-microcracked concrete  
Ef fibre modulus of elasticity 
EI elastic bending stiffness  
Ei energy needed for the formation of new microcrack   
EId unloading bending stiffness 
EIsec secant bending stiffness 
Elicr total energy that can be released from the surrounding material 
F load vector; initial slope of the stress-crack opening relationship (dσ / dw)
G energy release rate 
GF fracture energy  
GF,II fracture energy of the second failure mode, released during debonding at the fibre-matrix interface 
GF,m matrix fracture energy 
Iz,el moment of inertia of elastic uncracked section 
J contour integral 
K global stiffness matrix ; fibre orientation coefficient  
KI stress intensity factor for mode I 
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Kσ damage governing variable 
Kd stiffness of  microcracked beam 
Kel stiffness of elastic beam 
Ksec secant stiffness of  microcracked beam 
L span length 
Leq equivalent specific length  
Lmoy average span length 
M bending moment 

M unit moment function 

Mel,max maximal bending moment in elastic regime 
Mm moment at the mid-span of clamped beam  
Mpl,max maximal bending moment in pseudo-plastic regime 
MR resistant bending moment 
MRd design value of resistant bending moment 
Ms moment at the clamped beam edge 
N normal force; number of elements 
P force  
Pel,max maximal force load sustained in linear-elastic regime 
Pmax maximal force load 
Ppl,max maximal force load sustained in elastic-pseudo-plastic regime 
Q shear force acting on a slab section 
Qki axle (traffic) load, characteristic value 
RI fibre reinforcement index 
S area of fibre effect (contributing to shear strength) 
U displacement vector; strain energy 
Udb debonding energy (at matrix-fibre interface) 
V shear force; volume 
V * volume of zero density 
V0 initial volume 
Vcr   critical fibre volume fraction (minimal Vf  required to enable multi-microcracking to occur) 
Vef   effective fibre volume fraction 
Vf   fibre volume fraction (content of fibres by volume); shear force carried by fibres 
Vm   matrix volume fraction (1- Vf )
VR resistant shear force 
VRd shear force carried by concrete 
Vu ultimate shear strength 
Ws work required for creation of crack surface 

Small Roman letters 

a crack length 
aχ coefficient of the curvature function in crack disturbed region  
b cross-section width 
b0 perimeter of the critical punching-shear section 
bχ coefficient of curvature function in crack disturbed region  
beff effective (participating) slab width  
bd deck width 
br rib spacing  
brw rib width  
cχ coefficient of the curvature function in crack disturbed region  
d effective beam depth 
df   fibre diameter 
dg maximal aggregate size 
dg0 reference aggregate size in critical shear crack criterion 
e amount of energy 
f coefficient of fibre inclination 
fc concrete compressive strength 
fck concrete characteristic compressive strength  
fcm  concrete mean compressive strength  
fct concrete tensile strength 
fct,m matrix tensile strength 
fequ equivalent bending strength 
fp01k yielding strength of prestressing strand 
fpd design yielding strength of prestressing strand 
fpk strength of prestressing strand 
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fs,f fibre strength 
fy yielding strength 
gp1 weight of prestressing strand per unit length  
h element height  
h1 neutral axis position in a section with pseudo-plastic yielding 
h1,d neutral axis position in a section during inelastic unloading 
hequiv equivalent height of concrete cross section 
hm distance of measurement device from the specimen surface 
hts slab thickness 
k parameter used in concrete compressive curve proposed by Thorenfeldt et al. 
k0 initial stiffness of the elastic solid 
ki local stiffness matrix 
l length 
lbf debonding length of a single fibre 
lc characteristic length, used to relate stress-crack opening to stress-strain tensile law 
lch characteristic length (function of material fracture and mechanical properties)  
lcr critical length  
li,cr length of the disturbed region around the crack 
lf  fibre length 
lm length of measurement base 
lw length relating crack opening and fictitious plane deformation 
m bending moment per unit width 
mR resistant plastic moment per unit width 
mr bending moment in radial direction, per unit width 
mRd design value of resistant plastic moment per unit width 
mt bending moment in tangential direction, per unit width 
nct ratio of compressive and tensile strength  
nfct ratio of bending strength before tensile softening to tensile strength  
nli,cr ratio of crack length and crack disturbed region 
p probability density function; parameter in stress-crack opening law 
q distributed force load 
q1pl maximal distributed force load prior to opening of first macrocrack in statically indeterminate system  
qel,max maximal distributed force load sustained in linear-elastic regime 
qki distributed traffic load, characteristic value 
qpl,max maximal distributed force load sustained in elastic-pseudo-plastic regime 
qM1max minimal q for which the resistant moment is reached in one section in statically indeterminate system
qmax maximal distributed force load  
r radius; normalised crack opening  
ra radius of load-introduction zone on the slab surface 
rb radius of a circular slab  
rc radius of load-introduction surface in middle plane  
rr middle-plane radius in radial direction 
rt middle-plane radius in tangential direction 
rx middle-plane radius in x-direction  
ry middle-plane radius in y-direction  
s non-linear hinge length 
t time 
u longitudinal displacement  
ui local displacement vector 
v average shear stress; vertical displacement 
w crack opening;  vertical displacement in topological optimisation procedure 
w0 initial vertical displacement in topological optimisation procedure 
wc crack band with  
wCMOD crack mouth opening displacement  
wcr critical crack opening  
wi arbitrary crack opening 
wmax maximal crack opening  
wn,w parameter in stress-crack opening curve 
x axis in Cartesian coordinate system, along beam length  
x0 neutral axis position 
xel length of linear-elastic region 
y axis in Cartesian coordinate system 
yh1el distance between outermost tensile fibre and section centroid 
yw axis along crack length 
z axis in Cartesian coordinate system; position of fibre centroid with respect to crack face 
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M1.1

Appendix M1:   

Behaviour of beam with pseudo-plastic tensile 
yielding: equation development  

M1.1 Problems involved   

Increasing bending deformations beyond the maximal elastic level, UHPFRC member sustains 
microcracking that is modelled as pseudo-plastic behaviour. This behaviour causes asymmetrical 
distribution of stresses over section height (Figure A1.1). The applied criterion for plastic yielding in 
the developed equations is σ1 =σxx= fct. Development of analytical formulation of force-deformation 
relationships for a section and beam with pseudo-plastic yielding in tension is given in the present 
appendix. The inelastic behaviour of macrocracked region is considered in § 1.4. 

M1.2 Section equilibrium in pseudo-plastic tensile yielding 

From the equilibrium of the sectional forces, the force and deformation are uniquely related by the  
given constitutive relationships (§ 4.3.3).  
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Figure A 1.1: Equilibrium equations describing the problem, and the distribution of stresses and 
strains for the section in pseudo-plastic yielding in traction 

M1.2.1 Case of zero normal force, N=0 
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The position of neutral axes, h1 , in function of χ  is obtained as a solution of normal force 
equilibrium: 
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This equation has 2 solutions, but only the first presented one is physically acceptable:  
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The position of the neutral axis can also be expressed as a function of moment acting on the section:  
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Incorporating equation A 1.4. in A 1.2 the moment is expressed as the function of the curvature, 
Equation 4.12 (Chapter 4). The curvature, χ , can be expressed in function of the moment, or as a 
function of tensile strain at the fare most fibre of the section: 
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Maximal bearing capacity before the localisation of the deformation i.e. tensile softening, is attained 

when the tensile strain at the far most fibre, tε , reaches the maximal ultimate tensile strain. uε .

Maximal curvature of the section prior to crack opening, max,plχ , is obtained as )(max, upl εχχ = , for 

which the maximal moment before the crack opening, max,plM , is calculated  (Equations 4.15). 

Verifications of the equations: 

The equations can be verified for the limiting case when pseudo-plastic behaviour yields to linear-
elastic behaviour. As  result, the known values of linear-elastic analysis are obtained:   
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M1.3 Elements behaviour 

The relations given in Equations 4.10 to 4.15 enable description of non-linear response of the 
element subjected to arbitrary external load. Introducing moment as M=M(P,x)  in Equation 4.11, 
curvature is expressed as a continuous function over the length of the element for the part in quasi 
plastic yielding, while the relations for linear-elastic regime are well known. In the case of 
concentrated force acting in the mid-span of a beam, the following forms of considered functions are 
obtained:  
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Displacement at a point x due to load P is obtained from Equation 4.8, which, for the given 
symmetric load case, can be written as 
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and with curvature defined in Equation A 1.7. The displacement of the load point is then obtained by 
integration of the left side of the equation  
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The solution for this load case is given in Equation 4.22. 
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M1.4 Inelastic unloading of microcracked beam 

The phase of multi-microcracking in UHPFRC is modelled as a homogeneous plastic behaviour of 
the continuum (Chapter 3 and 4), and the term “pseudo-plastic” is used to distinguish the modelled 
behaviour from the real plastic behaviour, even if, for the monotonically increasing loading, the 
distinction can not be made.  Pseudo-plastic behaviour in this model actually represents the process 
of matrix-fibre interaction during which a part of the energy that was brought for increase in element 
deformation is a non-recoverable energy (spent for cracking, interfacial processes), and 
consequently, the deformations can not be fully recovered as in the elastic behaviour, nor the 
complete pseudo-plastic deformation remains, as it would be the case in real plastic behaviour. This 
phenomenon is also observed experimentally, for the unloading path of the tested specimen in 
regime of microcracking, both in the uniaxial tension (Figure 3.20) and bending test (Figure A1.1).  
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Figure A1.1: UHPFRC beams in three-point bending test with unloading cycles

The unloading curves of UHPFRC beams in bending test (Figure A1.1) show inelastic unloading, 
with a decreased constant stiffness. The reloading path shows the same stiffness as the unloading 
one, representing the actual stiffness of the element that has reached a certain level of microcracking 
(damage), as a function of maximal load. There is an interest to predict the real stiffness of the 
element with respect to its load history, especially since the elements, during service life, are likely 
to undergo microcracking.  

In addition, the unloading stiffness provides the information on the system’s energy that can be 
recovered. In Figure A1.2. the difference between the surface below force-displacement curve  
(∫P(d)dδ) and the strain energy that can be recovered from the body is schematically shown for an 
elastic and inelastic damaged body: in a damaged body only a part of the energy ∫P(d)dδ  is a 
recoverable energy Uinel. This represents the portion of the energy that can be released from the body 
at the beginning of opening of the fictitious crack, which is relevant for the stable crack growth 
(Chapter 4).  

h = 60 mm 

h = 38 mm 

h = 25 mm 
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Figure A1.2: Recoverable strain energy of a beam in bending, for elastic deformation, Uel, and 
inelastic (damage) deformation, Uinel, with a residual deformation, δres.

M1.4.1 Inelastic (damaged) stiffness of a cross section  
Let us observe a section loaded with a bending moment Mi,  Mel,max< Mi ≤  Mpl,max. For this section, 
distribution of stresses and strains (Figure A1.3 a)) is completely defined by Equations 4.4 and 
A 1.5. If the maximal bending moment ever sustained by the section is higher than the maximal 
elastic moment, the bending stiffness of the section at the unloading, EId, differs from the stiffness at 
loading, the secant bending stiffness EIsec, and a residual deformation is maintained at complete 
unloading (Figure A1.2 b)). The aim of this section is to determine the stiffness of the section in 
unloading (Equation A1.28).  
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Figure A1.3: Force-deformations relationship UHPFRC element: a) distribution of stress and strain 
in the section in bending loading; b) moment-curvature relationship for loading and 
unloading of a beam; c) uniaxial stress-strain relationship for loading and unloading; 

Uniaxial tension  

It is experimentally observed in the uniaxial tensile test, that the value of modulus at unloading 
decreases with increase in maximal deformation reached in the specimen, Ed = Ed(ε), Figure A1.2 c). 
For the UHPFRC treated in this study, the value of modulus at unloading for the deformations prior 
to strain softening is determined to be Ed(εu)= E*=5.8 GPa [Jungwirt 2006]. This is closely one tenth 
of the initial modulus of elasticity, Ec.

The unloading modulus in function of maximal previously reached deformation can be expressed 
using the following function 
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where ε is maximal tensile strain ever attained in the section and εr is the residual deformation for 
unloading of the section that has reached maximal deformation ε = εu (Figure A1.3 c)) 

*E

fct
ur −= εε . (A1.12) 

The proposed expression for unloading modulus Ed(ε), Equation A 1.11, respects the limit 
conditions: 
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For all other values of deformation between this limits, the value of Ed monotonically decreases from 
Ec to E*, showing that, the more damaged the section is, the smaller the value of Ed will be and more 
residual deformation will appear.  

Bending with zero normal force 

If a section was subjected to bending moment Mi,  Mel,max< Mi ≤  Mpl,max, distribution of modulus of 
unloading over the depth of the section, Ed, can be related to deformations reached under bending 
moment Mi, Figure A1.4 c). Distribution of secant modulus, Esec, is shown in Figure A1.3 b).  It 
should be noted that, if the section’s behaviour is modelled with the plastic yielding in tension, from 
the point of view of the Theory of plasticity, it is not correct to speak about a ratio between stress and 
strain, since the same stress corresponds to any strain in the region of plastic yielding. However, this 
relationship is assumed here in another context: Esec= fct /ε . 

h(M )ε 

χ i

fct

χ
fct
Ec

1

M

h
ξ

tε 

h

χ
fct
Ec

1

E

h 1,E

cE

E

h 1,E

cE

dE (  )ε 

d

a)                                              b)                                         c)                                                   d)

y
E

f    /ct ε 

(M  )

h

σ 

(M  )ε 

χ

1

M

d

d

d h 1, d

M  <Md

ii

1)

y

ξ

sec(M )σ 
M   < M  < M 

i

el             i              pl

i

Figure A1.4: Section in loading and unloading: a) stress-strain distribution for loading; 
b) distribution of relation stress-strain for loading (secant modulus); 1) from the point 
of view of the Theory of plasticity, this relation is not correct in the zone of plastic 
yielding; c) distribution of stress-strain relationship for unloading ; d) stress 
distribution at unloading 



                                                                                                                                           Appendix M1

M1.7

The position of the neutral axis, h1,  and the curvature εi for the given bending moment Mi determine 
the maximal deformation achieved at any point of the section, ε(y). Modulus of unloading at every 
point is then a function of the maximal deformation reached.  
If ε in Equation A 1.11 is introduced as a function of the curvature χi, the distribution of the 
unloading modulus is given with the following expression   

( )

( ) ( )
( ) ic

ct

rci

ctuc
d

ic

ct
cd

E

f

EEE

fEE
E

E

f
EE

χ
ξ

εχξ
ε

ξ

χ
ξξ

⋅
≥∀

⋅+−⋅⋅

−⋅⋅
=

⋅
<∀=

**

*
    (A 1.14) 

where the axis ξ is determined by the position of neutral line from the bottom of the section, h1,
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The limit of the zone of inelastic unloading is noted as h1,E ,  and is determined as 
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The state of stresses over the section in unloading is governed by the unloading modulus. The stress 
at a point of a damaged section in unloading is then  
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where  

dhhh ,111 −=Δ  (A 1.18) 

is the difference in the position of the neutral axes. Stresses in the rest of the section remain 
proportional to initial modulus of elasticity, Ec.

New state of stresses is an equilibrated state, and the equilibrium of the normal force can be written  
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(A 1.19) 
The position of neutral axes and the moment-curvature relationship can be found by solving 
Equation A 1.19 for h1,d.
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It can be shown that  
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Bending moment at unloading, Md, is then obtained by the integration of normal stress  
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For a more convenient form of the expressions, the following approach is used: Let us consider the 
curvature of the section χ as an imposed unloading curvature, χd, as shown in Figure A 1.5. The 
decrease in force, ΔM, for decrease in curvature Δχ = χ d, can then be calculated from the decrease in 
stress due to unloading modulus, distributed over the depth of the section according to Equation 
A 1.14. 
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Thus, for an χ d, the decrease in moment can be calculated as 

( ) ( ) dd

hh

h

dd

hh

h

dd

y

d

A

xxd EIdEbdEbdyyyyEbdAyyM
d

d

d

d

⋅=⋅⋅⋅=⋅⋅⋅=⋅⋅⋅⋅=⋅⋅Δ=Δ ∫∫∫∫
−−

χξξξχξξχξεσ
,1

,1

,1

,1

22 )()()(

(A 1.25) 

∫
−

⋅⋅=
hh

h

dd

d

d

dEbEI
,1

,1

2)( ξξξ  (A 1.26) 

Unloading stiffness, EId, is constant for all χ d, and for  
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according to Equation A1.23;  the unloading stiffness of the section can be calculated as 
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(A 1.28) 
with h1 given with Equation A1.15, K1 with Equation A1.21, and σrf  being 

rfcrf E εσ ⋅=   (A 1.29) 

where εrf is given with Equation A1.22. 

Thus for every previously achieved maximal deformation in the section, as a function of χi, the 
unloading stiffness can be calculated, Figure A1.7. Since χi can be expressed as the continuous 
function over x for a known distribution of M(x) the distribution of unloading stiffness becomes also 
a continuous function over x.

Residual curvature 

We consider now the other limit of Equation A1.25 

idd MMMLim
resid

=Δ⇒Δ −→ )()( χχχ  (A 1.30) 

Since EId, is constant for χ d  Equation A1.25 for the previous limit condition yields to 

dresii EIM ⋅−= )( χχ  (A 1.31) 

and the residual curvature, χ res, can be calculated as  

( )id

i
ires EI

M

χ
χχ −=  (A 1.32) 

The residual curvature in function of maximal curvature of the section is plotted in Figure A1.6. 
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Figure A1.6: Residual curvature of the unloaded section  

Secant Stiffness 

In the case of inelastic unloading with the unloading modulus equal to the secant modulus, Ed = Esec, 
with no residual deformation remaining, unloading stiffness of the section can be calculated using 
Equation A 1.26, replacing the distribution of Ed with the distribution of secant modulus (Figure 
A1.3b)). For the limit case when χ →χi   the unloading secant stiffness becomes 
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which, introducing h1 given by Equation (A 1.15) yields to 
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On the other hand, secant stiffness can be calculated as the ratio of moment and the corresponding 
curvature, Mi /χ i, where Mi is given by Equation  4.13:  
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The expression A 1.34 is used here as a control of the approach applied in development of Equation 
A1.28, since the identity is demonstrated using another approach, Equation A1.35.  
However, Equation A1.34 is useful as a general control of the arbitrary value of unloading stiffness,
EId, which needs to be the value higher than EI sec for the same Mi or χi .
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M1.4.2 Comparison of sectional bending stiffness 

The initial bending stiffness, EI, unloading, EId, and secant bending stiffness, EIsec, for a rectangular 
cross section are plotted in Figure A1.7. Values are normalised by the value of the initial bending 
stiffness, which is in this case  

12

3hb
EEI c

⋅
⋅= . (A 1.36) 

The material data correspond to data for the UHPRFC treated in this study (Chapter 3). The curves in 
Figure A1.7 are plotted against the maximal curvature reached in the section χ, normalised by the 
value of the maximal curvature that can be taken by the section before the fictitious crack opening, 
χ pl,max . 
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Figure A1.7: Normalised unloading bending stiffness in function of maximal deformation attend  

For the microcracked section prior to crack opening, χ →χ pl,max , the following can be stated based 
on the given equations: 

- the unloading bending stiffness of the section is approximately 1/3 of the initial bending 
stiffness (0.298 for the given material) 

- the secant stiffness of the section is approximately 1/5 of the initial bending stiffness of the 
section (0.215 for the given material) 

- the unloading stiffness of the section is app. 40% higher than the secant stiffness  (39 % for 
the given material) 

M1.4.3 Inelastic unloading of a damaged beam before crack opening 
In this section, the intention is to model the unloading behaviour of a microcracked element in 
bending, based on the previously developed relationship, and to compare it with measured data.  
For the known distribution of curvature over the length of the element, the displacement at any point 
can be calculated from Equation 4.3 or 4.8, as already mentioned in § 4.3.3, or Appendix M1. Let us 
calculate the displacement at any point of the element as 

( ) dxMqxMxq
L

∫ ⋅⋅=
0

)),((, χδ   (A 1.37) 

The observed beam is symmetric, subjected to central point load P (Figure 1.8). If the beam was 
previously loaded up to the force level Pi, inducing bending moments higher than the maximal 
elastic moment,  Melmax, the following expression governs unloading and reloading displacement    

EId

 EIsec
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where xel is the limit of the elastic unloading over the length of the beam (Figure A 1.8), obtained as 
the solution of the equation M (x, Pi) = Mel,max, where M(x, P) is the function of the moment bending 
moment over the length of the element, x, due to load P; for the given boundary conditions 

i

el
el P

M
x

2max, ⋅
= .    (A 1.39) 

χunload is the unloading curvature at the force P, for previous maximal force Pi, and can be expressed 
using the residual curvature and unloading stiffness (Figure A 1.5). By introducing the unite force 

moment function for the displacement at the mid-span , xxM ⋅=
2

1
)( , Equation A 1.38 becomes   
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where the functions for EId and χres, given as functions of χi,  Equation A 1.28 and A 1.32, are now 
expressed as functions of x and Pi, maintaining the influence of maximal curvature reached at the 
section at the position x in the following way: 
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as developed in Annex M1. 

It is obvious that the Equation A1.40 respect the limit condition: 

( )( ) elPPi eli
PPLim δδ =→,   (1.44) 

The integral on the right side of Equation A 1.40 can be easily obtained numerically with any 
standard integration method, since the functions involved are smooth. The array developed in 
Chapter 5 can be applied with appropriate boundary conditions.  
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Figure A 1.8: Geometry of the beam in unloading and distribution of unloading stiffness  

Equation A 1.40 is plotted in Figure A1.9 against the measured data for the beams of different depth 
and for the unloading beginning at different force level. The plausibility of the results indicate that: 

- the developed analysis can be reliably used for simulation of elements behaviour, 
- the applied material models for tensile behaviour (both in loading and unloading) enables 

correct simulation of elements behaviour.  
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Figure A 1.9: Comparison of simulated unloading and measured data  

It should be point out that, during this analysis, it was primarily insisted on term “unloading”; The 
exposed procedure, however, refers also to reloading, and the same expression (Equation A 1.40) can 
be used to simulate the loading path of the previously damaged member (Figure A 1.9). 

Integral of the residual curvatures (Equation A1.32) gives the residual deformation of the member. 

M1.4.4 Comparison of elements bending stiffness  
Comparison of elastic, secant and damaged bending stiffness of a beam is shown in Figure A 1.10. 
Figure A1.10 a) shows schematically the inelastic force-displacement relationship of a beam and the 
mentioned stiffness; Figure A 1.10 b) shows the calculated values for the unloading stiffness, Kd, and 
secant stiffness, Ksec, normalised by the elastic stiffness, Kel, considering the following values: 
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=  (A 1.47) 

where δ(Pi) can be calculated according to Equation 4.30, and 

    
unloading

d d

dP
K

δ
=  (A 1.48) 

where δunloading is calculated using Equation A 1.40. 

For Pi = Ppl, max, unloading stiffness is approximately 60 % of the initial elastic stiffness (for the 
given material and boundary conditions Kd=0.59 Kel). It should be noted, however, that for e.g. 
Pi = 0.8 Ppl, max, the unloading stiffness is almost 85 % of the initial stiffness, and for the smaller 
values of Pi  it approaches fast the initial one, Kel. Additionally, it can be noted that, in particular in 
the region of smaller maximal force, Pi, the difference of values of Kd , Ksec is becoming less 
significant, which is of practical consequence for the design, since the value for  Ksec can be obtained 
much easier, Equation A 1.47.  
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Figure A 1.10: Elastic, Kel, secant, Ksec, and unloading damaged stiffness, Kd, of a beam: a) 
Notations in force-displacement diagram; b) Calculated loss of stiffness of a beam in 
three-point bending; Stiffness are normalised with the elastic stiffness, and the force 
is normalised with the maximal force attained prior to crack opening.   

The ratios plotted in Figure A1.10 b) are maintained for any slenderness of the element. However, 
changing other boundary conditions, as the load case for example, the loss in stiffness changes.  

For uniformly distributed load q, it is observed that the unloading and secant stiffness decrease much 
faster than in the case of the concentrated point load (Figure A 1.11 b)).  This is due to the gradient 
of the moment function, M(x,P), implying that, under uniformly distributed load, the zone of the 
member in the micro-cracked phase is larger than in the case of concentrated load for the same 
maximal moment. 

         Kd

 Ksec



                                                                                                                                           Appendix M1

M1.15

a) b) 

0 0.25 0.5 0.75

Δ �mm�

15

30

P
,

q
L
��
��
��
���
���

2
�k

N
�

h 	 60 mm

0 0.5 1

P � Ppl, max , q � qpl, max

0

0.5

1

K
d
�

K
e
l,

K
s
e
c
�

K
e
l

Figure A 1.11: Comparison of bending response of a beam under uniformly distributed, q, and 
concentrated load, P:  

a) Simulated force-displacement response under q (plotted as q L /2) and measured response under P;  
b) Calculated loss of stiffness (normalised with the corresponding elastic stiffness), where Kd (q) and 

Ksec (q) are the unloading and secant stiffness of beam under uniformly distributed 
load     

Simulations for uniformly distributed load are performed using in the same approach as developed in 
Section 1.4, simply by introducing appropriate moment function, M(x, q). The elastic bending 
stiffness changes as well: 
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The values plotted in Figure A 1.11 b) are of importance for prediction of elements stiffness at the 
service state, thus for the design. Considering that the level of service load is in the range of app. 
60 % of ultimate failure load: 

- not important overestimation of deformations is obtained by using secant elements stiffness, 
- not high decrease in stiffness appears under service loads, implying that not significant 

redistribution takes place at SLS in statically indeterminate system, and consequently en 
elastic analysis can be accepted.  

           Kd (P)

Kd(q)

Ksec(q)





M2.1 

Appendix M2: 

Behaviour of beam with fictitious crack: equation 
development 

M2.1 Problems involved and content   

Increasing the deformations beyond the level when ultimate pseudo-plastic strain εu is reached in the 
most loaded section, a fictitious crack is assumed to start to propagate. The equilibrium of sectional 
forces has an infinite number of solutions in the cracked section, and the unique equilibrated 
solution is found considering the cracked element. This appendix contains the development of the 
equations applied in the development of equilibrated solution for an element in bending. The 
algorithms for developed procedures are given in Section 2.5. 

M2.2 Static equilibrium of cracked section with regions in 
    pseudo -plastic yielding in tension 

The parameters describing state of deformation and stresses of the cracked section with the regions 
in pseudo-plastic yielding are schematically presented in Figure A 2.1 b). The curvature of the non-
cracked part of the section is χ > χpl,max, and the fictitious -  macrocrack is characterised by length, 
α⋅h, and the crack mouth opening, wi. In order to establish the equilibrium of sectional forces, the 
hypothesis given in Chapter 4. are applied. The expressions are developed for N=0. 
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Figure A 2.1: Section with pseudo-plastic yielding and a fictitious crack: a) equilibrium conditions; 
b) stress distribution and notations  

M2.2.1 Equilibrium of bending moment  
The equation of the equilibrium of bending moment, written with respect to the neutral axes, with 
dA=b⋅dξ for b=const, is 
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If a multi linear law for stress-crack openings, )(wwσ , is applied:  
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for the crack openings [ ]1,0 ww∈ , Equation A. 2.1 gives 
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and, similar, for the crack openings [ ]21, www∈ , Equation A 2.1 gives 
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The hypotheses on plane deformations in the non-cracked part and the hypothesis that the 
macrocrack propagates when the strain at the crack tip reaches εu, give the following relationships:  
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Introducing e.g. the first of the relationships A 2.5 in the equations A 2.3 and A 2.4, bending moment 
is obtained as a function of three parameters, 
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M2.2.2 Equilibrium of normal force  
The equilibrium of the normal force provides the following relation for [ ]1,0 ww∈
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With relationship A2.5, the previous equation can be solved for wi, α  or χ . A unique solution exists 
for wi = wi( χα , ) while two solutions exists for α  and χ , but only one physically acceptable. Only 

the development of the equations for [ ]1,0 ww∈  is presented. 
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M2.2.3 Bending moment as a function of two parameters  

Incorporating one of the previous relationships (Equation A 2.8 to A2.10) in the expression for 
bending moment, Equation A 2.6, the moment is obtained as a function of two variables:  
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Moment-curvature relationship for known crack opening is defined with 
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where  

( ) ( ) χε ⋅⋅−⋅⋅⋅⋅+⋅⋅+⋅−⋅⋅= ictcucctii wCfhEEfwCwCA 222 2444  . 

(A 2.13) 

Bending moment in function of crack parameters (length and CMO) is defined with 
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where 

( ) ( ) ucictcti EwCffwCB εαααα ⋅−⋅⋅+⋅⋅+⋅−⋅⋅⋅−⋅⋅= 14422 22   .   (A 2.15) 

M2.3  Fracture energy of crack in bending 

The energy needed to open a fictitious crack of length αi⋅h  and width b, up to a crack mouth opening 
of wi, noted as GF,i, can  be calculated for the known stress distribution in function of crack opening 
σ(w), and the known geometry of the crack (Equation 4.30) as 
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Developed expression for GF,i when the stress-crack opening relationship is linear is given in 
Chapter 4, Equation 4.67. For stress-crack opening given by the function 
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it is obtained:  
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M2.4   Continuous curvature in the zone disturbed by the   
 fictitious crack opening   

The curvature in the region disturbed by the macrocrack is assumed as a parabolic function: 

2/2/)( 2 LxlLcxbxax icrcr
≤≤−∀++= χχχχ  (A 2.19) 

with the smooth change at x = L/2- li,cr, and the value at L/2 corresponding to the curvature of the 
cracked section, χ. The coefficients in Equation A 2.19 are obtained by solving the following system 
of equations: 
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With introduced notation: 
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where all of the values on the right side are defined, system of equations A 2.20 can be written as  
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and the solution of the system for the coefficients aχ, bχ, cχ,  is the following: 
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M2.5 Algorithm for energy balance:  force and displacement 
    control 
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M2.6 FEM model  

A numerical finite element (FEM) model for analysing the response of UHPFRC beams in bending 
was also developed in this study. The hypotheses of this model are the same as the hypotheses used 
for the development of the analytical model:  

- the macrocrack is modelled according to the assumptions of the fictitious crack model: the 
crack shape is modelled as linear, and the transfer of stresses over the crack faces is simulated 
by internodal forces, using non-linear spring elements; the macrocrack coincides with the mid-
span section of the beam in symmetric boundary conditions; 

- the material surrounding the macrocrack is modelled as linear-elastic in compression and 
elastic-plastic in tension, enabling pseudo-plastic or strain hardening behaviour to be 
simulated.  

Software package ANSYS is used for processing the model. Elements and material models used are: 
- element type PLANE82 for the beam, with linear elastic or plastic (bilinear hardening) 

material properties; 
- element type COMBIN39 for non-linear springs, with F - δ relationships defined based on the 

material σ -ε  and σ -w relationship characterising tensile softening. 

As long as the stress state in an element is such that the direction of first principal stresses in the 
region of the macrocrack is close to the direction of springs (σΙ ≈σx), this model can be used for 
prediction of the response of beams made of quasi-brittle materials.  



T1.1 

Appendix T1: 

Testing of thin UHPFRC elements  

T.1 Problem statement and objectives 

This testing program is developed to provide more information on the behaviour and on the load 
bearing capacity of thin UHPFRC slabs without ordinary reinforcement. The type and geometry of 
tested elements were chosen to be representative of upper slabs in ribbed structural members 
conceived to resist traffic loads (Figure T.1). In the case of two way ribbed slabs, failure of the upper 
slab is a local bending or punching shear mechanisms (Figure T.1 a)), whereas in one-way ribbed 
systems (e.g. π-shaped girders) the occurrence of a bending failure might also give rise to a global 
failure mechanism (Figure T.1 b)). Most of existing experimental research on UHPFRC structural 
elements is oriented towards bending and shear behaviour of beams, whereas available experimental 
data on bending and punching shear failure of thin slabs are lacking. 

a) b) 

Figure T.1: Examples of structures with thin UHPFRC slabs and slab failure modes: a) two-way 
ribbed slab with flexural and punching shear failure of thin slab; b) π-shaped girder 
and transversal flexural failure of thin slab. 

Possible modes of failure and corresponding ultimate resistance of thin slabs without ordinary 
reinforcement are the principal interest of the experimental analysis. Beams in three-point bending 
were also tested to provide basic information on the bending behaviour of statically determinate 
systems. The influence of elements size on structural response was also investigated by testing 
beams and slabs with variable thickness. Data obtained by this test program allowed to verify the 
validity of structural models developed in this thesis. 

T.2 Testing program and preparation of the specimens 

A total of 21 specimens were tested, FigureT.2: 
- six 900 x 900 mm slabs, with thickness varying from 40 to 60 mm 
- four 350 x 350 mm slabs, with thickness varying from 30 to 60 mm 
- 11 500 x 200 mm beams, with thickness varying from 25 to 75 mm 
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All of the elements were tested up to failure. Different test set-ups were conceived in order to 
achieve the desired modes of failure (Figure T.2). Beams were tested in three-point bending, while 
slabs were tested under central-point load. Beside the geometry, the boundary conditions of the two 
series of slabs also changed. Within a particular test series, the test parameter is the elements 
thickness. 

FigureT.2:  Geometry of tested specimens: a) slabs tested in bending failure under point load; 
b) slabs tested in punching shear failure; c) beams (plates) tested in three-point 
bending.  

Specimens were cast and tested at the Structural Concrete Laboratory of the EPFL. All of the 
elements were made of the same concrete, BSI®, without any conventional reinforcement. The 
composition of the material is given in § 3.2.3, while the mechanical behaviour in compression and 
in tension is described in § 3.3.1. and § 3.3.2 respectively. 

Mixing and casting procedure 

The components of concrete (pre-mixed powder and aggregates, water, admixtures and fibres) were 
mixed according to the procedure prescribed for BSI®. Mixing time is 12 minutes, of which 3 
minutes with fibres. A sufficiently powerful mixer and a rigorous proportioning of components are 
indispensable to achieve good mechanical properties as well as workability of fresh concrete. 

Fresh concrete was cast in wooden formworks, previously impregnated with oil. The material is self-
compacting, and easily sets in formworks without need of vibrating. The pouring method was 
conceived in order to minimize undesired preferential orientations of the fibres. No thermal 
treatment is needed for the used UHPFCR. However, like for ordinary concrete, a curing product 
was applied on the surface of concrete immediately after casting and the formworks were coated 
with plastic sheets to prevent surface desiccation at early age. Elements were demoulded after 
approximately 24 h then stored in water until testing day. 

The amount of the material produced with a single batch being limited by the capacity of the mixer, 
not all of the samples were produced with exactly the same concrete. For each batch of concrete, 
quality control tests were performed. Slump flow of the fresh concrete was controlled as a first 
indicator of quality of the produced material. Three cubes of dimensions a = 100 mm and three 
prisms with dimensions 70x70x280 mm were cast for every batch for quality control tests on the 
hardened material. Cubes were subjected to compressive strength test, performed at the Laboratory 
of Construction Materials of the EPFL. The same laboratory also performed tests for the modulus of 
Elasticity. Prisms were tested in three point bending (displacement controlled test with span ls = 190
mm) to indirectly check the tensile properties of the material. These tests were performed at the 
Structural Concrete Laboratory of the EPFL.  The results of quality control tests are presented, for 
every batch, in Tables T.2, T.4 and T.6.    

350

30 ÷ 60

350 mm

900 mm 

40 ÷ 60 mm 

900  mm

500

200  mm 

25 ÷ 75
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T.3 Thin beams in three point bending  

The geometry and boundary conditions of the specimens are given in Figure T.3. The thickness h
varies between 25 and 75 mm, while the span and the width are kept constant.  

Figure T.3: Geometry and boundary conditions of beams   

T.3.1 Test setup and instrumentation 
Tests are carried out by controlling the displacement of the actuator of the test machine, with a 
loading speed ranging between v = 0.002 mm/s and v = 0.008 mm/s as a function of elements size 
and loading phase (pre or post-peak). Beams were instrumented with Linear Variable Differential 
Transformer (LVDTs) and marked with points for photogrammetric analysis, Figure T.4. The LVDT 
that measures the vertical displacement at mid-span is designated as LVDT_01 (Figure T.5 a)). Two 
other LVDTs measure the horizontal elongation on the tensile side of the beam, between points 
symmetrically placed with respect to the load point (Figure T.5 b) and Figure T.6)). 

Figure T.4:  Test setup and instrumentations: LVDTs and points for photogrammetric measures. 

a)  b)  

Figure T.5: Measuring devices: a) LVDT_01, measuring vertical displacement; b) LVDT_02 and 
LVDT_03 measuring horizontal elongations 

As already mentioned (Chapter 4), the elongations measured on the tensile side of the beam must be 
corrected to take into account the rotation of the beam at points where the measuring devices are 
fixed. 

500 mm 

200 mm

lm

420 mm

h
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a) 

   

b) 

ml

θ

θ

ml  +   lΔ m

ml  +   lΔ m, device

hm

x
v(x)

Figure T.6: LVDTs for horizontal elongations : a) view of the device position; b) effect of the 
rotation on the measured elongation. 

Applied force and the vertical displacement of the actuator are measured by the sensors of the test 
machine. The results obtained with photogrammetry are not discussed in detail in this Appendix. 
Post-processing of photogrammetric images of the beams allowed useful information such as 
position, number and propagation of cracks to be obtained.  
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T.3.2Principal results 
Most of the beams were tested under monotonically increasing displacement, but some specimens 
were subjected to loading and unloading cycles. Tests results are summarized in Table T.1, while 
more detailed information e.g. measured force-displacement curves, crack patterns etc, are given in 
§1.3.3-1.3.12. The results of tests for quality control are given in Table T.2: as it can be observed, the 
average values from bending tests on prisms are similar for the two batches, allowing the results of 
all the beams to be directly compared. 

Table T.1: Summary of test results: UHPFRC beams 

Specimen Date of 
casting 

Date of 
testing 

Material Slump 
flow 

fc,m
* Measured 

height 
Pmax No. of 

cracks**
remark 

   [cm] [MPa] [mm] [kN]   

P 25a 16.05.06. 13.07.06 G27 68.7 187 24.5 5.31 1 

P 25b 16.05.06. 19.07.06 G27 68.7 187 25.5 5.83 3 

P 25c 16.05.06. not tested G27 68.7 187 -  - 

P 4a 16.05.06. 12.07.06 G27 68.7 187 38.9  pre- cracked, at 
11KN 

P 4b 16.05.06. 20.07.06 G27 68.7 187 38.1 11.27 2 

P 4c 16.05.06. 13.07.06 G27 68.7 187 40.2 13.96 1 

P 5a 19.05.06. 12.07.06 G29 68.0 153 50.0 23.96 2 

P 5b 19.05.06. not tested G29 68.0 153 -  - 

P 5c 19.05.06. 19.07.06 G29 68.0 153 50.05 26.53 3 

P 6a 16.05.06. 19.07.06 G27 68.7 187 59.9 32.93 3 more fibres 

P 6b 16.05.06. 13.07.06 G27 68.7 187 59.1  - more fibres 

P 6c 16.05.06. not tested G27 68.7 187 -  - more fibres 

P 7.5a 19.05.06. 18.07.06 G29 68.0 153 73.7 43.37 

P 7.5b 19.05.06. 14.07.06 G29 68.0 153 73.2  pre- cracked, at 
42KN 

P 7.5c 19.05.06. not tested G29 68.0 153 -  
* mean value of compressive strength obtained on specimens for quality control (table below)  
** number of macrocracks observed prior to Pmax

Table T.2: Test results of material quality control 

Material Date of 
casting 

Slump 
flow 

Cubes Date of 
test 

fc Modulus of 
elasticity 

Prisms Date of 
test 

P crack P max

  [cm]   [MPa] [GPa]   [kN] [kN] 
G27 16.05.06  G27A 20.07. 06 175  G27A 25.07.06 32 33.8 

68.7 G27B 20.07. 06 183  G27B 25.07.06 31 40.57 
 G27C 20.07. 06 203  G27C 25.07.06 32 44.8 

   mean  187  mean   39.7 

G29 19.05.06
G29Aa

*

G29Ab
* 21.07.06 

226* 
200.2 

61.50 
59.0 

G29A 25.07.06 33 39.2 

68.0 G29B 20.07.06 143.5  G29B 25.07.06 30 41.02 
 G29C 20.07.06 163  G29C 25.07.06 30 41.75 

   mean  (153) 60.25 mean   40.6 
* specimens tested for modulus of elasticity; corresponding compressive strength in this case are 
obtained from ∅ 50 mm and h =100 mm cylinders, drilled from cubes with a=100 mm 
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T.3.3 Beam P 25a, h = 24.5 mm 
a) b) 
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Figure T.7: Beam P 25a: a) force-vertical displacement measured at mid-span by LVDT_01 (black 
line) and force-vertical displacement of the actuator (grey line); b) force-elongation at 
tensile side measured by LVDT_02 (black line) and LVDT_03 (grey line).  

a) c) 

                               crack 1 
b) 

                   

Figure T.8: Cracking of the beam: a) crack at Pmax and b) crack at failure, observed by 
photogrammetry analysis; c) crack pattern on tensile beam side. 

P 25a 
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T.3.4 Beam P25 b, h=25.5 mm  
a) b) 
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Figure T.9: Beam P 25b: a) force-vertical displacement measured at mid-span by LVDT_01 
(black line) and force-vertical displacement of the actuator (grey line); b) force-
elongation at tensile side measured by LVDT_02 (black line) and LVDT_03 (grey 
line).  

During this test, a problem probably occurred with the LVDT_01, which unexpectedly recorded 
higher displacements than the sensor of the testing machine. A comparison with the results obtained 
for beam P 25a also indicates that the values measured by LVDT_01 probably overestimate the 
effective displacement. 

a) 

                         crack 1                               crack 2       crack 3

b) 

Figure T.10: Cracking of the beam observed by photogrammetry analysis: a) cracks at Pmax, 
b) crack at failure. 
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T.3.5 Beam P 4a, h = 38.9 mm 
a) b) 
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Figure T.11: Beam P 4a: a) force-vertical displacement measured at mid-span by LVDT_01 (black 
line) and force-displacement of the actuator (grey line); b) force-elongation at tensile 
side measured by LVDT_02 (black line) and LVDT_03 (grey line).  

The beam was pre-cracked during the positioning of the loading device, with a force of 
approximately 11÷12 kN. It can be observed that up to approximately this force level, the force-
displacement response is linear, with the actual stiffness of the microcracked element, as explained 
in Chapter 4. Photogrammetric monitoring of this beam was not performed. 

Figure T.12: Crack pattern on tensile beam side. 

P 4a  



                                                                                                                                             Appendix T1

T1. 9

T.3.6 Beam P 4b, h = 38.1 mm 
a) b) 
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Figure T.13: Beam P 4b: a) force-vertical displacement measured at mid-span by LVDT_01 (black 
line) and force-displacement of the actuator (grey line); b) force-elongation at tensile 
side measured by LVDT_02 (black line) and LVDT_03 (grey line).  

a) c) 

                                                crack 1                                      crack 1 

b) 

Figure T.14: Cracking of the beam: a) cracks at Pmax and b) crack at failure, observed by 
photogrammetry analysis; c) crack pattern on tensile beam side. 

P 4b 
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T.3.7 Beam P 4c, h=40.2 mm 
a)  b)  
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Figure T.15: Beam P 4c: a) force-vertical displacement measured at mid-span by LVDT_01 (black 
line) and force-displacement of the actuator (grey line); b) force-elongation at tensile 
side measured by LVDT_02 (black line) and LVDT_03 (grey line).  

a) 

                               crack 1 
b) 

Figure T.16: Cracking of the beam observed by photogrammetry analysis: a) crack at Pmax, b) crack 
at failure. 
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T.3.8 Beam P 5a, h=50 mm 
a) b) 
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Figure T.17: Beam P 5a: a) force-vertical displacement measured at mid-span by LVDT_01 (black 
line) and force-displacement of the actuator (grey line); b) force-elongation at tensile 
side measured by LVDT_02 (black line) and LVDT_03 (grey line).  

a) 

                  crack 1                                         crack 2              
b) 

Figure T.18: Cracking of the beam observed by photogrammetry analysis: a) cracks at Pmax, 
b) crack at failure. 
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T.3.9 Beam P 5c, h=50.5 mm 
a) b) 
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Figure T.19: Beam P 5c: a) force-vertical displacement measured at mid-span by LVDT_01 (black 
line) and force-displacement of the actuator (grey line); b) force-elongation at tensile 
side measured by LVDT_02 (black line) and LVDT_03 (grey line).  

a) c) 

                                crack 1                           crack 2              crack 3 
b) 

     

Figure T.20: Cracking of the beam: a) cracks at Pmax and b) cracks at failure, observed by 
photogrammetry analysis; c) crack pattern on tensile beam side. 

P 5c 
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 T.3.10 Beam P 6a, h=59.9 mm 
a) b) 
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Figure T.21: Beam P 6a: a) force-vertical displacement measured at mid-span by LVDT_01 (black 
line) and force-displacement of the actuator (grey line); b) force-elongation at tensile 
side measured by LVDT_02 (black line) and LVDT_03 (grey line).  

a) c) 

crack 1              crack 2                                       crack 3 
b) 

Figure T.22: Cracking of the beam: a) cracks at Pmax and b) crack at failure, observed by 
photogrammetry analysis; c) crack pattern on tensile beam side. 

P 6a 
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T.3.11 Beam P 6b, h=59.1 mm 
a) b) 
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Figure T.23:  Beam P 6b: a) force-vertical displacement measured at mid-span by LVDT_01 (black 
line) and force-displacement of the actuator (grey line); b) force-elongation at tensile 
side measured by LVDT_02 (black line) and LVDT_03 (grey line).  

a) c) 

                                 crack 1            crack 2                           crack 3 
b)  

Figure T.24: Cracking of the beam: a) crack at Pmax and b) crack at failure, observed by 
photogrammetry analysis; c) crack pattern on tensile beam side. 

P 6b 
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T.3.12 Beam P 75a, h=73.7 mm 
a) b) 
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Figure T.25: Beam P 75a: a) force-vertical displacement measured at mid-span by LVDT_01 (black 
line) and force-displacement of the actuator (grey line); b) force-elongation at tensile 
side measured by LVDT_02 (black line) and LVDT_03 (grey line).  

a) 

                  crack 1     crack 2 
b) 

c) 

Figure T.26: Cracking of the beam: a) cracks at Pmax and b) crack at failure, observed by 
photogrammetry analysis; c) crack pattern on tensile beam side. 

P 75a 
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T.3.13 Beam P 75b, h=73.2 mm 
a) b) 
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Figure T.27: Beam P 75b: a) force-vertical displacement measured mid-span by LVDT_01 (black 
line) and force-displacement of the actuator (grey line); b) force-elongation at tensile 
side measured by LVDT_02 (black line) and LVDT_03 (grey line).  

This beam was pre-cracked with the force of approx. 42 KN.

a) c) 

                      crack 1 
b) 

  

Figure  T.28: Cracking of the beam: a) crack at Pmax and b) crack at failure, observed by 
photogrammetry analysis; c) crack pattern on tensile beam side. 

P 75b 
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T.3.14 Summary of force-displacement responses  
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Figure T.29: Force-displacement of tested beams:  comparison of the responses for beams of the 
same height. 
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Figure T.30: Comparison of force-displacement response of all tested beams 
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T.4 Thin slabs failing in bending  

The dimensions of the slabs are chosen in accordance to theoretical considerations on possible 
minimal thicknesses that could be applied in road bridge design, while the spans are chosen as an 
upper limit, representing a more flexible system. Axisymmetric boundary conditions and central 
load-point (Figure T. T.31) were chosen to allow easy interpretation of results.  

T.4.1 Test setup and instrumentation  
Slabs were supported on eight points, disposed symmetrically on the largest interior slab radius 
(Figure T.31). Load is introduced over a small square surface of 30x30 mm by controlling the 
displacement of the actuator.  

Displacements and deformations are measured using Linear Variable Differential Transformers 
(LVDTs). LVDTs designated LVDT_01 to LVDT_12 are used to measure vertical displacements 
(Figure T.31 and TT.32): the mid-span vertical displacement is measured by LVDT_08, while the 
rest of the measurement points is disposed symmetrically with respect to boundary conditions 
(Figure T.31 b)). LVDT_16 to LVDT_19 are used to measure the horizontal displacement on the 
tensile slab side, close to the central point (Figure T.31 b) and T T.32b )). 

a) 
b) 

support

LVDTs

force 

surface
introduction

Figure T.31: a) test setup; jack for displacement controlled test under central point loading; 
b) position of supports and measuring points 

a) b) 

Figure T.32: Measuring devices: LVDTs for vertical displacements and horizontal elongation 
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T.4.2 Principal results 
All tested slabs failed in bending. The failure crack pattern was similar for all slabs, consisting of 
four axisymmetric yield lines, coinciding with the direction of smallest stiffness (directions E-W and 
N-S in Figure T.31 b)). Test results for slabs and for quality control tests are summarized in Tables 
T.3 and  T.4.

Table T.3: Summary of test results: UHPFRC slabs, flexural failure 

Sample Date of 
casting 

Date of 
testing 

Material Slump 
flow 

fc,m
*

Nominal 
height 

P max δ No of 
cracks** 

   [cm] [MPa] [mm] [kN] [mm] 

DAS 1 04.05.2006 06.06.2006 G19 62.3 188.5 40 31.4 5.14 4 

DAS 4 12.05.2006 09.06.2006 G24 70 181.0 40 38.6 8.37 4 

DAS 2 09.05.2006 06.06.2006 G22 62 198.8 50 58.5 4.09 4 

DAS 5 12.05.2006 09.06.2006 G25 67 185.8 50 63.1 5.88 4 

DAS 3 12.05.2006 09.06.2006 G26 68 178.3 60 87.6 4.0 4 

DAS 6 16.05.2006 13.06.2006 G28 70 155.8 60 88.8 3.82 4 

* mean value of compressive strength obtained on specimens for quality control (table below); 
values of modulus of elasticity accepted according to tests on G29 samples, Ec,m = 60. 25 GPa
* *number of cracks in failure mechanism 

Table T.4: Test results of material quality control 

Material Date of 
casting 

Slump 
flow 

Cubes Date of 
test 

fc Prisms Date of 
test 

P crack P max

  [cm]   [MPa]   [kN] [kN] 
G19 04.05. 06 62.3 G19A 02.06.06 185 G19A 06.06.06 32 40 

   G19B 02.06.06 202.5 G19b 06.06.06 33 37 
   G19C 02.06.06 178 G19c 06.06.06 30 47 
   mean  188.5 mean   41.3 

G22 09.05. 06 62 G22A 07.06.06 180 G22A 06.06.06 28 40.76 
   G22B 07.06.06 203 G22B 06.06.06 28 38.84 
   G22C 07.06.06 213.5 G22C 06.06.06 24 28 
   mean  198.8 mean   35.7 

G24 12.05.06 70 G24A 13.06.06 180.5 G24A 09.06.06 32 32.23 
   G24B  183.5 G24B 09.06.06 32 32 
   G24C  179.0 G24C 09.06.06 28 35 
   mean  181.0 mean   33.1 

G25 12.05.06 67 G25A 13.06.06 185 G25A 09.06.06 29.7 29.7 
   G25B 13.06.06 188 G25B 09.06.06 30 30 
   G25C 13.06.06 184.5 G25C 09.06.06 28 28 
   mean  185.8 mean   29.2 

G26 12.05.06 68 G26A 13.06.06 169 G26A 09.06.06 28 31 
   G26B 13.06.06 184.5 G26B 09.06.06 27 28.2 
   G26C 13.06.06 181.5 G26C 09.06.06 29 33.6 
   mean  178.3 mean   30.8 

G28 16.05.06 70 G28A 14.06.06 162 G28A 13.06.06 30 30 
   G28B 14.06.06 155.5 G28B 13.06.06 29 31 
   G28C 14.06.06 150 G28C 13.06.06 30 30.7 
   mean  155.8 mean   30.6 



Appendix T1                                                                                                                                                                      

T1.20

Result presentation 

Force-vertical displacements and crack pattern at failure 
Sensors having the same distance from the central load-point are grouped in the same plot. Force 
versus central-point displacement is first shown, than a view of the slab at failure, than three more 
plots that respectively group: 

- sensors at a distance C1 = 80 mm : LVDT_10, LVDT_12, LVDT_9, LVDT_11 
- sensors at a distance C2 = 160 mm : LVDT_5, LVDT_2, LVDT_6, LVDT_1 
- sensors at a distance C1 = 300 mm : LVDT_4, LVDT_3, LVDT_7, LVDT_0 

LVDTs_C1 LVDTs_C2 LVDTs_C3

Deformed shape 
The deformation of the slab at different load levels (at peak load and at 0.2, 0.4, 0.6, 0.8 of peak 
load) is plotted in three diagrams, according to the schema below: 

LVDTs E-W LVDTs N-S LVDTs E-W and N-S

Horizontal elongations 
For slab DAS 1, sensors LVDT_16 to LVDT_19 were not used. For the other slabs, three more plots 
present the horizontal elongations measured by LVDT_16 to LVDT_19, according to the schema 
below: 

LVDTs E-W LVDTs N-S LVDTs 16-17
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T.4.3 DAS 1, h = 40 mm 
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T.4.4 DAS 2, h=50 mm 
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T.4.5 DAS 3, h=60 mm 
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T.4.6 DAS 4, h=40 mm 
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T.4.7 DAS 5, h=50 mm 
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T.4.8 DAS 6, h=60 mm 

0 5 10 15

Δ �mm�

0

20

40

60

80

100

P
�k

N
�

DAS 6, LVDT_08

0 5 10

Δ �mm�

0

20

40

60

80

100

P
�k

N
�

DAS 6, LVDTs_C1

0 5 10

Δ �mm�

0

20

40

60

80

100

P
�k

N
�

DAS 6, LVDTs_C2

0 5 10

Δ �mm�

0

20

40

60

80

100

P
�k

N
�

DAS 6, LVDTs_C3

�0.4 �0.2 0 0.2 0.4

x �mm�

�2

�4

0

Δ
�m

m
�

DAS 6, LVDTs E �W

�0.4 �0.2 0 0.2 0.4

x �mm�

�2

�4

0

Δ
�m

m
�

DAS 6, LVDTs N � S

�0.4 �0.2 0 0.2 0.4

x �mm�

�2

�4

0

Δ
�m

m
�

DAS 6, E �W and N � S

0 1 2 3


x �mm�

0

20

40

60

80

100

P
�k

N
�

DAS 6, LVDT_17 and 19

0 1 2 3


x �mm�

0

20

40

60

80

100

P
�k

N
�

DAS 6, LVDT_16 and 18

0 1 2 3


x �mm�

0

20

40

60

80

100

P
�k

N
�

DAS 6, LVDT_16 and 17

S 

E                                                    W 

N



                                                                                                                                             Appendix T1

T1. 27

T.4.9 Summary of force-mid-span displacement responses 
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Figure T.33: Comparison of force-mid-span displacements response of slabs of the same thickness 
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Figure T.34: Comparison of force-mid-span displacements response of slabs: a) DAS 1-DAS  3 , 
h=40-60 mm; b) DAS 1-DA6 3, h=40-60 mm.  
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T.5 Thin slabs failing in punching shear 

The aim of this test series is to assess the punching shear resistances of thin slabs with thicknesses 
interesting for structural application of UHPFRC. The thicknesses were thus chosen based on the 
same reasons as in the case of slabs failing in bending. A smaller span and boundary conditions that 
allow bending strength to be increased were chosen to enable punching-shear failure to be reached 
before bending failure.  

T.5.1 Test setup and measuring devices 
To increase bending strength of tested specimens, slabs were clamped along all four sides, as shown 
in Figure T.35. Tests are displacement controlled, with load introduced over a surface of 20x20 mm 
(Figure T.36). Vertical displacements were measured with LVDTs at five points on the tensile side 
of the slabs. 

Clamped 
edge

Clamped 
edge

2      3, 1, 5     4

Figure T.35: Test setup, supports position and position of measuring points 

Figure T.36: Load introducing surface, 20x20 mm
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T.5.2 Principal results 

Test results on thin slabs and on quality control specimens are summarized in Tables T.5 and T.6. 
Force versus load-point displacement for all the slabs are compared in Figure T.37, while more 
detailed information on each test is provided in the following paragraphs. 

Table T.5: Summary of test results: UHPFRC slabs, punching shear failure   

Specimen Date of 
casting 

Date of 
testing 

Material Slump 
flow 

fc,m  Nominal 
height 

Actual 
thickness 

V max δ V,max

   [cm] [MPa] [mm] [mm] [kN] [mm] 

PP 30 29.08. 06 10.10.06 G33 63 175.2 30 31 61.51 1.13 
PP 40 29.08.06 26.09.06 G33 63 175.2 40 38 76.17 1.37 
PP 50a 29.08.06 25.09.06 G33 63 175.2 50 51 117.74 1.37 
PP 50b 29.08.06 26.09.06 G33 63 175.2 50 50 110.74**

1.51 
PP 60 29.08.06 26.09.06 G33 63 175.2 60 60 162.84 0.95 

* mean value of compressive strength obtained on specimens for quality control (table below); 
values of modulus of elasticity accepted according to tests on G29 samples, Ec,m = 60. 25 GPa
**punching failure occurred for δ = 1.9 mm and V=102 kN . 

Table T.6: Test results of material quality control 

Material Date of 
casting 

Slump 
flow 

Cubes Date of 
test 

fc Prisms Date of 
test 

P crack P max

  [cm]   [MPa]   [kN] [kN] 
G33 29.08. 06 63 G33A 25.09.06 181.5 G33A 27.09.06 32 52 

   G33B 02.06.06 170 G33B 27.09.06 36 45 
   G33C 02.06.06 174     
   mean  175.2 Mean  34 48.5 
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V
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N
�

Figure T.37: Force – load-point displacement curve of slabs failing in punching shear 

PP 60 

PP 50a 
PP 50b 

PP 40 

PP 30 
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T.5.3 Result presentation 

Results are presented separately for each tested slab (§1.5.4 to §1.5.8) in the following order: 
- force versus load-point displacement (LVDT_01) curve; 
- force-displacement curves measured at distances 65 and 60 mm from the load-point, plotted 

in the same figure (LVDTs_2 to 5, the first plotted as black and the last as most lightest grey 
line); 

- a view of the tensile slab surface at failure and sections through the slab central point in 
directions north-south (N-S) and east-west (E-W), i.e. showing the form of the punching 
cone; 

- figures illustrating deformations of the slab in the two monitored direction (E-W and N-S) 
for various load levels: Vmax, and 0.2, 0.4, 0.6, 0.8⋅ Vmax. In E-W direction these curve are 
obtained with measurements of LVDT_2, LVDT_21 and LVDT_4, while in N-S direction 
they are obtained with measurements of LVDT_3, LVDT_21 and LVDT_5. Deformations in 
E-W and N-S directions are finally compared (N-S direction plotted as grey lines) to check 
the symmetry of deformations. 
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T.5.4 PP 30, h=31 mm 
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T.5.5 PP 40, h=38 mm 
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T.5.6 PP 50a, h=51 mm 
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T.5.7 PP 50b, h=50 mm 
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T.5.8 PP 60, h=60 mm 
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