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Abstract 
This paper presents the development and testing of a methodology for estimation of average travel time on 
signalised urban networks. The methodology considers the classical analytical procedure, where average travel 
time on a study link is estimated as the average area between cumulative plots for the respective link. The 
challenge is to accurately estimate the plots based on the availability of data. The three different cases of data 
availability are considered: a) case-D, for only detector data; b) case-DS, for detector data and signal controller 
data; and c) case-DSS, for detector data, signal controller data and saturation flow rate. The performance of the 
methodology is evaluated under controlled environment considering different degree of saturation and different 
detection intervals. The performance for case-DS and for case-DSS is consistent whereas, the performance for 
case-D is highly sensitive to the signal phases in the detection interval. 

Keywords: Travel Time Estimation, Delay Estimation, Arterial Network, Urban Network 

1 Introduction 

Traffic congestion is one of the inescapable conditions in almost all the cities. In Europe, the external social 
economic cost of congestion is estimated to be around 2 percent of the Gross Domestic Product, (Kinnock, 
1995), which accounts to annual social loss of more than 120 billion euros. The increase in congestion on the 
road network results in more air and noise pollution, and in adverse physiological, psychological and social 
effects associated with it. It is almost impossible to eliminate peak hour congestion; however, efficient and 
intelligent management of traffic can reduce the congestion. Real time information of the performance of 
network is vital for intelligent traffic management. Travel time information quantifies the performance of the 
network and is one of the important performance measures for the transportation systems. 
In the literature, different methodologies ranges from simple regression to more sophisticated artificial 
intelligence based algorithms are proposed. Most of the research on travel time estimation is limited to freeways 
(Zhang and Rice, 2003, Bajwa, 2003), where the spot speed and link speed can be easily correlated. However, 
travel time estimation on urban networks is more challenging. The presence of conflicting areas (intersections) 
whether signalised or non-signalised imposes delay that has a significant affect on travel time estimation.  
Detectors are the widely used data sources and generally, in urban networks they are primarily used for signal 
control. There is increasing interest to use the detector data for travel time estimation. The earlier research on 
travel time estimation models via detector on signalised urban links is based on developing the regression 
relationship between detector occupancy and mean intersection delay with the use of traffic simulation 
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modelling (Sisiopiku et al., 1994, Young, 1988, Xie et al., 2001) or real data (Zhang, 1999). Sisiopiku and 
Rouphail (1994) provide a review of earlier work on the use of detector output for travel time estimation. The 
regression analysis models provide a statistical relationship between input (occupancy, flow, green split) and 
output (travel time) without explicitly addressing the traffic processes that determine these travel times. These 
models are often site specific and require calibration of parameters for real application. The regression analysis 
is observed for detectors far from the stop-line and cannot be applied for stop-line detectors. The location and 
type of detector has significant influence on the methodology for travel time estimation. Location of the detector 
depends on the requirements of the signal control algorithm: for instance, SCATS signal control algorithms need 
data from the stop-line detector where as SCOOTS needs detector data at the upstream of the link. Stop-line 
detectors provide information for the vehicles that had passed the detector (or entered the intersection) and the 
queue left behind is unknown. 
The proposed model integrates stop-line loop detector data with signal controller data and considers saturation 
flow rate. The model is expected to be a valuable tool for system performance evaluation and ITS applications 
such as Advanced Traveller Information Systems (ATIS) and dynamic route guidance. The performance of the 
signalised intersection can provide a feedback to the signal controller to evaluate its effectiveness and optimise 
its parameters. 

2 Travel time estimation model 

The model considers classical analytical procedure of using cumulative plots for travel time estimation. In 
Figure 1, a single lane link (study link) between two consecutive intersections is shown. Travel time is defined 
as the time difference between the time when the vehicle enters the downstream intersection and the time when 
it entered the upstream intersection. The area (A), between cumulative plot at the upstream end of the link 
(CPUS(t)) and cumulative plot at the downstream end of the link (CPDS(t)) provides the total experienced travel 
time for all the N number of vehicles which arrived during ∆t time interval at the upstream end of the link. 
Average travel time per vehicle is the ratio between total area and number of vehicles arrived. 

 

 
Figure 1: Analytical methodology for travel time estimation. 

 
In this research, it is assumed that there is no shared lane and the stop-line detectors are present on all the lanes 
that contribute to cumulative plots. Stop-line loop detectors, provide aggregated counts and occupancy during 
detector detection interval. Signal controller provides real time signal parameters such as signal phase plan and 
start time and end time of each phase. Actually, signal controller provides the green and red time for each phase. 
The corresponding effective green and effective red time are estimated by considering initial loss time and end 
gain time. In the remaining part of the paper the use of terms green and red should be considered as effective 
green and effective red. Saturation flow rate is a parameter specific to each site under study. It is determined for 
each lane group at the intersection and depends on factors such as road geometry and environmental conditions. 
To generalise the model, cumulative plots at the location of the detector are estimated for the three cases 
depending on the availabilities of the data a) Case-D: Only detector data is available; b) Case-DS: Detector data 
and signal controller data is available and c) Case-DSS: Detector data, signal controller data and saturation flow 
rate is available. The slope of the plot defines the flow pattern at the respective entrance of the intersection. 
We define Nd and q as the counts and flow, respectively during the detection interval of DI seconds.  
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Case-D: If only detector data is available then it is assumed that the counts during a detection interval are from 
a flow pattern (eqn (1)) that is uniformly distributed throughout the detection interval (Figure 2a). The 
assumption is reasonable for lower detection intervals and in the absence of any further information can be 
applied for higher detection interval. 
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Figure 2: Flow pattern for (a) case-D and (b) case-DS. 

 
Case-DS: If detector data and signal controller data is available then it is assumed that the counts during a 
detection interval are from a stepwise flow pattern (eqn (2)). Flow pattern is uniform only during the green 
period of the detection interval and during red period there is no flow (Figure 2b).This captures the fluctuations 
in the flow pattern even for higher detection interval. We define gd,i as the i-th green interval during the 
detection interval In Figure 2b, two green periods are present during the detection interval and the counts are 
distributed to each green interval in proportion to the corresponding green time. Flow pattern during each green 
periods of the detection interval are parallel to each other.  

d

d,i

Nq = during green period in detection interval
g

= 0 during red period in detection interval
∑

 (2) 
 
Case-DSS: We define the demand, which should be the cumulative plot (CPdemand) at the location of the stop-
line detector if there was no restriction, at the intersection, on the flow of the vehicles. 
At a signalised intersection, during the green phase, the vehicles from the queue are effectively discharged at 
saturation flow. Thereafter, the flow pattern follows the demand pattern. If demand and saturation flow are 
known then more accurate flow pattern considering saturation flow and non-saturation flow can be estimated.  
The count, Ni, during each i-th green period (gd,i) in the detection interval is assumed to be in proportion to gd,i 
(eqn (3)).  

d d,i
i

d,i
i

N * g
N =

g∑
 (3)

 

For simplicity, we focus on green (g) for a complete signal cycle instead gd,i. The g can extend in more than one 
detection interval. For instance, in Figure 2b, the g has the component gd,1 during the detection interval indicated 
in the figure. The count, Ng, during g is obtained by respective adding the counts from all its components, if 
splitted in more than one detection intervals.  
The maximum number of vehicles which can depart during g is Nmax(=s*g), where s is saturation flow rate 
(vehicles/second). Out of Ng vehicle, ns number of vehicles enters the intersection at saturation flow pattern and 
the remaining (Ng-ns) follow the demand pattern.  
For a link between two consecutive intersections as shown in Figure 1, the demand pattern, for the detector at 
the downstream end of the link, can be estimated from CPUS(t). However, for a network there can be certain 
links where the CPUS(t) is unknown such as at the entrance of the network. Therefore, the following two cases of 
unknown or know demand pattern are considered to estimate cumulative plots for case-DSS. 
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(a) Unknown demand pattern: The detector counts represent demand for under-saturated and saturated 
situations. However, for over-saturated situation, the counts are upper bounded by capacity and that may be less 
than true demand. Therefore, demand estimated in this case is termed as “assumed demand”. 
The demand flow pattern can be assumed to follow a uniform pattern (deterministic) or can be assumed to be 
distributed according to some probability distribution (stochastic). To simplify the analysis it is assumed that 
demand is uniform during the signal cycle. As shown in Figure 3, Ng numbers of vehicles are counted during the 
green phasethat represents the uniform demand for the signal cycle. By superimposing saturation flow pattern 
(during the green phase) on the uniform demand pattern the following relationship can be geometrically 
obtained: 

s
g max
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g max

n (1- g /C)= for N NNN g(1- )
N C

= 1 for N N
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Figure 3: Geometrical relationship between ns and Ng assuming uniform demand pattern during the current 

signal cycle. 
 
On average demand should never be greater than capacity so, Ng>Nmax should not be possible. However, during 
certain intervals it is possible that the flow rate exceeds the defined saturation flow rate. Hence, the model is 
defined for Ng>Nmax, in which all the vehicles enter the intersection at saturation flow rate.  
The detector counts represent demand for under-saturated and saturated situations however, for over-saturated 
situation, the counts are equal to capacity and that may be less than true demand. Hence, for under-saturated and 
saturated situations, the ratio Ng/Nmax represents degree of saturation and ns/Ng is the percentage of demand in 
saturation flow rate. Eq(4) provides the ratio of the counts in saturation flow rate to the total counts. For a given 
demand, the higher the green split (g/C) lower the ns/Ng ratio; and for near to saturated situations the ratio is 
close to one. This is as expectation, because as the demand approaches capacity almost all the vehicles are at 
saturation flow rate. This relationship is represented as graphs in Figure 5  for different green splits.  
  

 
Figure 4: Relationship between ns/Nmax for different counts and green split. 

(b) Known demand pattern: In this case, we are interested to estimate CPDS(t), given CPUS(t). The CPdemand(t) is 
the horizontal shift of the CPUS by free-flow travel time (ttfreeflow) of the link i.e., CPUS(t-ttfreeflow). The demand is 
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deduced from the upstream cumulative plot, so we call this demand as “deduced demand”. It is assumed that the 
vehicle counts during the detection interval are from a step-wise flow pattern. The flow is zero for red intervals 
and for green interval if CPdemand is greater than the cumulative counts (CPDS(t)) then the flow is at saturation 
flow otherwise, the flow pattern is same as demand pattern (see eqn (5)).  

demand DS

demand

During Red Period
q=0

During Green Period
if CP (t) > CP (t)

q= s
else

CP (t)q =
t

∂
∂

 (5)

 

As shown in Figure 5, the upstream cumulative plot, CPUS(t), and the number of vehicles departing from the 
downstream end of the link (N) are known and flow pattern at downstream intersection for the current detection 
interval is unknown. The required flow pattern during the current detection interval is obtained by no flow 
during red period (a to b) and during green period, the flow is at saturation flow pattern until demand pattern 
intersects the saturation flow pattern (b to c) and thereafter flow follows the demand pattern (c to d).  
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Figure 5: Flow pattern at downstream end of the link for case-DSS. 

 

2.1 Variability of travel time 

The model provides average travel time during ∆t time interval. One can argue that the average travel time is the 
performance measure for the system; however, it may not be a true representative of the travel time experienced 
by an individual vehicle. The variability of the individual vehicle travel time during ∆t time interval can provide 
a confidence interval for the travel time estimate. The variability is obtained by fragmenting the total area A 
(Refer to Figure 1) as discussed below. 
We define cumulative plot, CP, as a polyline with MCP as the matrix of nodes for the polyline. The total area A, 
is fragmented into different areas (Ai) (refer to Figure 6), by horizontal cuts correspond to the nodes at MCPUS 
and MCPDS and with the following constraint: For each fragmented area, Ai, if the counts, Ni, are above a certain 
threshold number, Nthreshold, then the time interval for the arrival, tusi, and departure, tdsi, corresponding to the 
fragmented area should be under a certain threshold time interval (tthreshold). If not, then the area (Ai) is further 
fragmented by a horizontal cut to satisfy the constraints. The process is repeated until each fragmented area 
satisfies the constraints.  
Finally, each fragmented area (Ai) represents the total travel time for the Ni number of vehicles in the respective 
areas. Assuming that these Ni numbers of vehicles experience more or less similar travel time, the variability is 
obtained by the following equation: 
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Figure 6: Flowchart for variability estimation.  

 

3 Model testing on controlled environment 

To test the methodology described in the previous section a computerized model for travel time estimation is 
developed and is linked with a microscopic traffic simulator, AIMSUN(Barcelo et al., 2005). The use of 
simulation software for research is increasing, as they can efficiently represent the real world situation and 
reproduce its behaviour. For realistic representation of the network and reproduction of the network behaviour, 
the parameters for simulation model need to be calibrated. For a calibrated network, different scenarios can be 
simulated and the methodology can be tested for each scenario. 
The three different AIMSUN API modules used in this research are for extraction of a) signal controller data 
i.e., signal phases and its corresponding time b) detector data i.e., detector counts and occupancy for each 
detection interval and c) individual vehicle travel time. Detector data and signal data are inputs to the model for 
travel time estimation, which estimates average travel time for different intervals. Finally, the model is validated 
by comparing the average travel time estimated with the actual average travel time obtained from the individual 
vehicle API module. 
 

Computerized model for travel time estimation 

Model Testing 
 

Figure 7: Framework for testing the proposed model using AIMSUN simulation model 
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3.1 Test Bed and simulation conditions 

For simplicity only through movement at downstream intersection is considered. For upstream intersection the 
flow from three different directions are considered as shown in Figure 8. Both the upstream and downstream 
intersections are signalised with bottleneck at the downstream intersection. To consider different degrees of 
saturation for the study link, different demands on the upstream intersection are simulated. Scenarios for 
different degrees of saturation in the range of 0.5 to 1.2 are simulated with 10 replications each. For each 
scenario, the simulation is performed for an hour and average travel time for 6 minutes is considered. The 
sensitivity analysis for the model is performed for a fixed signal cycle of 120 seconds and detector detection 
interval from 10 to 360 seconds.  
 
 

 

US intersection DS intersection

Detectors which 
provide information 
for arrival curve 

Detector which provide 
information for 
departure curve 

1100 m

  

 
Figure 8: Test bed for the simulation. 

3.2 Simulation test results 

The performance of the model is defined in terms of accuracy (%) as follows: 

 

N
i i

ii=1

actual - estimated
actual

Accuracy(%) = (1 - )* 100
N

∑

 (6) 
Where, N is the total number of time intervals. Actuali  and estimatedi are the average actual travel time and 
average estimated travel time for each time interval, respectively. 
Figure 9 represents the graphs for detector detection intervals versus accuracy for the three cases. As expected, 
lower detection intervals have higher accuracy levels irrespective of the cases and for detection interval less than 
30 seconds the estimation is very accurate. Detection interval is not critical if signal timings are available. 
Comparable accuracy can be obtained from a) detector data from larger detection interval with signal timings 
and b) detector data from shorter detection interval without signal timings. If detection interval is short, then 
signal controller data and saturation flow rate is not necessary. For case-D, the performance is not consistent for 
different detection intervals and the accuracy around 80% when detection interval is close to integral multiple of 
signal cycle for instance 120, 240 and 360 in this example. This inconsistency in the performance for case-D is 
analysed in the next subsection. 
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Figure 9: Detector detection interval versus accuracy. 

 
The methodology to estimate of travel time variability presented in section 2.1 can provide reliable estimate 
only if cumulative plots are estimated accurately. Detector data from larger detection intervals with signal 
timings or detector data with shorter detection intervals have the flexibility to capture the randomness in the 
flow profiles and hence can be applied to estimate the variability. Figure 9, represents the graphs for actual 
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versus estimated travel time variability for the three cases under different detection interval. For lower detection 
interval, the estimation of variability is accurate for all the cases. However, for case-D under higher detection 
interval (Figure 9c) the estimated variability has significant deviation from that of actual variability. 
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Figure 10: Actual versus estimated travel time variability for three cases and different detection interval.  

4 Fundamental analysis for case-D and discussions 

Fluctuations in the flow from certain combinations of signal phases in the detection interval can result in 
significant error in the travel time estimation from the cumulative plots generated under case-D. To study this, a 
detection interval equal to signal cycle is considered. Four different combinations of signal phases in the 
detection interval are possible: a) RG combination: red period followed by green period; b) GR combination: 
green period followed by red period; c) RGR combination: green period between two red periods; and d) GRG 
combination: red period between two green periods. As demonstrated in Figure 11, for case-D, the CPUS(t) 
estimated for (a) RG combination has tendency to overestimate travel time and (b) GR combination has 
tendency to underestimate travel time. Whereas, in Figure 12, the CPDS(t) estimated based on: (a) RG 
combination has tendency to underestimate travel time and (b) GR combination has tendency to overestimate 
travel time. For RGR combination, the estimation for both CPUS(t) and CPDS(t) profiles can be either 
underestimated, overestimated or exact.  
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Figure 11 CPUS(t)  profile with detector detection interval equal to signal cycle at upstream intersection 
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Figure 12 CPDS(t) profile with detector detection interval equal to signal cycle at downstream intersection  

Figure 13 represents graph of actual average travel time versus estimated average travel time obtained from 
simulating following four different combinations of signal phases in the detection interval: a) RG_GR (++) 
combination b) GR_RG (--) combination c) GR_GR (-+) combination and d) RG_RG (+-) combination. Here, 
RG_GR (++) combination represents red phase followed by green phase in the detection interval at upstream 
intersection whereas, green phase followed by red phase in the detection interval at downstream intersection and 
so for others. 
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Figure 13: Performance for case-D under different combination of signal phases in the detection interval. 
 
The RG_GR (++) combination has the tendency to highly overestimate travel time. Conversely, GR_RG (--) 
combination has the tendency to highly underestimate travel time. In the present example, the GR_GR (-+) and 
RG_RG (+-) combinations results in exact estimation because the underestimate travel time at upstream is 
compensated by the overestimate travel time at downstream and vice versa.  
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Figure 14: Detector detection intervals versus accuracy graphs for the three different cases of data availability 

with GR_RG (--) combination. 
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Figure 15: Detector detection intervals versus accuracy graphs for the three different cases of data availability 

with GR_GR (-+) combination. 
 
Figure 14 and Figure 15 presents the detector detection intervals versus accuracy graphs for the three different 
cases for GR_RG(--) combination and GR_GR (-+) combination, respectively. The performance for case-D is 
highly sensitive to the signal phases in the detection interval. When detection interval is integral multiple of 
signal cycles (120 sec, 240 sec and 360 sec) then there is huge inconsistency in travel time estimation for case-
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D. This means that when only detector data is available, detection interval should be carefully chosen in order to 
provide reliable travel time information from this data. The performance for case-DS and case-DSS is consistent 
and is not sensitive to the signal phases in the detection interval. The accuracy is generally more than 95% and is 
within the acceptable limits. The integration of detector data with signal controller has the potential to improve 
the accuracy with better confidence in estimation.  
 

5 Conclusions and further research directions 

The model provides a reliable and good estimate for average travel time on a link between two consecutive 
signalised intersections. The performance of the model for case-DS and case-DSS is consistent for different 
detection intervals with the accuracy generally more than 95%. However, if only detector data is available (case-
D) then the error in the estimation is not consistent with different detection intervals. If the detection interval is 
close to integral multiple of signal cycle then the estimation can be very accurate or can have a significant error. 
The fundamental analysis for case-D with such uncertainty is also provided. For case-D, what matters is not how 
frequent the data is collected, but how the detection interval is related to signal timings. For instance, if signal 
cycle is two minutes and data is collected for four minutes interval then one can argue that for better confidence 
in travel time estimation one can collect the data for five minutes instead of four minutes which is twice the 
signal cycle.  
The results from the test of the model on a simulated network are encouraging, and the extension of the model to 
estimate travel time for different movements on the link is under development.  
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