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This paper investigates the shear strength of beams and one-way
slabs without stirrups based on the opening of a critical shear
crack. The shear-carrying mechanisms after the development of
this crack are investigated. On this basis, a rational model is developed
to estimate the shear strength of members without shear reinforcement.
The proposed model is based on an estimate of the crack width in
the critical shear region, taking also into account the roughness of
the crack and the compressive strength of concrete. The proposed
model is shown to properly describe a large set of available test
data. A simplified method adopted by the Swiss code for structural
concrete (SIA 262) is also introduced. Comparisons with other
codes of practice are finally presented, with a highlight on the
main differences between them.

Keywords: aggregate size; concrete compressive strength; crack width;
shear strength.

INTRODUCTION
Traditionally, shear dimensioning and checking of structural

concrete elements is performed differently on members with
or without shear reinforcement.

Several well-established theories based on equilibrium
considerations (strut-and-tie models1 and stress fields2,3) can
be applied when shear reinforcement is provided, leading to
safe design solutions. Theories also considering compatibility
conditions and the tensile strength of concrete (compression
field-based theories4,5 and fixed-angle softened-truss model6)
have also been developed allowing accurate predictions of
the shear response of transversely reinforced members.

The situation is, on the other hand, rather different
concerning shear in members without stirrups. These
members are instrumental in structural concrete, as the safety
of many structural systems relies on them (refer to Fig. 1).
Their shear strength has traditionally been estimated by
means of purely empirical or semi-empirical expressions.7

Some general theories, such as the modified compression
field theory4 (MCFT), have been successfully applied to
members without shear reinforcement, also leading to code-
based implementations.8 The use of such theories in practice
remains complicated, however, typically requiring the help
of computer programs or spreadsheets.9 Recently, some
simplified expressions based on the MCFT results have
been derived10 and proposed for the Canadian code for
structural concrete.11

Although an important effort has been made, currently
there is no generally accepted theory or physical model
explaining the response of members without stirrups.

This paper presents the basis and recent improvements of
the critical shear crack theory12,13 as well as its application
to one-way slabs or beams with rectangular cross sections.
The method is based on an estimate of the crack width in the
shear critical region and provides a rational basis for the
evaluation of the shear and punching shear strength of

members without stirrups. The principles of this theory were
first introduced in 1991.12 The results of the theory were
later introduced in the Swiss code for structural concrete
(SIA 162) in 1993. Further improvements of the theory for
shear of one-way slabs and punching shear13 were recently
taken into account in the new version of the Swiss code,14

which can be considered to be fully based on this theory for
the shear design of members without stirrups.

RESEARCH SIGNIFICANCE
Currently, there is no general agreement on a theory

describing the response of reinforced concrete members
without shear reinforcement. Many structural systems, however,
rely on such members. Their design is usually performed
using empirical or semi-empirical expressions provided by
codes of practice that do not consider the influence of many
governing parameters (reinforcement ratio, shear span,
aggregate size, and load configuration). This paper introduces
a theory that provides a rational basis to estimate shear strength.
The proposed theory is based on a physical model and, with
a number of reasonable simplifications, has been introduced
in 2003 into the Swiss code for structural concrete.14

INFLUENCE OF CRACKING ON SHEAR 
STRENGTH OF MEMBERS WITHOUT STIRRUPS
The application of the theory of plasticity to members

subjected to shear was initially investigated by Drucker15

who proposed several stress fields in which the load is
carried directly by inclined struts or arches (refer to Fig. 2).
According to this model, the strength of a beam is governed by
the yielding of the flexural reinforcement. The stress fields
proposed by Drucker were not found suitable for reinforced
concrete beams, however, leading to unsafe designs.
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Shear Strength of Members without Transverse 
Reinforcement as Function of Critical Shear Crack Width
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Fig. 1—Some structural elements without shear reinforcement
working predominantly as one-way slabs (only shear cracks
drawn): (a) wall and foundation of retaining wall; (b) upper
and lower slabs of cut-and-cover tunnel; and (c) deck slab
of bridge.
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The reason why the theory of plasticity is not applicable,
and thus why the flexural strength cannot be reached in
members without stirrups, can be understood with the help of
Fig. 3. In Fig. 3(a) and (b), two geometrically identical
beams tested by Leonhardt and Walther16 are presented
(shear span to effective depth ratio [a/d] equal to 2.77). In
Beam EA1, deformed bars were used, whereas in Beam EB1,
smooth bars were used. The failure load of Beam EA1
reached 50% of its strength according to the theory of plasticity,
whereas Beam EB1 reached 86%. This difference is due to
the inclined crack in Specimen EA1, which develops
through the theoretical compression strut, thus reducing its

strength. In Specimen EB1, thanks to the reduced bond
strength, only a limited part of the inclined crack developed
through the theoretical inclined strut, which significantly
increased the strength of the member.

The same phenomenon was observed in Beams BP0 and
BP2 by Muttoni and Thürlimann17 (refer to Fig. 3(d) and
(e)). In this case, two beams with geometrically identical shear
spans were tested to failure (a/d equal to 2.44). Beam BP0 had
only flexural reinforcement, whereas Beam BP2 additionally
contained a minimal reinforcement for crack control (spiral
∅6 mm at 60 mm [No. 2 at 2.36 in.]) in the region of the
theoretical strut where shear failure usually develops due to
diagonal tension. This reinforcement could not be used to carry
shear forces because it was not enclosing the main longitudinal
reinforcement, but was very effective in controlling the
width of the critical shear crack. The first beam (BP0) reached
50% of the strength according to the theory of plasticity. Beam
BP2, however, attained its full flexural strength because the
opening of the cracks within the inclined strut remained
limited thanks to the spiral reinforcement, and the strength of
the strut was not decreased.

The development of cracks through the inclined compression
strut of a beam and its influence in the member’s shear
strength shows a strong dependency on the a/d, a phenomenon
known as Kani’s valley.18 Figure 4 presents several tests
performed by Leonhardt and Walther16 where a/d was
varied from 1.5 to 8.0. For small values of a/d (Test B2), the
cracks practically do not develop through the inclined strut
and thus the flexural strength can be reached. For larger values
of a/d, cracks develop through the inclined struts, consequently
decreasing the shear strength of the member (Tests B4 and
B6). This phenomenon is less significant for very large
values of a/d (Beam B10/1) where the flexural strength is
again reached before the critical crack can develop.
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Fig. 2—Stress fields according to theory of plasticity for
one-way slabs in case of: (a) concentrated loads; and (b)
distributed loads.

Fig. 3—Influence of crack pattern in shear strength of beams: (a) and (b) Tests EA1
(deformed bars) and EB2 (smooth bars) by Leonhardt and Walther,16 cracking pattern and
theoretical strut position; (c) failure loads compared with strength according to theory of
plasticity for Beams EA1 and EB1; (d) and (e) Tests BP0 and BP2 by Muttoni and
Thürlimann,17 cracking pattern and theoretical strut position; and (f) failure loads compared
with strengths according to theory of plasticity for Beams BP0 and BP2.



ACI Structural Journal/March-April 2008 165

DEVELOPMENT OF CRITICAL SHEAR CRACK
The development of the critical shear crack, whose role

was discussed in the previous section, can be explained with
the help of Fig. 5. Considering the flexural cracking pattern
(Fig. 5(a)), various shear-carrying mechanisms may be
developed by a beam,7,12 namely, cantilever action (Fig. 5(b)),
aggregate-interlock (Fig. 5(c)), and dowel action (Fig. 5(d)).
These shear-carrying mechanisms induce tensile stresses in
concrete (Fig. 5(e)) near the crack tip (Zone A) and at the
level of the reinforcement (Zone B). Once the tensile
strength of the concrete in Zones A and B is reached, the
existing flexural cracks progress in a diagonal direction
(Zone A) or new ones are created (Zone B). As a consequence,
the capacity of the previous shear-carrying mechanisms is
reduced or even cancelled.

The development of the critical shear crack, however, does
not necessarily imply the collapse of the member. A new
shear-carrying mechanism, the arching action, may be
developed by the beam. Figure 6 shows two possibilities for
developing the arching action. The first one is the development
of an elbow-shaped strut12 that deviates the compression
strut to avoid the cracks. The development of an elbow-

shaped strut strongly depends on the actual crack pattern and
is limited by the tensile strength of the member (cracks may
appear close to the point of introduction of the load as shown
in Fig. 6(a)).

The second physical mechanism that allows the development
of the arching action is the direct strut that develops thanks to
the aggregate interlock in the critical shear crack (Fig. 6(b)).
If the center of rotation is located at the tip of the crack
(which is a rather reasonable assumption as confirmed by
some experimental measurements12,19), an opening of the
crack induces a transverse sliding between its lips (refer to
Fig. 7). Thus, aggregate interlock is activated and a strut (with
a limited strength) can develop through the critical crack.
The aggregate interlock depends on the crack geometry,

Fig. 5—Development of actual cracking pattern: (a) initial
flexural cracks; (b) cantilever action; (c) aggregate-interlock
action; (d) dowel action; (e) tensile stresses due to (b-d);
and (f) final crack pattern.

Fig. 6—Load-carrying mechanisms after development of
critical shear crack: (a) elbow-shaped strut; (b) straight strut
(enabled by aggregate interlock); and (c) combined response.

Fig. 7—Aggregate interlock after development of critical
shear crack: (a) actual crack pattern; (b) center of rotation
(CR) assuming two rigid bodies; and (c) normal (Δu) and
tangential (Δv) relative displacements between lips of crack.

Fig. 4—Influence of a/d on shear strength: (a) Tests B2, B4, B6, and BP10/1 by Leonhardt
and Walther,16 cracking pattern and theoretical strut position; and (b) Kani’s valley,
comparing actual strength with failure load according to theory of plasticity.
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crack opening, and roughness of the lips (which in turn is a
function of the aggregate size). Actually, both aggregate
interlock and the elbow-shaped strut are active at failure. The
response of a member consists of a combination of these two
mechanisms, as proposed in Fig. 6(c).

For certain cases, typically with large a/d, failure of the
member takes place during the propagation of the critical
shear crack. In these cases, dowel action may still have a
certain capacity to transmit shear forces at failure. However,
this contribution is neglected in this paper.

EXPERIMENTAL EVIDENCE FROM TEST BP017

This section discusses the role of the various shear-
carrying mechanisms previously introduced with reference
to Test BP0 by Muttoni and Thürlimann17 (Fig. 8(a)).

In this specimen, measurements of the longitudinal strain
were performed along the upper face of the beam (Fig. 8(b)).
These measurements show that, before failure, tensile strains
developed close to the point of introduction of the load, also
confirmed by the development of vertical cracks in the upper
face of the element, in agreement with the elbow-shaped
strut previously introduced.

Regarding the dowel action, its effect is very limited at
failure because the width of the crack developing parallel to
the reinforcement exceeded 2 mm (0.08 in.) (refer to Fig. 8(c)).
Another interesting measurement taken in Beam BP0 is the
change in the length of the strut shown in Fig. 8(d). It can be
seen that at approximately 90% of the failure load, the strut
exhibited a sharp strain increase for small load increments.
This is due to the development of the critical shear crack, and
thus to the bending of the elbow-shaped strut.

CRITICAL SHEAR CRACK THEORY
The shear strength of members without stirrups, traditionally

correlated to the square root of the concrete compressive
strength (after the works of Moody et al.20), is strongly
dependent on the critical shear crack width and on its roughness.
The critical shear crack theory reflects this dependency as
expressed in Eq. (1)

(1)
VR

bd
------ fc f w dg,( )=

Fig. 8—Test BP0 by Muttoni and Thürlimann17 (fc = 30.5 MPa [4.42 ksi]; dg = 16 mm
[5/8 in.]): (a) test setup; (b) crack pattern and horizontal strains along top fiber (points of
measurement indicated); (c) crack pattern and vertical elongation along diagonal crack
(points of measurement indicated); and (d) measured elongations in directions of
compression strut and of tension tie.
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where fc is the concrete compressive strength, w is the critical
shear crack width, and dg is the maximum aggregate size.
The following hypotheses are accepted:

1. The shear strength is checked in a section (depending on
the load configuration) where the width of the critical shear
crack can be adequately represented by the strain at a depth
0.6d from the compression face13 (refer to Fig. 9).

2. The critical crack width w is proportional to the product
of the longitudinal strain in the control depth ε times the
effective depth of element d

w ∝ εd (2)

A similar hypothesis has been proposed for punching
shear12 and for shear in beams.21,22 It should be noted that
Eq. (2) is valid for a rectangular cross section without skin
reinforcement on the side faces, as in reinforced concrete
slabs. On the contrary,23 reinforcement on the side faces
reduces the critical crack width, thus increasing the shear
strength of the member.

The longitudinal strain ε is evaluated in the critical region
assuming that plane sections remain plane and a linear-
elastic behavior in compression for concrete (neglecting its
tensile strength), as shown in Fig. 9(b).

If no axial force is applied, the strain in the control
depth can be derived based on the bending moment M in
the critical section

(3)

The depth of the compression zone c is

(4)

where Ec can be taken as Ec ≈ 10,000fc
1/3 in MPa (= 276,000fc

1/3

in psi).
Taking into consideration the effects of the critical crack

width, the aggregate size and the concrete compressive
strength, the following analytical expression is proposed to
evaluate the shear strength13

(5)

The shear strength can be obtained by substituting Eq. (3)
into Eq. (5) and solving the resulting quadratic equation. For
high-strength concrete (fc > 60 MPa [9000 psi]) or light-
weight concrete, dg should be taken equal to zero because the
cracking surface develops through the aggregates as
proposed by Collins et al.9,10

This expression is compared in Fig. 10 with the results of
150 shear tests with concentrated loads and 16 tests with
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uniform loading for normal and high-strength concrete. Further
details of the agreement with 285 shear tests (comprising
tests with tension and compression axial forces, lightweight
aggregate, and high-strength concrete) are given in Table 1. 

The expression provided in ACI 318-0524 is also plotted in
Fig. 10. It can be noted that for small values of εd/(16 + dg),
the code gives rather conservative results (for ε = 0, Eq. (5)
predicts two times the shear strength from ACI 318-05). For
large values of εd/(16 + dg), however, very unconservative
shear strengths are obtained. This can be traced back to the
fact that the ACI formula was originally proposed in 196336

when only tests with relatively small effective depths were
available and the influence of size effect was thus not included. 

All test results presented in Fig. 10 correspond to values of
a/d greater than 2.9 (or 2.5 for the continuous beams detailed
in Reference 23). These are usual cases in practice. Conser-
vative results are obtained for values of a/d between 1 and 3.

Fig. 9—Critical shear crack model: (a) critical section for point
loading and distributed loading; and (b) determination of longi-
tudinal strain in control depth using internal forces N and M.

Fig. 10—Comparison of Eq. (5) and ACI 318-0524 with test
results for normal and high-strength concrete members: (a)
concentrated loading; and (b) distributed loading.
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SIMPLIFIED DESIGN METHOD—CODE PROPOSAL
In this section, a simplified design method based on Eq. (5)

is introduced. The following hypotheses are adopted.
1. The value of ε is estimated assuming that the depth of

the compression zone c is equal to 0.35d (which is a reasonable
value accounting for various reinforcement ratios and
concrete strengths), thus

(6)

2. εs (the reinforcement strain) is assumed proportional to
the bending moment mEd. At yielding (mEd = mRd), its value
is εs = fyd /Es, where fyd is the design strength of the reinforcement
(= fyk/γs ≈ φs fy).

3. The flexural strength can be estimated (according to the
theory of plasticity) as: mRd = ρd2fyd (1 – ρfyd /(2fcd)), where fcd
is the design compressive strength of concrete (= fck /γc ≈ φc fc′ ).

ε εs
0.6d c–

d c–
------------------- 0.41εs≅=

With the previous hypotheses, introducing the concrete
partial safety factor γc (or the concrete strength reduction
factor φc) and referring the shear strength to the target 5%
fractile, Eq. (5) leads to

(7)

Equation (7) can be simplified introducing the usual value
of some of its parameters. For instance, if the following values
are adopted: Es = 205,000 MPa (29,700 ksi); fyd = 435 MPa
(φs fy = 63 ksi, design strength of the reinforcement); dg =
32 mm (5/4 in.) and γc = 1.5 (≈ 1/φc), it becomes

(8)

This equation has been adopted by the Swiss Code for
structural concrete.14 Design based on Eq. (8) is very simple
because mEd/mRd can be set to 1.0 as an initial (and
conservative) value. If the shear strength of the member is
found to be insufficient, a more refined estimate of mEd/mRd
can be introduced later. 

The following points should be considered:
1. The aggregate size needs to be set to zero for high-

strength concrete (fck > 60MPa [fc′ > 9000 psi]) or for light-
weight aggregates. This accounts for the fact that in these
cases, cracks develop through the aggregates.

2. The value of  mEd /mRd has to be multiplied by 1.5 in
development or anchorage zones (refer to Fig. 11) to account
for the localization of the cracks. The shear strength reduction
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Fig. 11—Cracking pattern in Beams HV0, HV1, and HV237

with reinforcement cutoffs.

Table 1—Comparison between several test results 
and Eq. (5) and (8)

Year No.

Refined method 
Eq. (5)

Simplified method 
Eq. (8)

Mean 
value

Coefficient 
of variation

Mean 
value

Coefficient 
of variation

Concentrated loads

Normal-strength 
concrete (fc < 60 MPa 
[9000 psi]) without 

axial force

195725 12 0.94 0.04 1.09 0.07

195926 3 1.01 0.14 0.98 0.14

196216 12 1.03 0.10 1.13 0.11

196927 7 0.99 0.09 1.15 0.12

197918 69 0.97 0.08 1.12 0.11

198428 3 0.99 0.02 1.03 0.11

198629 6 0.93 0.08 1.02 0.08

198730 3 1.22 0.15 1.13 0.10

199923 20 1.01 0.12 1.03 0.12

Σ 135 0.98 0.10 1.10 0.11

High-strength 
concrete (fc > 60 MPa 
[9000 psi]) without 

axial force

198629 7 1.00 0.09 1.08 0.06

199923 8 0.97 0.09 0.94 0.08

Σ 15 0.98 0.09 1.01 0.10

Lightweight
concrete without 

axial force

196331 24 0.93 0.07 1.02 0.07

196732 20 1.06 0.09 1.16 0.10

198428 6 1.00 0.06 1.07 0.08

Σ 50 0.99 0.10 1.08 0.10

Normal-strength 
concrete with 

compression axial 
force

195725 18 1.00 0.09 1.17 0.08

196927 5 0.93 0.02 1.15 0.07

Σ 23 0.99 0.09 1.17 0.08

Normal-strength 
concrete with

tension axial force

196927 10 0.98 0.09 1.12 0.10

200233 36 1.05 0.09 1.08 0.10

Σ 46 1.03 0.09 1.09 0.10

Distributed loading

Normal-strength 
concrete (fc < 60 MPa 
[9000 psi]) without 

axial force

196216 7 0.99 0.03 1.12 0.03

198534 4 0.96 0.13 0.93 0.14

198935 5 0.90 0.10 0.86 0.10

Σ 16 0.95 0.09 0.99 0.14

Total 285 0.99 0.10 1.09 0.11

Note: All beams with rectangular cross section; without shear reinforcement (or skin
reinforcement along side faces); without prestressing and failing in shear.



ACI Structural Journal/March-April 2008 169

in cut-off zones is also taken into account in ACI 318-0524

where the shear strength is reduced by a factor 1.5.
3. If the reinforcing bars are not parallel to the principal

shear directions, mEd /mRd has to be multiplied by the
following coefficient

(9)

where θ is the angle between the direction of the reinforcement
and the principal shear direction. This coefficient38 accounts
for the fact that flexural cracks are wider when the reinforcement
is not parallel to the principal shear direction. 

4. When an axial force is applied to the member, the critical
crack width may be increased or diminished. To take this
phenomenon into account, mEd has to be replaced by
(mEd – mDd) and mRd by (mRd – mDd), where mDd is the
decompression moment (bending moment causing εs = 0),
whose value can be taken as

(10)

where d′ is the distance from the extreme compression fiber
to the centroid of the longitudinal compression reinforcement.
Also, an effective shear span aeff has to be considered to
account for the effect of the axial force on the arching action

(11)

5. The value of 0.0022 (0.056) in Eq. (8) is valid when the
internal forces are obtained from an elastic analysis. If they
result from a plastic analysis, considering internal force
redistributions, this value should be taken to 0.003 (0.077).
This accounts for the fact that yielding of the longitudinal
reinforcement produces a notable increase in the width of the
critical crack, consequently reducing the shear strength of
the member.19

INFLUENCE OF LOAD CONFIGURATION AND 
MEMBER GEOMETRY ON SHEAR STRENGTH
The control section for beams subjected to concentrated

loading is taken at d/2 from the point of load introduction
(refer to Fig. 9(a)). This choice is justified because the shear
force is constant along the shear span, but close to midspan,
the bending moments are maximal (thus, the cracks are
wider and, consequently, the shear strength is minimal).

For beams subjected to distributed loading, however, the
choice of the critical section is not so straightforward. Close
to the midspan, the bending moments are maximal but the
shear force is minimal. On the contrary, near the supports,
the shear force increases but so also does the shear strength
(because the bending moments are reduced). The critical
section is located at the point where the shear strength equals
the value of the shear force. When investigating this location,
the presence of lap splices, reinforcement cutoffs and changes
in the effective depth of the beam need to be considered
because they can lead to a localization of the critical crack,
thus reducing the shear strength of the member.

1
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The location of the control section for usual cases (beams
with constant reinforcement and effective depth subjected to
uniform loading) is investigated in Fig. 12. Two representative
cases are presented in Fig. 12(b), corresponding to small and
large effective depths. The control section (located at the
point where the shear strength line and the shear force line
are tangent) is located close to the supports for small depths,
shifting to 0.17L0 for large effective depths. Figure 12(c)
plots the value of the uniform load causing the shear failure
at each section of the beam for various effective depths
(where the minimum of each curve is located at the control
section). The curves are very flat around the minimum.
Consequently, variations on the location of the shear control
section lead to small differences in the failure load of the
beam. Therefore, it is proposed to check the shear strength of
such members at d/2 and at L0/6 from the support (the effective
failure load being the minimum of these two values).

Fig. 12—Shear critical section for distributed loading:
(a) geometry and mechanical parameters investigated;
(b) location of critical sections (tangent between strength and
action lines) for two effective depths; and (c) required load
to develop shear failure at each section of beam and minimum
(indicating shear critical section) for various effective depths.
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COMPARISON WITH TEST RESULTS AND 
VARIOUS CODES OF PRACTICE

The results of Eq. (5) and (8), on which the current Swiss
code14 is based, are compared in this section with some experi-
mental data as well as the provisions detailed in other codes of
practice: EC-239 and ACI 318-0524 in Fig. 13 and CSA
A23.3-0411 and AASHTO LRFD8 in Fig. 14 (γc = φc = 1.0).

The influence of the following parameters has been
investigated:

1. Parameters influencing the width of the shear critical
crack: effective depth of the beam d, reinforcement ratio ρ,
modulus of elasticity of the reinforcement Es, and a/d;

2. The aggregate size dg, which governs aggregate inter-
lock: its value is set to zero when the compressive strength
of concrete is larger than 60 MPa (9000 psi) or for light-
weight concrete, as previously stated; and

3. The compressive strength of concrete fc: this parameter
appears in Eq. (1) and proposes a linear increase of the shear

strength with the square root of fc. When the concrete
compressive strength is increased, however, larger strains
are developed by the reinforcement (resulting in larger
widths of the critical shear crack) due to the increase in the
shear failure load. Thus, a less than proportional relationship
between the square root of fc and the shear strength results. 

The comparison shows that formulations based on physically
sound models (AASHTO LRFD and CSA based on the MCFT,
and Eq. (5) and SIA 262 based on the critical shear crack
theory) give the best agreement when compared with test
data, leading to similar trends for the various parameters.
Empirical formulations24,39 present larger scatters and may
neglect the role of some governing parameters.

CONCLUSIONS
This paper investigates the shear strength of members

without transverse reinforcement, introducing the fundamentals
of the critical shear crack theory. The main conclusions are:

Fig. 13—Comparison of Eq. (5), SIA 262,14 EC-2,39 and ACI 318-0524 (corrected by ACI
440.1R-0140 in plot (g)) for various cases: (a) geometrical and mechanical parameters;
(b) and (c) tests by Kani;18 (d) and (f) tests by Walraven;28 (e) tests by Angelakos et al.;9

and (g) tests by El-Sayed et al.41 with steel, carbon fiber; and glass fiber reinforcement.
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1. The plasticity-based solutions with an inclined
compression strut overestimate the shear strength when a
critical shear crack develops inside the theoretical strut;

2. Shear is initially resisted by three shear-carrying
mechanisms: cantilever action, aggregate interlock, and
dowel action. These mechanisms create a state of tensile
stresses in the concrete that leads to the development of the
critical shear crack;

3. The development of the critical shear crack cancels the
three previous shear-carrying mechanisms. A new one, the
arching action, is activated;

4. The parameters governing the arching action (and thus
the shear strength) are the location of the critical shear crack,
its width, and the aggregate size;

5. The shear strength can be satisfactorily estimated
considering the effect of the previous parameters. To that
end, an analytical expression is proposed with good agreement
to 285 test results;

6. A simplified design method (adopted by the Swiss
code14) is detailed as well as its application to practical cases.
The influence of parameters such as the load configuration,

member geometry, presence of an axial force, and reinforcement
arrangement can be easily investigated using this simplified
method; and

7. Comparisons between several test results, the expressions
proposed in this paper, and those of some current codes of
practice are presented. Empirical models24,39 do not satis-
factorily agree with many of the test results and the influence
of some governing parameters is not suitably reflected.
AASHTO LRFD,8 and CSA A23.3-04,11 based on the
MCFT, show a good agreement in the cases investigated. Also,
very good results are obtained with the Swiss code14 based on
the critical shear crack theory. Both theories are physically
sound and, although developed from different approaches,
propose similar expressions with the same governing
parameters, auguring a promising agreement in this field. 

NOTATION
a = shear span
aeff = effective shear span
b = thickness of member
c = depth of compression chord
d = effective depth 
d′ = distance from extreme compression fiber to centroid of longitudinal

Fig. 14—Comparison of Eq. (5), SIA 262,14 CSA A23.3-04,11 and AASHTO LRFD8 for
various cases: (a) through (g) same geometry and tests as in Fig. 13.
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compression reinforcement
dg = aggregate size
Ec = modulus of elasticity of concrete
Es = modulus of elasticity of reinforcement
fc = compressive strength of concrete
fc′ = specified concrete uniaxial strength in compression (American

practice)
fck = characteristic compressive cylinder strength of concrete (European

practice)
fy = Yield strength of reinforcement
fyd = Design yield strength of reinforcement (European practice)
h = height of cross section
L0 = equivalent span (distance between points of zero bending moment)
l = length of element
md = design (factored) moment divided by width of cross section
mEd = design (factored) moment per unit length in critical section 
mRd = plastic design (factored) moment per unit length in critical section
qd = design (factored) value of distributed load
u = perpendicular relative displacement between lips of crack
V = shear force
VR = shear strength
v = parallel relative displacement between lips of crack
vd = design (factored) shear force divided by width of cross section
w = total relative displacement between lips of crack
x = location of given section
xcrit = location of critical shear section
ε = strain
εs = steel strain
φc = concrete strength reduction factor (American practice)
φs = steel strength reduction factor (American practice)
γc = concrete partial safety factor (European practice)
γs = steel partial safety factor (European practice)
θ = longitudinal reinforcement ratio
ρ = angle between reinforcement and shear principal direction

REFERENCES
1. Schlaich, J.; Schäfer, K.; and Jennewein, M., “Toward a Consistent

Design of Structural Concrete,” PCI Journal, May-June 1987, pp. 75-150.
2. Muttoni, A., “The Applicability of the Theory of Plasticity in the Design

of Reinforced Concrete,” Report No. 176, Zürich, Switzerland, 1989, 159 pp.
3. Muttoni, A.; Schwartz, J.; and Thürlimann, B., Design of Concrete

Structures with Stress Fields, Birkhaüser/Springer, 1997, 145 pp.
4. Vecchio, F. J., and Collins, M. P. “The Modified Compression Field

Theory for Reinforced Concrete Elements Subjected to Shear,” ACI JOURNAL,
Proceedings V. 83, No. 2, Mar.-Apr. 1986, pp. 219-231.

5. Vecchio, F. J., “Disturbed Stress Field Model for Reinforced Concrete:
Formulation,” Journal of Structural Engineering, ASCE, V. 126, No. 9,
Sept. 2000, pp. 1070-1077.

6. Pang, X.-B., and Hsu, T. T. C., “Fixed Angle Softened Truss Model
for Reinforced Concrete,” ACI Structural Journal, V. 93, No. 2, Mar.-Apr.
1996, pp. 197-207.

7. Joint ACI-ASCE Committee 445, “Recent Approaches to Shear
Design of Structural Concrete,” Journal of Structural Engineering, ASCE,
V. 124, No. 12, 1998, pp. 1375-1417.

8. AASHTO LRFD, “Bridge Design Specifications and Commentary,”
3rd Edition, American Association of State Highway Transportation Officials,
Washington, DC, 2004, 1264 pp.

9. Angelakos, D.; Bentz, E. C.; and Collins, M. P., “Effect of Concrete
Strength and Minimum Stirrups on Shear Strength of Large Members,”
ACI Structural Journal, V. 98, No. 3, May-June 2001, pp. 290-300.

10. Bentz, E. C.; Vecchio, F. J.; and Collins, M. P., “Simplified Modified
Compression Field Theory for Calculating Shear Strength of Reinforced
Concrete Elements,” ACI Structural Journal, V. 103, No. 4, July-Aug.
2006, pp. 614-624.

11. CSA Committee A23.3, “Design of Concrete Structures (CSA
A23.3-04),” Canadian Standards Association, Mississauga, ON, Canada,
2004, 214 pp.

12. Muttoni, A., and Schwartz, J., “Behaviour of Beams and Punching in
Slabs without Shear Reinforcement,” Proceedings of the IABSE Colloquium,
V. 62, Stuttgart, Germany, 1991, pp. 703-708.

13. Muttoni, A., “Shear and Punching Strength of Slabs Without Shear
Reinforcement,” Beton-und Stahlbetonbau, V. 98, 2003, pp. 74-84.

14. Swiss Society of Engineers and Architects, “SIA Code 262 for Concrete
Structures,” Zürich, Switzerland, 2003, 94 pp.

15. Drucker, D. C., “On Structural Concrete and the Theorems of Limit
Analysis,” Publications, International Association for Bridge and Structural
Engineering, V. 21, Zürich, Switzerland, 1961, pp. 49-59.

16. Leonhardt, F., and Walther, R., “Shear Tests on Beams With and
Without Shear Reinforcement,” Deutscher Ausschuss für Stahlbeton, No. 151,
1962, 83 pp.

17. Muttoni, A., and Thürlimann, B., “Shear Tests on Beams and Slabs
Without Shear Reinforcement,” Institut für Baustatik und Konstruktion,
Zürich, Switzerland, 1986, 12 pp.

18. Kani, M. W.; Huggins, M. W.; and Wittkopp, R. R., “Kani on Shear
in Reinforced Concrete,” Department of Civil Engineering, University of
Toronto, Toronto, ON, Canada, 1979, 97 pp.

19. Vaz Rodrigues, R.; Burdet, O.; and Muttoni, A., “Experimental
Investigation of the Shear Capacity of Plastic Hinges,” V. 2, fib Symposium,
Budapest, Hungary, 2005, pp. 651-656.

20. Moody, K. G.; Viest, M.; Elstner, R. C.; and Hognestad, E., “Shear
Strength of Reinforced Concrete Beams—Part 1: Tests of Simple Beams,”
ACI JOURNAL, Proceedings V. 51, No. 4, Apr. 1954, pp. 317-332.

21. Reineck, K.-H., “Ultimate Shear Force of Structural Concrete Members
Without Transverse Reinforcement Derived from Mechanical Model,” ACI
Structural Journal, V. 88, No. 5, Sept.-Oct. 1991, pp. 592-602.

22. Collins, M. P.; Mitchell, D.; Adebar, P.; and Vecchio, F. J., “A General
Shear Design Method,” ACI Structural Journal, V. 93, No. 1, Jan.-Feb.
1996, pp. 36-45.

23. Collins, M. P., and Kuchma, D., “How Safe Are Our Large, Lightly
Reinforced Concrete Beams, Slabs, and Footings?” ACI Structural Journal,
V. 96, No. 4, July-Aug. 1999, pp. 482-490. 

24. ACI Committee 318, “Building Code Requirements for Structural
Concrete (ACI 318-05) and Commentary (318R-05),” American Concrete
Institute, Farmington Hills, MI, 2005, 430 pp.

25. Morrow, J., and Viest, I. M., “Shear Strength of Reinforced Concrete
Frame Members Without Web Reinforcement,” ACI JOURNAL, Proceedings
V. 53, No. 3, Mar. 1957, pp. 833-869. 

26. Sozen, M. A.; Zwoyer, E. M.; and Siess, C. P, “Strength in Shear of
Beams Without Web Reinforcement,” Bulletin No. 452, University of Illinois,
Urbana, IL, 1959, 69 pp.

27. Mattock, A. H., “Diagonal Tension Cracking in Concrete Beams
with Axial Forces,” Journal of the Structural Division, ASCE, V. 95, No. ST9,
1969, pp. 1887-1900.

28. Walraven, J. C., “The Influence of Depth on the Shear Strength of
Lightweight Concrete Beams without Shear Reinforcement,” Report 5-78-4,
Delft University of Technology, Faculty of Civil Engineering, Delft, the
Netherlands, 1984, 36 pp.

29. Elzanaty, A. H.; Nilson, A. H.; and Slate, F. O., “Shear Capacity of
Reinforced Concrete Beams Using High-Strength Concrete,” ACI JOURNAL,
Proceedings V. 83, No. 2, Mar.-Apr. 1986, pp. 290-296.

30. Niwa, J.; Yamada, K.; Yokozawa, K.; and Okamura, H., “Reevaluation
of the Equation for Shear Strength of Reinforced Concrete Beams without
Web Reinforcement,” Concrete Library of JSCE, No. 9, 1987, pp. 65-84. 

31. Taylor, R., and Brewer, R. S., “The Effect of the Type of Aggregate
on the Diagonal Cracking of Reinforced Concrete Beams,” Magazine of
Concrete Research, V. 15, No. 44, 1963, pp. 87-92. 

32. Ivey, D. L., and Buth, E., “Shear Capacity of Lightweight Concrete
Beams,” ACI JOURNAL, Proceedings V. 66, No. 6, June 1969, pp. 634-643. 

33. Kuhlmann, U.; Zilch, K.; Ehmann, J.; Jähring, A.; and Spitra, F.,
“Shear Strength in Composite Beams with Reinforced Cracked Deck Slabs
in Tension without Shear Reinforcement,” No. 2002-2, Universität Stuttgart,
Institut für Konstruktion und Entwurf, 2002, 109 pp. 

34. Shioya, T., and Okada, T., “The Effect of the Maximum Aggregate
Size on Shear Strength of Reinforced Concrete Beams,” Japan Concrete
Institute, 1985, pp. 521-524.

35. Shioya, T., “Shear Properties of Large Reinforced Concrete Member,”
Special Report of the Institute of Technology, No. 25, Shimizu Corporation,
1989, 198 pp. 

36. ACI Committee 318, “Building Code Requirements for Reinforced
Concrete (ACI 318-63),” American Concrete Institute, Farmington Hills,
MI, 1963, 144 pp.

37. Leonhardt, F.; Walther, R.; and Dilger, W., “Shear Tests on Continuous
Beams,” Deutscher Ausschuss für Stahlbeton, No. 163, 1964, 138 pp.

38. Muttoni, A., “Members without Shear Reinforcement,” Introduction
to the Swiss Code SIA 262, Documentation D0182, Swiss Society of Engineers
and Architects, Zürich, Switzerland, 2003, pp. 47-55.

39. Eurocode 2, “Design of Concrete Structures: General Rules and
Rules for Buildings,” Part 1-1, 2004, 222 pp.

40. ACI Committee 440, “Guide for the Design and Construction of
Concrete Reinforced with FRP Bars (ACI 440.1R-01),” American Con-
crete Institute, Farmington Hills, MI, 2001, 41 pp.

41. El-Sayed, A. K.; El-Salakawy, E. F.; and Benmokrane, B., “Shear
Strength of FRP-Reinforced Concrete Beams without Transverse Reinforce-
ment,” ACI Structural Journal, V. 103, No. 2, Mar.-Apr. 2006, pp. 235-389.


