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ABSTRACT

This paper analyzes the performance of the simple threshold-
ing algorithm for sparse signal representations. In particular,
in order to be more realistic we introduce a new probabilistic
signal model which assumes randomness for both the ampli-
tude and also the location of nonzero entries. Based on this
model we show that thresholding in average can correctly re-
cover signals for much higher sparsity levels than was previ-
ously reported. The bounds we obtain in this paper are based
on a new concept of average dictionary coherence and are
shown to be much sharper than in former works [1, 2].

Index Terms— Sparse representation, redundant dictio-
nary, cumulative and average coherence, Thresholding

1. INTRODUCTION

Sparse approximation is a fairly new branch of applied math-
ematics and signal processing that is mostly concerned with
the problem of finding a sparse solution to an undetermined
system of equations:

y = Φx, s.t. ||x||0 = s. (1)

The notation ‖x‖0 counts the number of nonzero entries
in the d-dimensional vector x and Φ is a d × m matrix, of-
ten called dictionary, where m >> d >> s. It is often as-
sumed that the columns (atoms) of the dictionary have unit `2
norm. There has been an impressive research activity recently
in using sparse signal models such as (1) for problems such
as denoising, compression, missing data estimation (inpaint-
ing) [3, 4, 5, 6]. The rationale behind these applications is to
extend a key property of wavelet-like decompositions : find-
ing a basis where signals are sparsely approximated which
somehow means compacting information in few coefficients
such that it becomes very robust to noise or can be efficiently
encoded. Using redundant dictionaries offers the possibility
to model complex behaviors that a single basis cannot catch.

This increase in flexibility comes at the expense of higher
algorithmic complexity. In particular, problem (1) is known
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to be NP-hard and cannot thus be tackled directly. A com-
mon solution is to relax the sparsity constraint by penalizing
‖x‖1 instead of ‖x‖0. That modification leads to a simpler
problem, known as Basis Pursuit (BP) [7] that can be eas-
ily solved with linear programming methods. Another com-
mon approach is to attack the problem using greedy heuristics
such as Matching Pursuit (MP) or Orthogonal Matching Pur-
suit (OMP) [8, 9, 10]. The good behavior of these algorithms
in practice has fueled an intense activity for understanding
their theoretical properties and limitations. A detailed ac-
count is far beyond the scope of this paper, however so far
it is schematically known that the solution of (1) can be re-
covered by BP or greedy algorithms provided the dictionary
is not too redundant and the signal is sparse enough. More
precisely, let ϕk be the k-th column of Φ and define the Cu-
mulative Coherence of order l as follows :

µl(s) = max
Λ s.t. |Λ|=s

max
j
µl(j,Λ). (2)

where, µl(j,Λ) = (
∑
i∈Λ |〈ϕj , ϕi〉|l)1/l. Worst case analy-

sis guarantees that those algorithms can recover the correct
sparse vector x provided its sparsity is at most of the order
square root of the ambient dimension d, i.e

µ1(s) ≈ s√
d

/ 1. (3)

It is important to realize that this bound is very lose, which
should come as no surprise since it represents the worst possi-
ble configuration for the coefficient vector x. In reality, most
signals will be substantially milder than this extreme case and
indeed simulations show that in average, algorithms can re-
cover signals that are much less sparse than (3). It is therefore
of primal importance to understand the behavior of sparse ap-
proximation algorithms in the average sense and not just in
the worst case. So far, there have been very few attempts at
characterizing these kind of average case behavior, and it is
the main goal of this short paper to actually provide new re-
sults in that direction.

More precisely, the main contribution of this paper resides
in the analysis of randomness in sparse approximation. Here,
in addition to drawing nonzero coefficients at random, the



sparse support (Λ) of x, i.e the location of those nonzero en-
tries, is also randomly chosen. We apply this idea to study
the performance of a recent greedy-based algorithm which
is called Thresholding due to its less complexity. This pa-
per is organized as following. In the next section we start
by defining precisely our sparse signal model, which is in-
spired from [2, 1]. In Section 3 we quickly survey similar
approaches and highlight the main differences with the cur-
rent contribution. Our main result is then stated and proved in
Section 4 and Section 5 illustrates our findings with numer-
ical simulations. Finally, we give conclusions and highlight
interesting future research alleys in Section 6.

2. SIGNAL MODEL AND RECOVERY ALGORITHM

Let us first rewrite equation (1) in a form that highlights the
support of the sparse vector in a cleaner way :

y = ΦΛxΛ. (4)

where xΛ is a s-dimensional vector which contains nonzero
entries of x and ΦΛ is the restriction of the dictionary matrix
to columns listed by Λ (support set of cardinality s). In order
to avoid considering only the worst case, we draw xΛ from
i.i.d Gaussian entries with zero mean and unit variance and
we will assume that the locations of nonzero elements (Λ)
have a uniform distribution among all

(
s
m

)
possible choices.

Moreover the focus of this paper is on the simple Thresh-
olding algorithm. Basically this algorithm simplifies MP by
just looking in a single pass for the smost correlated atoms of
the dictionary with the signal to determine the support set (Λ)
i.e. indices of the s biggest entries of Φ∗y. Eventually, syn-
thesis coefficients are computed by projecting the signal onto
this recovered subspace using xΛ = Φ†Λy, where † denotes
the Moore-Penrose pseudo-inverse. Note though that in this
paper we will only focus on recovering the correct support Λ.

Choosing Thresholding as the sparse recovery algorithm
makes things easier. However this come at the expense of
very sensitive behavior to the dynamic range of nonzero co-
efficients, R = min |xi|/||x||∞. In comparison to what we
have seen for BP or MP in (3), here the worst case analysis
indicates a recovery constraint as s / R/µ−1, where R can
be very small in our signal model, see [2].

3. PRIOR ART

Regarding average case performances, only a handful of re-
search papers seems relevant. In [11], Tropp studied random
subdictionaries ΦΛ of a dictionary and showed this random-
ness on the support in average, leads to a better recovery con-
dition. The early model which incorporates randomness for
the coefficients was introduced in [1], where average case of
single channel thresholding was first studied. However that
paper focuses on a case that only coefficients’ signs are cho-
sen at random, while their amplitude is kept constant, quite

tough constrain regarding real world signals. What we have
found the closest to ours is [2] where coefficients drawn
from a Gaussian distribution and also some average case re-
sults were obtained for thresholding and OMP. However, this
model is only valid in the case of multichannel signals and
does not scale down to a single signal as we are studying here.
Moreover in both [1] and [2], the probability of recovering Λ
is proportional to the number of elements m in the dictionary,
which can be very large for redundant dictionaries. As a con-
sequence, the associated bounds are very loose. In the next
section, we study the average performances of thresholding
on the signal model depicted in Section 2 where both Λ and
xΛ are chosen at random. As we will see below, we obtain
bounds that are much closer to practice than those obtained
in the aforementioned papers. Moreover, our results are ex-
pressed in terms of the average coherence of the dictionary
instead of the cumulative coherence in former results.

4. MAIN RESULTS

Before getting any further, let us define a new quantity that
plays a central role in this paper.

Definition 1 The Average Coherence of order s is given by

ρ2(s) = EΛ
s.t. |Λ|=s

{β(Λ)}, (5)

where β(Λ) = maxj /∈Λ µ
2
2(j,Λ).

It is easy to see that the cumulative coherence is linked to
β(Λ) since µ2

2(s) = maxΛ β(Λ) but while µ2 measures the
highest coherence among s atoms, ρ2(s) tries to determine
this value in average by choosing Λ from a uniform distri-
bution. It is now time to go through the main theorem of
the paper in order to upper bound the failure probability of
Thresholding.

Theorem 2 The probability that Thresholding fails to iden-
tify the correct support set Λ of a s sparse signal is bounded
by:

Pf ≤ s
(
1− 2Q(γ)

)
+ 2(m− s)Q(

γ

ρ(s)
). (6)

where,

γ2 =
2ρ2(s)

1− ρ2(s)
ln
(m− s
s ρ(s)

)
, (7)

and Q(x) = 1√
2π

∫∞
x
er

2/2dr.

Proof. We start the proof by assuming an arbitrary support
set Λ and defining the failure event as the fact that the corre-
lation between the signal and any of the out-support atoms
becomes larger than the weakest in-support correlation i.e :

Pf (Λ) = P (min
i∈Λ
|〈ϕi, y〉| < max

j /∈Λ
|〈ϕj , y〉|) (8)

= P (min
i∈Λ
|ϕ∗iΦΛxΛ| < max

j /∈Λ
|ϕ∗jΦΛxΛ|). (9)



Further, we upper bound this probability by the probability
that the minimum correct component is smaller than a fixed
threshold η, while the projections on the wrong components
are larger than this threshold :

Pf (Λ) ≤ P (min
i∈Λ
|ϕ∗iΦΛxΛ| < η) + P (max

j /∈Λ
|ϕ∗jΦΛxΛ| > η)

≤ P (
⋃
∀i∈Λ

|ϕ∗iΦΛxΛ| < η) + P (
⋃
∀j /∈Λ

|ϕ∗jΦΛxΛ| > η)

(10)

≤
∑
i∈Λ

P (|ϕ∗iΦΛxΛ| < η) +
∑
j /∈Λ

P (|ϕ∗jΦΛxΛ| > η).

(11)

Note that in (10) we use a union bound in both summa-
tions. On the other hand, as we assumed the elements of xΛ

to be i.i.d Gaussian with zero mean and unit variance, we can
rewrite (11) as follows:

Pf (Λ) ≤
∑
i∈Λ

1− 2Q
( η

||ϕ∗iΦΛ||2
)

+
∑
j /∈Λ

2Q
( η

||ϕ∗jΦΛ||2
)
.

(12)

According to Definition 1, for the off support atoms we
have ||ϕ∗jΦΛ||22 ≤ β(Λ). Moreover, assuming a normal-
ized dictionary, for the components on the support we have
||ϕ∗iΦΛ||2 ≥ 1. Inserting these bounds in (12), we get:

Pf (Λ) ≤ s
(
1− 2Q(η)

)
+ 2(m− s)Q(

η√
β(Λ)

). (13)

As previously mentioned, this inequality holds for all val-
ues of η. Therefore, to have the tightest bound, we take the
optimal choice of η which minimizes (13) as follows:

η2
opt =

2β(Λ)
1− β(Λ)

ln
( m− s
s
√
β(Λ)

)
. (14)

So far, we have found an upper bound of the failure prob-
ability which depends on the choice of the support set. The
last step to complete our proof is to average this value over all
choices of Λ. Observe that minimizing the failure probabil-
ity by taking ηopt, Pf becomes a concave function of β(Λ).
Using Jensen’s inequality, we thus get:

EΛ{Pf (β(Λ))} ≤ Pf (EΛ{β(Λ)}), s.t. |Λ| = s (15)

= Pf (ρ2(s)). (16)

Here, Pf is the minimal function based on ηopt and (16) is
based on our previous definition. Substituting ρ2(s) instead
of β(Λ) in both (13) and (14) concludes our proof.

Noteworthy to add that for the dictionaries of moderate
size, the contribution of the second term in (6) is no more than
8%. Moreover, increasing the dictionary size (d and m) this
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Fig. 1. Comparison between ρ2(s) and µ2
2(s) in DCT-Delta

(D-D) and DCT-Haar (D-H) of the same size d = 512.

value becomes less and less. In next section we will verify as
d goes to infinity this term becomes zero while the first term
stays between zero and one. Therefore for the same γ we can
approximate previous bound as:

Pf . s
(
1− 2Q(γ)

)
. (17)

5. SIMULATION RESULTS AND ANALYSIS

In this section we would like to highlight what motivates our
main theorem in comparison to the former works. In the last
section we saw the failure probability can be bounded by the
average coherence instead of the maximal one. In order to
be more familiar with this new object and also compare it to
µ2(s) we consider two different dictionaries made by the con-
catenation of two orthonormal basis : first the DCT −Delta
dictionary (µ2(s) =

√
2s/d) and the other one is DCT −

Haar which has very coherent atoms in low frequencies. As
we expected, figure 1 points out the huge difference between
µ2

2(s) in both dictionaries. However, what is more interest-
ing is that in both cases ρ2(s) stays far below µ2

2(s). As
we can see in this figure, the slope of ρ2(s) is almost half
of µ2

2(s) in DCT − Delta. In DCT − Haar , specially
for small sparsity levels, there is a significant difference be-
tween these two values and moreover while µ2

2(s) saturates
very fast ρ2(s) stays always less than one. Although based
on our calculations ρ(s) scales with the ambient dimension
by the same order as µ2(s) ∝

√
(s/d), the failure probabil-

ity is very sensitive to the coherence and replacing µ by the
average coherence leads to a considerable decrease in Pf and
consequently a much tighter bound. Moreover, comparing to
the former bounds which are proportional to number of atoms
m, we have a slightly better bound as it is proportional to the
sparsity level s << m.



Considering a very large dictionary size, Theorem 2
asymptotically guaranties a small failure probability as long
as

s3 .
d

lnm
. (18)

The key point for the proof is using an approximation to
simplify (17) as 1 − 2Q(γ) '

√
2/π γ for small γ. This is

along with experimental results in dictionaries of moderate
size and for reasonable s/d. Therefore, we rewrite (17) by
using expression (7) to have Pf less than a constant c << 1:

P 2
f /

s2ρ2(s)
1− ρ2(s)

ln
(m− s
s ρ(s)

)
≈ s3

d
lnm+

s3

d
ln

d

s3
. c2. (19)

There, we assume ρ2(s) is proportional to s/d and also d
scales with order higher than s3. This makes the second term
in (19) vanish as d tends to infinity and (18) follows. The
resulting scaling law confirms the validity of our assumption
and approximation. Moreover, it explains why we can ne-
glect the second term in (6) to reach the simpler upper bound
in (17). We can observe that the sparsity ratio (s/d) which is
required for perfect recovery is decreasing as the dictionary
size grows. However, the algorithm preserves its applicabil-
ity since for larger dictionaries less nonzero coefficients are
sufficient to express signals.

Finally an overall comparison shows: the worst case anal-
ysis is pointless in our Gaussian model since the signal range
R could be very close to zero. Moreover, the related aver-
age case results in [2] are not applicable in the single signal
case e.g. it indicates certain failure even in orthonormal basis.
However, considering the asymptotic behavior, our theorem
ensures almost reliable recovery even in huge dictionaries up
to a certain sparsity levels.

6. CONCLUSION AND FUTURE PLANS

In this paper we have considered a new model for sparse sig-
nals where both the coefficients and support set are drawn at
random. Thanks to the average case study for Thresholding,
we have developed a new upper bound on its failure probabil-
ity which is not anymore related to maximal coherence but to
the average one. This fact together with some optimizations
results in a significantly tighter bound in comparison to prior
works.

As a future plan we would like to extend this idea to the
multichannel case where several nodes (channels) observe
signals that are jointly sparse in a given dictionary. Since ex-
ploiting these inter signal correlations leads to an enormous
improvement by increasing number of the channels, we ex-
pect that the techniques developed in this paper will indicate
recovery almost surely with utilizing very few sensor nodes.
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