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ABSTRACT: 

This paper clarifies the terminologies used to describe the size effect on fatigue behaviour of welded joints. It summarizes 

the existing research on size effect in the perspective of newly defined terminologies. It identifies knowledge gaps in 

designing tubular joints using the hot spot stress method, i.e. thin-walled tubular joints with wall thickness less than 4 mm 

and thick-walled tubular joints with wall thickness larger than 50 mm or diameter to thickness ratio less than 24. It is the 

thin-walled tubular joints that are addressed in this paper. It is found out that thin-walled tube-to-plate T-joints do not follow 

the conventional trend: the thinner the section is, the higher the fatigue life.  It is also found out that simple extrapolation of 

existing fatigue design curves may result in unsafe design of thin-walled tube-to-tube T-joints. The effect of chord stiffness 

on the fatigue behaviour of thin-walled tubular T-joints is also discussed.  
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1. INTRODUCTION 

Fatigue life of welded joints depends on many parameters. Some of the parameters which influence fatigue life are among 

others, wall thickness of plates or tubes, weld shape and size, residual stress field and non-dimensional parameters of a 

connection. The wall thickness is sometimes regarded as the most important parameter when comparing the relative fatigue 

life of two welded joints, hence the term “thickness effect” is widely used in the literature 1-5 and the term “thickness 

correction factor” is used in various standards 6-8. Other terms that are also found in the literature are “size effect”, “scaling 

effect” and “geometrical effect” 5,9,10 . In addition to the aforementioned parameters, fatigue life of welded connections is 

also influenced by post weld treatment 11,12 and the environment condition 13-15.  

 

This paper attempts to clarify the terminologies. It briefly summarizes some of the previous research dealing with size 

effect. The newly defined terminologies are used to examine each research. The size effect in existing design 

recommendations for some tubular joints is summarized in the format of both classification method and hot spot stress 

method. The existing design recommendation based on hot spot stress method 16,17 does not cover tubular joints with wall 

thickness less than 4 mm or larger than 50 mm or with 2γ value less than 24. The tubular joints with t < 4mm is called thin-

walled tubular joints while those with t > 50 mm or 2γ < 24 are called thick-walled tubular joints in this paper. Reports on 

the thick-walled tubular joints can be found in Schumacher 18 and Schumacher et al 19. Only the thin-walled tubular T-joints 

are addressed in this paper. The conventional trend in fatigue S-N curve will be verified for such thin-walled tube-to-plate 

T-joints. The suitability of simply extrapolating existing fatigue design S-N curves for thin-walled tube-to-tube joints will 

be checked. Discussions are also made on the effect of chord stiffness on the fatigue behaviour of thin-walled tubular T-

joints. 

 

 

2. TERMINOLOGIES 

Different terminologies were used in the literature when comparing the fatigue behaviour of welded joints. This section 

aims to clarify the concept and define the new terminologies.  

 

Fatigue life of welded joints may be affected by connection size and improvement technology. The fatigue life of welded 

connections can therefore be classified as influenced by two main components, i.e. size effect and improvement effect. The 
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size effect includes statistical size effect, technological size effect and geometrical size effect. These three effects can be 

represented or studied quantitatively using a scaling effect when comparing the fatigue behaviour of two welded joints. 

Details are explained below. 

 

 

2.1 SIZE EFFECT 

2.1.1 Statistical Size Effect 

Size effect in fatigue may be interpreted using the so-called statistical effect which stems from the fact that fatigue is a 

weakest link process, nucleating at the location where stresses, geometry, defects and material properties combine to form 

optimum conditions for fatigue crack initiation and growth. Increasing the size of a specimen will statistically produce 

locations that are more vulnerable to fatigue failures 19. Örjasaeter et al 20 termed the statistical effect, the volume effect, and 

interpreted it as a correlation between the volume of highly stressed material and fatigue strength. A possibility to consider 

this effect is based on the weakest link theory proposed by Weibull 21 and Savaidis et al 22. Fatigue tests of welded joints are 

influenced by the initiation and growth of small ellipsoidal cracks from the weld toe. The length of the weld toe from which 

the cracks initiate is therefore an influencing factor for fatigue strength since a larger length results in more likelihood of 

initiation and failure of the welded joint 23. 

 

2.1.2 Technological Size Effect 

Technological size effect results from differences in production parameters. For example, due to differences in rolling 

reduction ratios, the mechanical properties diminish with increasing plate thickness. This effect can be neglected if 

mechanical properties are essentially the same for different thicknesses. Technological size effect can be considered to 

occur as a result of varying residual stresses caused by welding in different plate thicknesses. Technological size effect can 

also be understood in terms of geometrical size effect at the mesoscale level, which originates from incomplete scaling. 

When all dimensions are scaled up or down equally, the material properties such as grain size, flaw dimensions and 

mechanical properties do not change 23. 

 

2.1.3 Geometrical Size Effect (at the mesoscale level) 

A model can be used for explaining the thickness effect in welded joints where fatigue cracks initiate from the weld toes 1,13. 

In this model the following assumptions are adopted; (i) Welded joints of the same type in various plate thicknesses are 
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geometrically similar. This is typical of load-carrying welded joints, (ii) Initial conditions of fatigue crack growth are 

independent of plate thickness. This means that the initial cracks in welds of different thicknesses are of the same 

magnitude. Therefore the stress distribution across the load-carrying plates in the crack growth plane are geometrically 

similar, leading to a steeper stress gradient in the thinner joint, according to assumption (i). Using assumption (ii), the initial 

crack in the thinner plate will experience a smaller stress than the initial crack of the same length in the thicker plate. This 

results in a smaller initial crack growth in the thinner joint 4,19. 

 

 

2.2 SCALING EFFECT 

This paper introduces a new concept called “scaling effect”. The scaling effect includes complete proportional scaling, 

practical proportional scaling and non-proportional scaling. Complete proportional scaling is defined as the case where all 

factors affecting fatigue are scaled proportionally, whatever their origin (statistical, technological or geometrical). Practical 

proportional scaling is defined as the case where only important factors are scaled proportionally. Non-proportional scaling 

is defined as the case where some important factors are not scaled proportionally. The more the parameters affecting the 

fatigue of a connection, the less chance to achieve a complete proportional scaling. In fact only very simple plated 

connection types (e.g. plate with transverse attachments) may achieve complete proportional scaling. For tubular joints, 

practical proportional scaling may be achieved if the important non-dimensional parameters (β, τ, 2γ) are scaled 

proportionally.  When thickness is the only parameter needed to describe the relative fatigue life of two joints, we call this 

case "complete" thickness effect. It only could happen under the condition of complete proportion of two joints. It is only 

possible for very simple welded joints such as transverse attachments. When thickness is one of the parameters needed to 

describe the relative fatigue life of two joints, we call the influence due to thickness "partial" thickness effect. When the 

influence of other parameters is insignificant, the "partial" thickness effect may be approximated as the "complete" 

thickness effect. In the expression describing the relative fatigue strength, there are two possible reference cases. When the 

reference thickness is the smaller one, it is called thickness correction factor, when it is the larger one, it is called thinness 

correction factor. 

 

The flowchart in Fig. 1 shows the two categories that can influence fatigue life. The flowchart shows in detail the different 

concepts that form part of the size and improvement effects. 
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2.3 IMPROVEMENT EFFECT 

The improvement effect results from the enhancement in geometry and residual stress distribution within the welded 

connection due to post-weld treatments. The improvement of geometry in welded connections can result from processes 

such as weld toe grinding and TIG dressing. These processes cause a decrease in stress concentration due to the improved 

geometry at the toes of the weld, a result of a smoother and hence gradual transition between two welded plates or sections. 

The residual stress at weld toes can also be improved through processes such as hammer or shot peening which cause a 

reduction in tensile residual stresses or a change in residual stress at the locations of interest from tension to compression. 

More details can be found in Haagensen and Maddox 12 as well as Walbridge et al 24. The improvement effect thus 

influences all size effects (statistical, technological and geometrical), however at different degrees. 

 

 

3. EXISTING RESEARCH ON SIZE EFFECT 

Apart from the researchers mentioned in the previous sections, numerous researchers have investigated the size effect 

phenomenon from as early as the 1950s to this day. This research has led to a better understanding of the influence of plate 

and or tube-wall thickness on fatigue strength of welded connections. In his 1989 review, Gurney 2 pointed out that 

thickness effect could be demonstrated using both fracture mechanics theory and experimental work. This had led to the 

introduction of a thickness correction factor in the revised version of the UK Department of Energy Guidance Notes in 

1984. Gurney 2 also noted that a lot earlier than the introduction of the thickness effect on fatigue of welded connections, 

Phillips and Heywood 25 had demonstrated the size dependence of fatigue strength of unwelded specimens. Gurney 2 also 

pointed out that it had long been known that plate thickness was likely to be a relevant variable for fatigue strength under 

bending stresses, because the stress gradient through the thinner specimen would be steeper and therefore less damaging 

than that in thicker specimens. Gurney 26 showed with the use of fracture mechanics theory, that fatigue strength of welded 

joints could be affected by plate thickness even when they were subjected to axial loading. Gurney 27 pointed out on the 

basis of fracture mechanics analysis and experimental evidence that the effect of plate thickness on fatigue strength could be 

significant.  

 

Other researchers have also studied the behaviour of welded plate, tubular and tube-plate joints with different wall 

thicknesses. This research has either strengthened the concept of thickness effect or culminated in the introduction of 
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thickness correction factors in various standards around the world. In the majority of the research on plated specimens, the 

main plate and transverse plates are usually of equal thickness.  

 

When thickness effect is studied using main plate and transverse plates of equal thickness, the category of scaling can be 

referred to as practical proportional scaling. This is because the most important parameter influencing thickness effect, that 

is the wall thickness of the plate is scaled proportionally. However, although the thickness is scaled proportionally in plated 

joints, other parameters such as weld size, though normally increasing with increasing thickness to cope with an increase in 

applied design load, may not be proportionally scaled, in particular in non-load carrying welded connections. Other 

parameters that can also vary but not proportionally are the weld toe conditions such as weld toes radius and the residual 

stress magnitude due to welding. If the plate thickness, weld size, weld toe radius and residual stresses are increased 

proportionally from specimen to specimen, then complete proportional scaling is deemed to have occurred. This condition is 

difficult to achieve in real structures. When the main plate, transverse or longitudinal plate thickness, or dimensions are not 

directly linked with the applied design load, then we have a case of practical or non-proportional scaling.  

 

Some of the existing research is summarized in Table 1. The summary shows the type of joints tested, the load type applied 

and the thicknesses of the plates and tubes tested. The different loads applied confirm the fact that thickness effect is 

observed in joints regardless of the type of load to which the connection is subjected to. The category of scaling used in the 

studies is shown in Table 1 and the thickness correction factors suggested by some of the researchers are given as footnotes 

in Table 1.   

 

Table 1 shows that most of the fatigue data that is used in deriving the thickness correction factors for welded plate joints 

comes from specimens with practical proportional scaling. For welded tubular nodal joints, non-proportional scaling mainly 

occurs. Practical proportional scaling and non-proportional scaling results in what is termed partial thickness effect as 

shown in Fig. 1. It can be seen that there are no studies on thin-walled tubular joints (t<4mm) reported in Table , that is on 

what is called the thinness effect. This will be the subject of sections 5 to 7 of this paper. 
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4. SIZE EFFECT IN EXISTING DESIGN RECOMMENDATIONS FOR TUBULAR JOINTS 

4.1 Classification Method 

Various standards around the world have adopted thickness correction factors or design S-N curves that depict thickness 

effect. Thickness correction factors are obtained by plotting the relative fatigue strength versus the thickness of the failing 

member. Gurney 2 obtained the relationship between fatigue strength and thickness of a member under failure by plotting 

the relative fatigue strength normalised to a reference thickness of 32mm versus the thickness of different plate and tubular 

joints. Thickness correction factors have been adopted in standards such as those from the International Institute of Welding 

8,16 , the British Standards 7,35, the European Standard 36, CIDECT Design Guide No. 8 17 and Australian Standard 6, with 

however different values for the reference thickness. The thickness correction factors can  be used to predict the fatigue 

strength of wall thicknesses other than the reference thickness. 

 

Table 3 shows the size effect in tubular connections in some existing standards in the format of classification method. In the 

classification method, the fatigue strength of a constructional detail relates the nominal stress range, due to the applied 

member loads, to the number of cycles to failure. The first example in Table 2 (fillet welded circular hollow sections) may 

be approximated as the case of complete thickness effect. The other two examples in Table 2 may be considered as “partial 

thickness effect” because the fatigue life is also influenced by manufacturing method for the second example or other non-

dimensional parameters for the third example.  

 

4.2 Hot Spot Stress Method 

The hot spot stress method relates to the hot spot stress range to the number of cycles to failure. The fatigue design curves 

from CIDECT Design Guide No. 8 17 and IIW 16 are shown in Fig. 2 with some explanation given in Table 3. It can be seen 

from Table 3 that the size effect may be considered “partial thickness effect” because other parameters also influence the 

fatigue life. It is also interesting to note that the thickness correction factor in Table 3 also depends on the number of cycles 

to failure (N). This stems from the fact that in the low cycle fatigue range, thickness effect is less pronounced 37. Thickness 

effect therefore tends to be pronounced as the number of cycles to failure increases.  

 

Figure 2 shows the current limitations of the fatigue design curves in IIW 16 and CIDECT Design Guide No. 8 17. The 

limitations in these standards, as shown in Fig. 2, are such that there are no fatigue design curves for thin-walled tubular 
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joints (t<4mm) and for thick-walled joints (t>50mm or 2γ<24). This paper addresses the size effect of thin-walled tubular 

joints in the next sections (sections 5 to 7).  The size effect in nodal joints made up of relatively thick-walled tubular 

connections was reported by Schumacher 18. A more comprehensive study on size effect in welded thick-walled joints was 

complied and reported by Schumacher et al 9.  

 

 

5. SIZE EFFECT OF WELDED THIN TUBE TO PLATE T-JOINTS 

There has been an increased availability in high strength cold-formed steel tubes in different steel markets around the world 

38-42. This has led to the use of these tubes, which are mainly thin-walled, in the manufacture of equipment and construction 

of structural systems some of which are subjected to cyclic loading 43-45. The lack of fatigue design rules for welded tubes of 

wall thicknesses less than 4mm has prompted interest among researchers to investigate their fatigue strength. 

 

An investigation into the fatigue strength of welded thin-walled circular hollow section to plate (CHS-Plate) and square 

hollow section to plate (SHS-Plate) T-joints was carried out at Monash University and reported by Mashiri et al 43,44 and 

Mashiri and Zhao 46. Thin-walled circular hollow section (CHS) and square hollow section (SHS) tubes were welded onto 

10mm thick plates and the resulting CHS-Plate and SHS-Plate T-joints subjected to cyclic in-plane bending moment 

through the CHS or SHS brace as shown in Fig. 3. Specimens were tested at a stress ratio of 0.1.  

 

The parameters in tube-to-plate T-joints that are likely to contribute to the fatigue strength are the thickness of the plate T, 

the thickness of the tube, t1, and the weld size and weld toe conditions. Compared to the tube wall thicknesses which ranged 

between 1.6mm and 3.0mm, the plate thickness of 10mm is significantly large. Since no cracks occurred in the plate, the 

plate thickness can be considered to have negligible influence on the fatigue strength of the tube-to-plate T-joints except to 

provide a rigid base upon which the tube could bend. Research has shown that in welded thin-walled (t<4mm) joints, the 

welds are oversized 47. For tube wall thicknesses less than 4mm, the weld size is oversized but constant since only a 

minimum size of weld can be deposited during welding. Since the plate and weld sizes are constant in this investigation, the 

main parameter influencing fatigue life is the tube wall thickness, t1. In this study, the changing of the tube wall thickness 

(t1) can be considered as practical proportional scaling. The comparison of the fatigue strength at different tube wall 

thickness, in this investigation, therefore represents a partial thickness effect as shown in Fig. 1.  
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Tubes of different wall thicknesses were used in making the tube-plate T-joint specimens. For the thin CHS-Plate T-joints, 

circular hollow sections of thicknesses equal to 2.0, 2.6 and 3.2mm were used. For the thin SHS-Plate T-joints, square 

hollow sections of thicknesses equal to 1.6, 2.0, and 3.0mm were used. Since failure of the tube-plate T-joints occurred in 

the tubular brace members, the relative fatigue strength of the welded tubes with different wall thicknesses can be assessed. 

The fatigue strength of the welded thin-walled tubes with different wall thicknesses can be used to verify the thickness 

effect in welded thin-walled joints and compare it with existing trends in thickness effect for relatively thicker joints with 

wall thicknesses typically greater than 25mm for plated joints and greater than 4mm for tubular joints.  

 

Figs. 4 and 5 show the mean S-N curves for welded thin-walled tube-plate T-joints made up of different tube wall 

thicknesses for the SHS-Plate and CHS-Plate T-joints respectively. In the regression analyses, a slope coefficient of 3 has 

been imposed. Figs. 4 and 5 show that for welded thin-walled (t<4mm) tubes the fatigue strength decreases as the welded 

tube failing due to fatigue loading becomes thinner. This is not considered in design codes such as AS4100-1998 6, EC3 36, 

Department of Energy 7 and Hobbacher 8 and the new fatigue design guidelines on nodal tubular joints using the hot spot 

stress method IIW 16 and Zhao et al 17. It should also be noted that the thicknesses of tubes used in the manufacture of the 

thin-walled CHS-Plate and SHS-Plate T-joints, are outside the range of application of the thickness correction factors given 

in existing codes. The decrease in fatigue strength, shown in Figs. 4 and 5, as the tube wall thickness becomes smaller, for 

tube wall thicknesses below 4mm, can be attributed to the greater negative impact of weld toe defects such as undercut on 

fatigue crack propagation life of thin-walled (t<4mm) joints as reported by Mashiri et al 43,48. Previous research by 

Noordhoek et al 49 reported on a similar phenomenon and attributed it to the difficulty associated with the welding of 

smaller wall thickness sections. 

 

 

6. SIZE EFFECT OF WELDED THIN TUBE TO TUBE T-JOINTS 

A study into the fatigue strength of welded thin-walled SHS-SHS, CHS-SHS and and CHS-CHS T-joints under cyclic in-

plane bending as shown in Fig. 6, was recently carried out at Monash University and reported by Mashiri et al 45,48. The 

SHS-SHS T-joints were made up of square hollow section (SHS) chords of 3mm thicknesses as well as SHS braces of 

thicknesses 3mm, 2mm and 1.6mm. The CHS-SHS T-joints were made up of 3mm thick square hollow section chords and 

circular hollow section braces of thicknesses 2mm, 2.3mm, 2.6mm and 2.9mm. For the CHS-CHS T-joints, the chord 
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members were 3.2mm thick circular hollow sections whereas the brace members were of thicknesses 2.0mm, 2.3mm, 

2.6mm and 3.2mm.  

 

The range of parameters for the tube-to-tube T-joints tested are shown in Fig. 6. The parameters given in Fig. 6 include the 

thickness and the non-dimensional parameters. The non-dimensional parameters are, the brace to chord width/diameter  

ratio, β, the chord width/diameter to chord wall thickness ratio, 2γ; and the brace to chord wall thickness ratio, τ. These 

parameters are not proportionally scaled. According to Fig. 1, this investigation can be referred to as involving non-

proportional scaling. The study in tubular nodal joints therefore deals with partial thickness correction. About 100 tests were 

carried out. 

 

Fatigue failure occurred in the 3mm SHS chords for SHS-SHS and CHS-SHS T-joints and hence the critical thickness for 

the S-N data obtained was 3mm. The critical tube wall thickness in the CHS-CHS T-joints is 3.2mm since failure only 

occurred in the 3.2mm thick chords. The resulting S-N data from this investigation was analysed using the hot stress method 

and compared to existing fatigue design guidelines for tubular nodal joints. 

 

Fig. 7 presents the existing Sr.hs-N design curves for tubular nodal joints from the CIDECT Design Guide No. 8 17 and IIW 

16. The existing Sr.hs-N curves show that for a given hot spot stress range, fatigue life increases as the thickness of the 

member failing under fatigue loading becomes smaller. This trend is in agreement with the conventional concept of 

thickness effect. The equations that can be used to determine the design Sr.hs-N curves for the different tube wall thicknesses 

in tubular nodal joints are those derived by van Wingerde et al 5 and shown in Table 3, which however are limited to tubes 

with t>4mm. 

 

Using the current trend in CIDECT Design Guide No. 8 17 and IIW 16, the extrapolated design Sr.hs-N curve for a critical 

thickness of 3mm is shown in Fig. 7. It can be seen that the fatigue test data for the CHS-CHS, CHS-SHS and SHS-SHS T-

joints are much lower than the extrapolated IIW curve with t of 3 mm. It seems that simply extrapolating the existing S-N 

curve results in unsafe design of thin-walled tubular joints. The reduced fatigue life of welded thin-walled specimens can be 

attributed to the greater negative impact of weld toe undercut on fatigue crack propagation life as reported in Mashiri et al 
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50,51. Note that the tube wall thicknesses in the tested thin CHS-CHS, CHS-SHS and SHS-SHS T-joints all lie outside the 

validity range of the thicknesses currently covered by CIDECT Design Guide No. 8 17 and IIW 16. 

 

 

7. EFFECT OF CHORD STIFFNESS IN T-JOINTS 

7.1 General 

T-joints of different stiffness have been tested during the investigations on fatigue of thin-walled joints. They are tube-to-

plate, tube-to-tube and concrete-filled chord T-joints as shown in Figure 8 with their corresponding range of parameters.  

 

Fig. 9 shows the moment-angle of inclination graphs of SHS-SHS, SHS-Plate and SHS-SHS concrete-filled chord T-joints. 

The SHS-Plate T-joints have the highest stiffness of the three joints followed by the SHS-SHS concrete-filled chord T-

joints. The SHS-SHS T-joints are the least stiff of the three joint types. The stiffest joint has the highest moment-angle of 

inclination ratio in the linear elastic part of the curve. The stiffest joint also has the largest static strength. The service loads 

that a connection can carry are dependent on the static strength of the connection. Since the service loads applied to a 

structure determines the service life of a connection under cyclic loading, the stiffness of a connection is therefore likely to 

be a factor that influences the fatigue strength of a joint.  

 

7.2 Stress Concentration Factors in joints of different stiffness 

The maximum experimental stress concentration factors (SCFs) for the concrete-filled chord and the empty SHS-SHS T-

joints under in-plane bending in the brace are shown in Table 4. The maximum SCFs in the tubular nodal T-joints occur at 

weld toes in the chord 52. Table 4 shows that for joints with the same non-dimensional parameters the concrete-filled chord 

T-joints have a smaller stress concentration factor compared to the SHS-SHS T-joints. The lower SCFs in the concrete-

filled chord T-joints can be attributed to the increased rigidity and reduced chord face flexibility caused by the concrete in-

fill in the chord member 52. Table 4 also shows that the ratio of the maximum SCF in a welded composite tubular T-joint to 

the maximum SCF in an empty joint is less than 1, with values as low as 0.3. However, an anomaly occurred in test series 

S6S1, where the maximum SCF in the welded composite tubular T-joint was larger than the maximum SCF in the 

corresponding empty joint. This may be attributed to errors in strain gauge placement and the sensitivity of the quadratic 

extrapolation method to smaller distances of extrapolation characteristic in thin-walled (t<4mm) joints. Poor concrete filling 

in the vicinity of the strain gauge location may also result in this type of error. 
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For thin SHS-Plate T-joints, the maximum stress concentration factors at the brace-plate interface were found to occur at 

weld toes in the square hollow section brace 43. The stress concentration factors are summarized in Table 5. Table 5 shows 

that the maximum SCFs obtained in thin SHS-Plate T-joints were less than 2. This observation points to the fact that joints 

which are stiffer have smaller SCFs. The smaller magnitude of the SCFs in stiffer joints means that they will inherently 

have a better fatigue life. 

 

7.3 Fatigue life of joints with different stiffness 

The fatigue S-N data for the welded composite tubular T-joints is plotted in Figure 10 together with the S-N data from 

empty hollow section SHS-SHS T-joints and that of thin SHS-Plate T-joints in the format of classification method. The first 

observation is that the concrete filled SHS-SHS T-joints data do not follow well the S-N curve slope, imposed as 3 in the 

regression. Figure 10 shows that on average the welded composite tubular T-joints have a better fatigue life compared to the 

empty SHS-SHS T-joints. The S-N data for the welded composite tubular T-joints lie either above the S-N data plots for the 

empty SHS-SHS T-joints or on the upper bound of the scatter for the empty SHS-SHS T-joints. Figure 10 shows that the 

lower bound curve for concrete-filled chord T-joints under bending has a class (stress range at 2 million cycles) that is about 

1.25 that of empty SHS-SHS T-joints. In terms of fatigue life, the welded composite tubular T-joints have about 2 times the 

fatigue life of empty SHS-SHS T-joints under a given nominal stress range.  

 

When compared to concrete-filled chord SHS T-joints, the lower bound curve for thin SHS-Plate T-joints has a class that is 

about 4.8 times that of concrete-filled chord SHS T-joints. In terms of fatigue life, the thin SHS-Plate T-joints have a service 

life that is about 100 times that of the composite SHS T-joints for a given nominal stress range.  

 

 

8. CONCLUSIONS 

The following observation and conclusions are made: 

(a) A definition was given for scaling effect which includes complete proportional, practical proportional and non-

proportional scaling. Complete thickness effect only occurs under the condition of complete proportional scaling.  

(b) The study of size effect in welded plate joints generally occurs under practical proportional scaling thereby resulting in 

a partial thickness effect being obtained. However in circumstances where the weld and weld toes conditions are almost 
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proportionally scaled, the category of scaling can be approximated to complete proportional scaling resulting in 

complete thickness effect. 

(c) The study of size effect in welded tubular nodal joints occurs under non-proportional scaling resulting in a partial 

thickness being derived. 

(d) More research needs to be undertaken to understand the trend of thickness effect in thicker walled joints, with tube wall 

thicknesses or 2γ beyond the current validity range in fatigue design guidelines for welded tubular joints.  

(e) The conventionally accepted phenomenon of size effect shows that fatigue strength increases as the thickness of the 

member failing under fatigue decreases. Recent research on welded thin-walled (t<4mm) tube-to-plate and tube-to-tube 

T-joints has however shown that below a thickness of 4mm, fatigue strength actually decreases as the member failing 

under fatigue becomes thinner. This observation in thin-walled joints can be attributed to the greater negative impact 

that weld toe defects such as undercuts have on fatigue crack propagation life.  

(f) It has been demonstrated that boundary conditions have an effect on the relative fatigue strength of welded joints. Joints 

with a higher stiffness have a better fatigue life compared to joints of lower stiffness when subjected to the same 

nominal stress range. 
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NOTATION 

2γ ( )00 tb=  or ( )00 td= , chord width or chord diameter to chord wall thickness ratio 

t = tube wall thickness 

τ ( )01 tt= , brace wall to chord wall thickness ratio 

β ( )01 bb= , ( )01 dd= , brace width to chord width ratio or brace diameter to chord diameter ratio 

N = number of cycles to failure 

0t  = chord wall thickness 

1t  = brace wall thickness 

SHS = square hollow section 

CHS = circular hollow section 

S = stress range 

Srhs = hot spot stress range 

SCF = stress concentration factor 

1b  = brace width 

0b  = chord width 

1d  = brace diameter  

0d  = chord diameter 

Sr-nom = nominal spot stress range 

T = plate wall thickness 

PWHT = post weld heat treatment 

SB = stress range of reference plate thickness tB 

tB = reference plate thickness 

WB = basic width corresponding to the basic design S-N curve. 

W’ = apparent width of the plate under consideration 

HSSNR = hot spot strain range 

Nc = number of cycles to through thickness crack 
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Tcr = wall thickness of cracked member 

Srhs,t = hot spot stress range for tube wall thickness, t. 

Srhs,16 = hot spot stress range for reference tube wall thickness, t=16mm 

teff = effective thickness of main plate in cruciform type joints 

SCFcomposite = stress concentration factor for SHS-SHS T-joint with concrete filled chord 

SCFempty = stress concentration factor for empty SHS-SHS T-joint 
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FIGURE CAPTIONS 

Fig. 1. Size and improvement effects and their corresponding concepts. 

Fig. 2. Fatigue design curves for tubular nodal joints in standards 16,17 and knowledge gaps identified 

Fig. 3. (a) SHS-Plate and (b) CHS-PlateT-joints under cyclic in-plane bending (bolted to rigid plates) 

Fig. 4. Effect of Tube Wall Thickness on Fatigue Life in Thin SHS-Plate T-joints 

Fig.5. Effect of Tube Wall Thickness on Fatigue Life in Thin CHS-Plate T-joints 

Fig. 6. (a) SHS-SHS, (b) CHS-SHS and (c) CHS-CHS T-joints under in-plane bending (simply supported at both ends) 

Fig. 7. Existing Design Sr.hs-N curves from IIW 16 and fatigue test data for welded thin-walled (t<4mm) CHS-CHS, CHS-

CHS and SHS-SHS T-joints. 

Fig. 8. (a) SHS-Plate (bolted to rigid plate), (b) Empty SHS-SHS (simply supported at both ends) and (c) Concrete-filled 

chord SHS-SHS T-joints under in-plane bending (simply supported at both ends) 

Fig. 9. Applied bending moment vs angle of inclination in joints of different stiffness 

Fig. 10. S-N data and lower bound curves for thin SHS-Plate, SHS-SHS and concrete-filled SHS-SHS T-joints 

 

 

TABLE CAPTIONS 

Table 1. Summary of Research on Size Effect 

Table 2. Size effect in existing standards using classification method (some examples)  

Table 3. Size effect in existing standards using hot spot stress method   

Table 4. Experimental stress concentration factors in thin SHS-SHS T-joints and concrete-filled chord SHS T-joints under 

in-plane bending  

Table 5. Experimental stress concentration factors for thin SHS-Plate T-joints 
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FIGURES 

 
 

Fig.1. Size and improvement effects and their corresponding concepts. 
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Fig. 2. Fatigue design curves for tubular nodal joints in standards 16,17 and knowledge gaps identified 
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Fig. 3. (a) SHS-Plate and (b) CHS-PlateT-joints under cyclic in-plane bending (bolted to rigid plates) 
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Fig. 4. Effect of Tube Wall Thickness on Fatigue Life in Thin SHS-Plate T-joints 
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Fig. 5. Effect of Tube Wall Thickness on Fatigue Life in Thin CHS-Plate T-joints 
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Fig. 6. (a) SHS-SHS, (b) CHS-SHS and (c) CHS-CHS T-joints under in-plane bending (simply supported at both ends) 
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Fig. 7. Existing Design Sr.hs-N curves from IIW 16 and fatigue test data for welded thin-walled (t<4mm) CHS-CHS, CHS-

CHS and SHS-SHS T-joints. 

 

 

Fig. 8. (a) SHS-Plate (bolted to rigid plate), (b) Empty SHS-SHS (simply supported at both ends) and (c) Concrete-filled 

chord SHS-SHS T-joints under in-plane bending (simply supported at both ends) 
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Fig. 9. Applied bending moment vs angle of inclination in joints of different stiffness 
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Fig. 10. S-N data and lower bound curves for thin SHS-Plate, SHS-SHS and concrete-filled SHS-SHS T-joints 
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TABLES 
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Table 1. Summary of Research on Size Effect 

Reference Type of 
Connection 

Loading Specimen Thickness 
(mm) 

Test/Analysis Condition Thickness 
Correction 

Factor 
proposed  

Category of 
Scaling 

Complete or 
Partial 

Thickness 
Effect 

3-point bending; constant 
and variable amplitude in air; 

16, 26, 52, 78, 103 Joints tested in the as welded 
condition. Stress ratio; R=0.05; 

Joints with proportional and non-
proportional scaling tested; 

improved weld profile tested  

 
- 

Practical 
proportional 

Scaling 

Partial 
Thickness Effect 

Mohaupt et al 28; 
Vosikovsky et al 3 

Plate T-joints 

3-point bending; constant 
amplitude in seawater 

26,78 Joints tested in the as-welded 
condition in seawater were 

unprotected, optimum 
cathodically protected and 

overprotected. 

 
- 

Practical 
proportional 

Scaling 

Partial 
Thickness Effect 

Booth 29 Plate T-joints 4-point bending; constant 
amplitude in air 

25, 38, 50, 75, 100 Joints tested in the as-welded 
condition, after PWHT and toe-

grounding; R=0 

 
- 

Practical 
proportional 

Scaling 

Partial 
Thickness Effect 

Berge at al 30 Plate T-joints Cantilever loading system; 
constant amplitude in air 

20, 100, 150 Joints tested in as welded 
condition 

 
- 

Practical 
proportional 

Scaling 

Partial 
Thickness Effect 

Pure bending; constant 
amplitude in air  

16, 25, 40, 70 Joints tested after PWHT See Note 1 Practical 
proportional 

Scaling 

Partial 
Thickness Effect 

Overbeeke and 
Wildschut 23 

Plate T-joints 

Pure bending; constant 
amplitude in seawater 

16,40 Joints tested in the as-welded 
condition, after toe grinding; 

Seawater temperature showed no 
influence. 

 
- 

Practical 
proportional 

Scaling 

Partial 
Thickness Effect 

Xue et al 14 Cruciform 
welded joints 

4-point bending, cantilever 
bending; constant amplitude 

in air, seawater with and 
without cathodic protection 

16, 32, 40 Joints tested in the as welded 
condition at a stress ratio, R of -1 

See Note 2 Practical 
proportional 

Scaling 

Partial 
Thickness Effect 

 

Note 1: The thickness effect for connections in the stress relieved condition is ( ) 15.0ttSS BB= . 
Note 2: The thickness correction factors proposed are as follows: In air, ( ) 31ttSS BB= ; Freely corroding in sea-water, ( ) 41ttSS BB= ; In sea-water with cathodic protection(-

850mV. SCE), ( ) 21ttSS BB=  
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Table 1 (cont). Summary of Research on Thickness Effect 

Reference Type of Joint Loading Thickness Range 
(mm) 

Test/Analysis Condition Thickness 
Correction 

Factor 
proposed 

Category of 
Scaling 

Complete or 
Partial 

Thickness 
Effect 

Orjasaeter et al 20 Plate T-joints Cantilever bending; 3-point 
bending; constant amplitude 

in air 

30, 70, 100, 130, 160 Joints tested in as welded 
condition and after PWHT; R=0.1 

- Practical 
proportional 

Scaling 

Partial 
Thickness Effect 

Noordhoek et al 31 Plate T-joints 4-point bending; constant 
amplitude in air 

Main plate t=70 and 
160mm with 

transverse/longitudin
al plates of t=20 and 

45mm. 

Joints tested in the as welded 
condition; Thickness effect due to 
non-proportional scaling of main 
and attachment plate thickness; 

R=0. 

- Non-
Proportional 

Scaling 

Partial 
Thickness Effect 

Gurney 2 
 

Plates with 
longitudinal 

edge 
attachments 

Tensile cyclic loading Width between 
longitudinal 

attachments, W=40, 
80, 125, 200 

Joints tested in a stress relieved 
condition, R=0. 

See Note 3 Non-
Proportional 

Scaling 

Partial 
Thickness Effect 

Eide and Berge 32 
 

Plate Girders 4-point bending 20,40, 60 Joints tested in the as-welded 
condition 

- Non-
Proportional 

Scaling 

Partial 
Thickness Effect 

Van Delft et al 33 
 

Tubular T-, 
Y-, X-, K- &  

KT- joints  

Axial, in-plane bending and 
out-of-plane bending 

10, 20, 40, 80, 160 Joints tested in the as-welded and 
stress relieved conditions; Data 
from 200 specimens analysed 

See Note 4 Non-
Proportional 

Scaling 

Partial 
Thickness Effect 

Van Wingerde et al 5 
 

Tubular T-, 
Y-, X-, & K-

joints 

Axial, in-plane bending and 
out-of-plane bending; Tested 

in air 

4, 5, 8, 10, 12, 16, 25, 
32, 50 

Data from 238 specimens 
analysed 

See Note 5 Non-
Proportional 

Scaling 

Partial 
Thickness Effect 

IIW 34 Cruciform 
Joints 

Axial Thickness greater 
than or equal to 

25mm 

Joints tested in the as welded, toe 
ground 

See Note 6 Non-
Proportional 

Scaling 

Partial 
Thickness Effect 

 
Note 3: 

Gurney 2 suggested from the limited test data that joints with an attachment on or adjacent to the edge of the plate under a stress range could be corrected by ( )4
1

'WWSS BB=
 where, WB is the basic width corresponding to the basic design S-N curve (WB=100mm), W’ is the apparent width of the plate under consideration. Gurney 2 also suggested 
that W’=W, if L>W or W’=L if L<W, where W is the actual plate width and L is the attachment length in the direction of stress. 

Note 4: The relation between the hot spot strain range (HSSNR), number of cycles to crack through (Nc)  and the wall thickness of the cracked member (Tcr) from the regression analysis was 
found to be, crcc TNNHSSNR loglog075.0log175.053.4log ⋅⋅+⋅−= . 

Note 5: Thickness correction is based on statistical analysis of the database and is of the form: ( ) N
rhstrhs tSS log06.0

16,, 16 ⋅−⋅= . 

Note 6 Thickness correction is of the form, ( )n
effB tSS 25⋅= , see Section 3.5.2.2 of IIW 34 for further details. 
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Table 2. Size effect in existing standards using classification method (some examples)  

Detail 
category 

Constructional details Description Reference Remarks 

45 
(t ≥ 8 mm) 

40 
(t < 8 mm) 

 

 

Fillet welds 
to 

intermediate 
plate: 

Circular 
hollow 

sections, end-
to-end fillet 
welded with 

an 
intermediate 

plate. 

AS4100 6 May be 
approximated 
as complete 

thickness 
effect. 

E (80) Butt welded 
circular 
hollow 

sections: 
weld made 
from both 

sides. 
F (68) Butt welded 

circular 
hollow 

sections: 
weld made 

from one side 
on permanent 
backing strip. 

F2 (60) 

 

 

Butt welded 
circular 
hollow 

sections: 
weld made 

from one side 
with no 

backing strip. 

BSI 7608 35 
 

May be 
considered as 

partial 
thickness 

effect because 
the 

manufacturing 
method 

(technological 
size effect) is 

also an 
influencing 

factor. 

90 

( 0.2
t
t

i

0 ≥ ) 

45 

( 0.1
t
t

i

0 = ) 

 
 d i

 g
 d 0

 t 0

 θ θ

 +e i/p

 t i

 

CHS gap K 
and N joints 

Eurocode 3 
Part 1.9 36 

May be 
considered as 

partial 
thickness 

effect because 
the thickness 

ratio is also an 
influencing 

factor. 
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Table 3. Size effect in existing standards using hot spot stress method   

Type of 
Joints 

Thickness 
correction factor 

Description SCFs References Remarks 

Uniplanar T, 
X, Y, K 
tubular joints 
and 
multiplanar 
XX, KK 
tubular joints 

( ) N
B tSS log06.016 ⋅−⋅=  Design S-N curves in the hot spot stress 

method are defined by the following 
equations for different tube wall 
thicknesses:  

( ) ( )
( )t16log18.01

Slog3476.12Nlog rhs

⋅−
⋅−

=  for 

63 105N10 ⋅<<  and  
 

( ) ( ) ( )t16log01.2Slog5327.16Nlog rhs ⋅+⋅−=  
for 86 10N105 <<⋅  (for variable 
amplitude only) 
Equations for hot spot S-N curves for 
CHS joints ( mmtmm 504 ≤≤ ) and RHS 
joints ( mmtmm 164 ≤≤ )     

A function 
of β, 2γ 
and τ. 
 

IIW 16 and 
Zhao et al 17 

May be 
considered 
as partial 
thickness 
effect 
because 
other 
parameters 
(β, 2γ and 
τ) are also 
influencing 
factors. 

 

 

Table 4. Experimental stress concentration factors in thin SHS-SHS T-joints and concrete-filled chord SHS T-joints under 

in-plane bending  

Non-dimensional parameters Maximum measured 
SCFs 

Series 
Name 

Chord member 
b0xh0xt0 

Brace 
member 
b1xh1xt1 β 









=

0

1

b
b

 

τ 









=

0

1

t
t

 

2γ 









=

0

0

t
b

 

Concrete-
filled 
chord 

SHS T-
joints 

Empty 
SHS-SHS 
T-joints 

 Ratio of 
Max. 
SCFs

Empty

Composite

SCF
SCF

 
S3S1 100x100x3SHS 50x50x3SHS 0.50 1.00 33.3 8.0 12.0 0.67 
S3S2 100x100x3SHS 50x50x1.6SHS 0.50 0.53 33.3 6.4 7.1 0.90 
S3S4 100x100x3SHS 35x35x3SHS 0.35 1.00 33.3 6.3 12.7 0.50 
S3S5 100x100x3SHS 35x35x1.6SHS 0.35 0.53 33.3 4.8 5.9 0.81 
S6S1 75x75x3SHS 50x50x3SHS 0.67 1.00 25.0 10.8 8.4 1.29 
S6S2 75x375x3SHS 50x50x1.6SHS 0.67 0.53 25.0 2.5 8.3 0.30 

 

 

Table 5. Experimental stress concentration factors for thin SHS-Plate T-joints 

Series 
Name 

Brace Member Plate Size 









=

Pt
t1  








=

1

1

t
b  

Maximum 
measured SCFs 

S1P 50x50x3SHS 190x190x10PL 0.30 16.7 1.8 
S2P 50x50x1.6SHS 190x190x10PL 0.16 33.3 1.6 
D7P 40x40x2SHS 190x190x10PL 0.20 20 1.6 

 

 


