
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

M.Sc. in physics, Université de Berne
de nationalité suisse et originaire de Olten (SO)

acceptée sur proposition du jury:

Suisse
2008

Prof. M. A. Shokrollahi, président du jury
Prof. S. Vaudenay, Dr W. Meier, directeurs de thèse

Prof. C. Carlet, rapporteur
Prof. A. Lenstra, rapporteur
Dr M. Robshaw, rapporteur

ANALYSIS OF LIGHTWEIGHT STREAM CIPHERS

Simon FISCHER

THÈSE NO 4040 (2008)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 18 AVRIL 2008

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE SÉCURITÉ ET DE CRYPTOGRAPHIE

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Für Philomena

Abstract

Stream ciphers are fast cryptographic primitives to provide confidentiality of electronically

transmitted data. They can be very suitable in environments with restricted resources,

such as mobile devices or embedded systems. Practical examples are cell phones, RFID

transponders, smart cards or devices in sensor networks. Besides efficiency, security is the

most important property of a stream cipher. In this thesis, we address cryptanalysis of

modern lightweight stream ciphers. We derive and improve cryptanalytic methods for dif-

ferent building blocks and present dedicated attacks on specific proposals, including some

eSTREAM candidates. As a result, we elaborate on the design criteria for the develop-

ment of secure and efficient stream ciphers. The best-known building block is the linear

feedback shift register (LFSR), which can be combined with a nonlinear Boolean output

function. A powerful type of attacks against LFSR-based stream ciphers are the recent

algebraic attacks, these exploit the specific structure by deriving low degree equations for

recovering the secret key. We efficiently determine the immunity of existing and newly

constructed Boolean functions against fast algebraic attacks. The concept of algebraic im-

munity is then generalized by investigating the augmented function of the stream cipher.

As an application of this framework, we improve the cryptanalysis of a well-known stream

cipher with irregularly clocked LFSR’s. Algebraic attacks can be avoided by substituting

the LFSR with a suitable nonlinear driving device, such as a feedback shift register with

carry (FCSR) or the recently proposed class of T-functions. We investigate both replace-

ment schemes in view of their security, and devise different practical attacks (including

linear attacks) on a number of specific proposals based on T-functions. Another efficient

method to amplify the nonlinear behavior is to use a round-based filter function, where

each round consists of simple nonlinear operations. We use differential methods to break

a reduced-round version of eSTREAM candidate Salsa20. Similar methods can be used

to break a related compression function with a reduced number of rounds. Finally, we

investigate the algebraic structure of the initialization function of stream ciphers and pro-

vide a framework for key recovery attacks. As an application, a key recovery attack on

simplified versions of eSTREAM candidates Trivium and Grain-128 is given.

Keywords: Cryptanalysis, Stream Cipher, Algebraic Attacks, T-functions, eSTREAM

I

II

Zusammenfassung

Stromchiffren sind schnelle kryptografische Verfahren, um die Vertraulichkeit von elek-

tronisch übermittelten Daten zu gewährleisten. Sie können in Umgebungen mit einge-

schränkten Ressourcen eingesetzt werden, etwa in mobilen Geräten oder in eingebetteten

Systemen. Praktische Beispiele sind Mobiltelefone, RFID Transponder, Smartcards oder

Geräte in Sensornetzwerken. Nebst der Effizienz ist die Sicherheit die wichtigste Eigen-

schaft einer Stromchiffre. In dieser Doktorarbeit behandeln wir die Kryptanalyse von

modernen und leichtgewichtigen Stromchiffren. Wir entwickeln und verbessern krypt-

analytische Methoden für verschiedene Bausteine, und präsentieren Angriffe auf spe-

zifische Verfahren, einschliesslich einigen eSTREAM Kandidaten. Daraus ergeben sich

diverse Kriterien für das Design und die Entwicklung von sicheren und effizienten Strom-

chiffren. Der am besten bekannte Baustein von Stromchiffren ist das lineare Schiebe-

register (LFSR), welches mit einer nichtlinearen Boolschen Filterfunktion kombiniert wer-

den kann. Ein mächtiger Angriff gegen LFSR-basierte Stromchiffren sind die algebraischen

Angriffe, welche die spezifische Struktur ausnutzen um tiefgradige Gleichungen zu er-

halten und den geheimen Schlüssel zu rekonstruieren. Für bestehende und zukünftig

konstruierte Boolsche Funktionen können wir effizient die Immunität gegen Schnelle Al-

gebraische Angriffe bestimmen. Das Konzept der algebraischen Immunität kann auf die

Erweiterte Funktion der Stromchiffre verallgemeinert werden. Die Methode wird dann

erfolgreich auf eine bekannte Stromchiffre mit irregulär getakteten LFSR’s angewendet.

Im Allgemeinen können algebraische Angriffe verhindert werden, indem das LFSR durch

einen geeigneten nichtlinearen Baustein ersetzt wird, etwa ein Schieberegister mit Spei-

cher (FCSR) oder eine der kürzlich vorgeschlagenen T-funktionen. Wir untersuchen beide

Bausteine im Hinblick auf die Sicherheit, und entwickeln diverse (insbesondere lineare)

Angriffe gegen Stromchiffren, die auf T-funktionen basieren. Es gibt auch andere effiziente

Konstruktionen, um das nichtlineare Verhalten einer Stromchiffre zu verstärken, etwa eine

rundenbasierte Filterfunktion, wobei jede Runde aus einfachen nichtlinearen Operationen

besteht. Wir verwenden differenzielle Methoden, um den eSTREAM Kandidaten Salsa20

für eine reduzierte Anzahl Runden zu brechen. Ähnliche Methoden können dann verwen-

det werden, um eine verwandte Kompressionsfunktion (ebenfalls mit einer reduzierten

Anzahl Runden) zu brechen. Schliesslich untersuchen wir die algebraische Struktur der

Initialisierungsfunktion von Stromchiffren, und stellen eine allgemeine Methode für die

Rekonstruktion vom Schlüssel bereit. Als Anwendung präsentieren wir einen Angriff auf

vereinfachte Versionen der eSTREAM Kandidaten Trivium und Grain-128.

Schlüsselwörter: Kryptanalyse, Stromchiffren, Algebraische Angriffe, T-Funktionen,

eSTREAM

III

IV

Acknowledgments

I would like to thank my supervisors Dr Willi Meier and Prof. Serge Vaudenay for offering

me the chance of this valuable PhD position. After a demanding start for a physicist,

I experienced a very fruitful supervision of Dr Willi Meier, and my benefit is not only

of technical nature. I am deeply grateful for this. It is a honor for me to have Prof.

Claude Carlet, Prof. Arjen Lenstra, Dr Matt Robshaw and Prof. Amin Shokrollahi in

the thesis jury, thank you sincerely for investing your time. One of the best things in

research is collaboration with motivated colleagues: I would like to express my gratitude

to Dr Pascal Junod and Dr Frederik Armknecht. I was pleased when Jean-Philippe

Aumasson, Shahram Khazaei and Reza Ebrahimi Atani later joined our team, working

and discussing with them was very motivating. I would also like to thank Shahram for

our great collaboration and for his brilliant ideas he shared with us. I cordially thank all

members of the institutes IAST, IPSP and LASEC, I was very well integrated and enjoyed

the pleasant ambiance; my work environment could not have been better. Many thanks to

the directors of the institutes Prof. Heinz Burtscher and Prof. Rolf Gutzwiller. I gratefully

acknowledge the support of this thesis by the National Competence Center in Research on

Mobile Information and Communication Systems (NCCR-MICS), a center supported by

the Swiss National Science Foundation under grant number 5005-67322. Finally, I would

like to thank my family and close friends for their help and friendship. My lovely mother

constantly encouraged me to pursue my education. No words can express my gratitude

to my wonderful wife Philomena, our love gives me more than anything else. This thesis

is dedicated to her.

V

VI

Contents

Abstract I

Zusammenfassung III

Acknowledgments V

1 Introduction 1

2 Preliminaries 5

2.1 Notational Preliminaries . 5

2.2 Definition of a Cryptosystem . 6

2.3 Stream Ciphers . 7

2.4 Other Cryptosystems . 9

2.5 Cryptographic Hash Functions . 9

2.6 Designs of Stream Ciphers . 10

2.7 Attacks on Stream Ciphers . 13

2.8 Statistical Tests . 19

3 Algebraic Immunity against Fast Algebraic Attacks 23

3.1 Introduction . 23

3.2 Efficient Computation of Immunity . 24

3.3 Immunity of Symmetric Functions . 28

3.4 Summary . 34

4 Algebraic Immunity of Augmented Functions 35

4.1 Introduction . 35

4.2 Algebraic Properties of S-boxes . 36

4.3 Algebraic Attacks based on the Augmented Function 38

4.4 Generic Scenarios for Filter Generators . 39

4.5 First Application: Some Specific Filter Generators 42

4.6 Second Application: Trivium . 46

4.7 Conditional Correlations . 48

4.8 Summary . 50

VII

5 Attacks on the Alternating Step Generator 51

5.1 Introduction . 51

5.2 Previous Attacks on ASG . 52

5.3 Johansson’s Reduced Complexity Attacks 54

5.4 New Reduced Complexity Attack . 55

5.5 Experimental Results . 60

5.6 Summary . 64

6 Analysis of F-FCSR 65

6.1 Introduction . 65

6.2 Theoretical Background . 65

6.3 Sequences Produced by a Single Galois Register Cell 68

6.4 A Canonical Representative . 68

6.5 Analysis of F-FCSR in Fibonacci Representation 69

6.6 Summary . 71

7 Attacks on T-functions 73

7.1 Introduction . 73

7.2 Cryptanalysis of Square Mappings . 73

7.3 Cryptanalysis of TSC-1 . 77

7.4 Cryptanalysis of TSC-2 . 80

7.5 Non-randomness of TSC-4 . 82

7.6 Summary . 85

8 Attacks on Salsa20 and Related Primitives 87

8.1 Introduction . 87

8.2 Description of Salsa20 . 88

8.3 Key-Recovery Attack on Salsa20/6 . 89

8.4 Related-Key Attack on Salsa20/7 . 94

8.5 Key-Recovery Attack on Salsa20/8 . 96

8.6 Key-Recovery Attack on ChaCha7 . 100

8.7 Analysis of Rumba . 102

8.8 Summary . 109

9 Chosen IV Statistical Analysis 111

9.1 Introduction . 111

9.2 Problem Formalization . 112

9.3 Scenarios of Attacks . 112

9.4 Derived Functions from Polynomial Description 113

9.5 Functions Approximation . 114

9.6 Description of the Attack . 115

9.7 Application to Trivium . 116

9.8 Application to Grain . 117

9.9 Summary . 118

VIII

10 Conclusions 119

A Attack on MAG 121

A.1 Brief Description . 121

A.2 Distinguishing Attack . 122

A.3 Example of an Attack . 122

Curriculum Vitae 135

IX

X

Chapter 1

Introduction

Motivation

Today’s digital communication technologies require adequate security. Stream ciphers

provide confidentiality of electronically transmitted data. Compared to other primitives,

stream ciphers are competitive in software applications with exceptionally high speed,

and in hardware applications with exceptionally small footprint. With the appearance of

mobile devices and embedded systems (such as cell phones, RFID transponders, smart

cards or devices in sensor networks), the latter becomes more significant and matches

up with the concept of lightweight cryptography. However, the attacks found on well-

known stream ciphers make it necessary to accomplish large efforts in the invention of

new replacement schemes, and in return, to cryptanalyze the new schemes. Furthermore,

it would be attractive to combine functionalities of primitives, e.g. authentication or

integrity methods may be associated to stream ciphers. In this context, the ECRYPT

project named eSTREAM has been initiated in 2004 to design and analyze new proposals

of stream ciphers “suitable for widespread adoption” [104]. This project is a successor of

the NESSIE project initiated in 2000, where no stream cipher was elected for the final

portfolio. In contrast, the block cipher Rijndael was selected in 2001 to be the advanced

encryption standard (AES). The AES is very popular and well studied. A modern stream

cipher should be “superior to the AES in at least one significant aspect” [104], where we

assume that the AES is used in some appropriate mode, e.g. counter mode.

Thesis Outline

In this thesis, we focus on the cryptanalysis of synchronous stream ciphers. The outline

of this thesis is as follows: In Chapter 2, we present our preliminaries, including the

formalism for stream ciphers and some important attacks and concepts. Our analysis

begins in Chapter 3 with the well-known filter generators, which consist of a linear update

and a nonlinear Boolean output function. To evaluate resistance against fast algebraic

attacks, we present efficient algorithms and theoretical bounds. In Chapter 4, we are able

to generalize the concept of algebraic immunity of stream ciphers by investigating the

1

2 1. Introduction

augmented function. As an application of this framework, we improve the cryptanalysis

of a well-known stream cipher with irregularly clocked LFSR’s, see Chapter 5. Algebraic

attacks are more difficult for nonlinear driving devices such as shift registers with carry

(FCSR’s). In Chapter 6, we investigate different representations for an FCSR-based stream

cipher. Another recently proposed building block for stream ciphers are the so-called T-

functions. In Chapter 7, we present a collection of practical attacks on stream ciphers

based on T-functions. Instead of a nonlinear building block, one could use a round-based

filter function, where each round consists of simple nonlinear operations. In Chapter 8,

we use differential methods to break reduced-round versions of two stream ciphers and a

related compression function. In Chapter 9, we investigate the algebraic structure of the

initialization function of stream ciphers and provide a general framework for key recovery

attacks. We finally draw our conclusions in Chapter 10. In the Appendix, we present

a very simple and efficient attack on a specific stream cipher. We have cryptanalytic

results for the following eSTREAM candidates: F-FCSR, Grain-128, MAG, Salsa20, Trivium,

TSC-4. We have additional results for ASG, ChaCha, Rumba, TF-0, TF-0M, TSC-1, TSC-2,

and for filter generators with different filter functions.

Reports and Publications

Here is a list of conference publications:

1. Simon Künzli, Pascal Junod, and Willi Meier. Distinguishing Attacks on T-functions.

In the proceedings of Ed Dawson and Serge Vaudenay, editors, Progress in Cryp-

tology - MyCrypt 2005, First International Conference on Cryptology in Malaysia,

Kuala Lumpur, Malaysia, September 28-30, 2005. Volume 3715 of Lecture Notes in

Computer Science, pages 2-15. Springer-Verlag, 2005. Award for the best paper of

the conference.

2. Frederik Armknecht, Claude Carlet, Philippe Gaborit, Simon Künzli, Willi Meier,

and Olivier Ruatta. Efficient Computation of Algebraic Immunity for Algebraic and

Fast Algebraic Attacks. In the proceedings of Serge Vaudenay, editor, Advances in

Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Saint Petersburg, Russia,

May 28 - June 1, 2006. Volume 4004 of Lecture Notes in Computer Science, pages

147-164. Springer-Verlag, 2006.

3. Simon Fischer, Willi Meier, Côme Berbain, Jean-François Biasse, and Matthew

Robshaw. Non-randomness in eSTREAM Candidates Salsa20 and TSC-4. In the

proceedings of Rana Barua and Tanja Lange, editors, Progress in Cryptology -

INDOCRYPT 2006, 7th International Conference on Cryptology in India, Kolkata,

India, December 11-13, 2006. Volume 4329 of Lecture Notes in Computer Science,

pages 2-16. Springer-Verlag, 2006.

4. Simon Fischer and Willi Meier. Algebraic Immunity of S-boxes and Augmented

Functions. In the proceedings of Alex Biryukov, editor, Fast Software Encryption

- FSE 2007, 14th International Workshop, Luxembourg City, Luxembourg, March

3

26-28, 2007. Volume 4593 of Lecture Notes in Computer Science, pages 366-381.

Springer-Verlag, 2007.

5. Shahram Khazaei, Simon Fischer, and Willi Meier. Reduced Complexity Attacks

on the Alternating Step Generator. In the proceedings of Carlisle M. Adams, Ali

Miri and Michael J. Wiener, editors, Selected Areas in Cryptography - SAC 2007,

14th International Workshop, Ottawa, Canada, August 16-17, 2007. Volume 4876

of Lecture Notes in Computer Science, pages 1-16. Springer-Verlag, 2007.

6. Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and Chris-

tian Rechberger. New Features of Latin Dances: Analysis of Salsa, ChaCha, and

Rumba. To appear in the proceedings of Kaisa Nyberg, editor, Fast Software En-

cryption - FSE 2008, 15th International Workshop, Lausanne, Switzerland, February

10-13, 2008. Full version available at http://eprint.iacr.org/2007/472. Award

of $1000 for the most interesting analysis of Rumba.

7. Simon Fischer, Shahram Khazaei, and Willi Meier. Chosen IV Statistical Analysis

for Key Recovery Attacks on Stream Ciphers. To appear in the proceedings of Serge

Vaudenay, editor, AfricaCrypt 2008, Casablanca, Morocco, June 11-14, 2008. Also

in SASC 2008 - The State of the Art of Stream Ciphers, Lausanne, Switzerland,

February 13-14, 2008. Workshop Record, pages 33-42.

Here is a list of technical reports:

1. Simon Künzli and Willi Meier. Distinguishing Attack on MAG. In eSTREAM,

ECRYPT Stream Cipher Project, Report 2005/053, 2005.

2. Simon Fischer, Willi Meier, and Dirk Stegemann. Equivalent Representations of

the F-FCSR Keystream Generator. In SASC 2008 - The State of the Art of Stream

Ciphers, Lausanne, Switzerland, February 13-14, 2008. Workshop Record, pages

87-96.

3. Frederik Armknecht, Claude Carlet, Simon Fischer, Philippe Gaborit, Willi Meier,

and Olivier Ruatta. Efficient Computation of Algebraic Immunity for Algebraic and

Fast Algebraic Attacks. Technical Report, 2008. This is an extended version of the

EUROCRYPT 2006 paper.

On behalf of a consulting agreement with a Korean agency, we have evaluated the security

and efficiency of a new stream cipher (in collaboration with Willi Meier, Peter Steigmeier,

and Werner Witz). This work is not part of the thesis.

http://eprint.iacr.org/2007/472

4 1. Introduction

Chapter 2

Preliminaries

Cryptology is the science of information protection against unauthorized parties [98,119].

It can be split up into cryptography (design of cryptographic systems) and cryptanalysis

(security analysis of cryptographic systems). The most important aspects of information

protection are confidentiality (information is secret from unauthorized parties), authentic-

ity (information originates from authorized party) and integrity (information is protected

against malicious modification). Modern cryptographic problems also include electronic

payment, electronic votes etc. Cryptographic algorithms can be classified into secret-key

(or symmetric) algorithms and public-key algorithms. Finally, secret-key algorithms can

be block ciphers or stream ciphers. We describe symmetric cryptosystems in general (pro-

viding confidentiality), and give an overview of designs and attacks on stream ciphers.

This requires to introduce some notational conventions.

2.1 Notational Preliminaries

We denote by F the finite field GF(2) and by Fn the vector space of dimension n over F.

An element of Fn (i.e. a word of n bits) is denoted x := (x0, . . . , xn−1) in vectorial notation,

or x := x0|| . . . ||xn−1 in big-endian bitwise notation, where || denotes concatenation. It

can also be identified as an integer x =
∑n−1

i=0 xi2
i, where x0 is the least significant bit

(lsb), and xn−1 is the most significant bit (msb). The support of x is defined to be the set

supp(x) := {i|xi = 1} and the Hamming weight of x is wt(x) := |supp(x)|. For x, y ∈ Fn,

let x ⊆ y be an abbreviation for supp(x) ⊆ supp(y). Arithmetic operations like +, −, ·
are performed modulo 2n. Boolean operations are performed on all n bits in parallel and

are denoted by ∧ (AND), ∨ (OR), and ⊕ (XOR). In addition, ≪ k (resp. ≫ k) denotes

a left (resp. right) shift by k positions (with zero-padding), and ≪ k (resp. ≫ k)

denotes a cyclic left (resp. right) shift by k positions (i.e. a rotation). It will be clear

from the context if x = (x0, . . . , xm−1) denotes an element of Fm×n, i.e. a vector of m

words of n bits each. In this case, a single bit j of word i is denoted [xi]j. A Boolean

function f is a mapping from the set Fn to F. One possibility to characterize f is its truth

table T (f) ∈ F2n

. It is defined by T (f) := (f(0), . . . , f(2n − 1)). The Boolean function

is balanced if wt(T (f)) = 2n−1. An alternative description of a Boolean function is its

5

6 2. Preliminaries

Encryption Decryption

Key

Generator

Plaintext PlaintextCiphertext

Key

Public Channel

Secret Channel

Figure 2.1: Symmetric encryption.

algebraic normal form. Let F[x0, . . . , xn−1] be the ring of multivariate polynomials over

F in the n unknowns x0, . . . , xn−1. For a multi-index α ∈ Fn, we define the monomials by

xα := xα0

0 · . . . · xαn−1

n−1 . Then, any Boolean function f : Fn → F has a unique expression

f(x) =
⊕

α

fα xα, fα ∈ F . (2.1)

Consequently, we define its coefficients vector C(f) ∈ F
2n

by C(f) := (f0, . . . , f2n−1)

and its degree by deg(f) := max{|α| : fα = 1}. We will also consider vectorial Boolean

functions (or S-boxes) from F
n to Fm.

2.2 Definition of a Cryptosystem

According to the communication model introduced by Shannon [113], there is a sender and

a receiver with a public communication channel. The goal of the sender is to send some

information (the plaintext) in a confidential way to the receiver. This can be achieved

with a cryptosystem and an additional secure channel of low bandwidth. In symmetric

cryptography, the secure channel can not be eavesdropped by an adversary, and it is used

to transmit a secret key. Given the plaintext, the secret key and the cryptosystem, the

sender can construct the ciphertext and send it to the receiver over the public commu-

nication channel. The receiver can then reconstruct the plaintext, given the ciphertext,

the secret key and the cryptosystem, see Fig. 2.2. Formally, a cryptosystem is defined as

follows:

Definition 1. A cryptosystem consists of a plaintext space P, a ciphertext space C and

a key space K. There is an encryption algorithm Enc : K × P → C and a decryption

algorithm Dec : K × C → P. For each K ∈ K and p ∈ P, it is Dec(K, Enc(K, p)) = p.

A cryptosystem is necessary to protect the information from eavesdropping of a third

entity, which will be called the adversary. In an adversary model, the means and goals

of an adversary are defined. According to Kerckhoff’s Principle, an adversary knows

the specification of the cryptosystem and has access to the ciphertext c. The goal of

an adversary is to recover (part of) the plaintext, or to recover the secret key. Another

reasonable scenario is the known-plaintext attack, where the adversary knows one or

2.3 Stream Ciphers 7

more pairs of ciphertext with corresponding plaintext, and her goal is to decrypt other

ciphertexts or to recover the key. In some situations, it may be reasonable to assume that

the adversary has access to the physical device which contains an implementation of the

cryptosystem. All kinds of physical emanations from the device (like power consumption,

radiation, execution times etc.) can then potentially be used in a side-channel attack to

recover the key. Given some adversary model, any attack is evaluated in terms of the

required amount of data, time (number of basic operations) and memory. Consider the

known-plaintext scenario, where the adversary knows a pair (p, c) and tries to recover

the key K. An obvious attack is to try all possible keys K of the finite set K, until the

equation Enc(K, p) = c is verified. This is a basic brute-force attack, which is independent

of the details of the underlying cryptosystem. Consequently, the size of the key space

determines the maximum security of a cryptosystem, which should be related to the

computational power of a strong adversary. If there exists no better attack than brute-

force, the cryptosystem is computational secure. Otherwise, the cryptosystem is said to be

broken (which does not mean that the attack is practical). For many cryptosystems, the

problem of recovering the key can be seen as solving a huge system of nonlinear Boolean

equations. Shannon claimed that breaking a good cipher should require ”as much work

as solving a system of simultaneous equations in a large number of unknowns of a complex

type” (where the unknowns are the key bits). In general, such a problem is known to be

NP-hard.

2.3 Stream Ciphers

Stream ciphers are an important class of symmetric encryption algorithms [111]. They

encrypt individual symbols (usually binary digits) of a plaintext one at a time, using an

encryption transformation which varies with time, see Fig. 2.2 and Fig. 2.3. Here is a

formal definition:

Definition 2. A synchronous stream cipher consists of an internal state x ∈ X , an up-

date function L : X → X and an output function f : X → Z, where Z is the keystream

alphabet. An output z ∈ Z at time t is produced according to zt = f(xt), where xt = Lt(x)

and x is the initial state. The initial state x is produced by an initialization function

from the secret key K and an initialization vector IV denoted by V . The stream of out-

puts z0, z1, . . . is called the keystream. Each output symbol is then combined with the

corresponding plaintext symbol to produce a ciphertext symbol.

In a synchronous stream cipher, the keystream is independent of the plaintext and cipher-

text. There is no error propagation, but both the sender and receiver must be synchro-

nized. If synchronization is lost due to ciphertext digits being inserted or deleted during

transmission, then decryption fails and can only be restored through re-synchronization.

In the re-synchronization process, a public initialization vector (IV) is exchanged and

loaded into the keyed internal state, without exchanging a new key. This way, the gen-

erator will produce a unique keystream (independent from other keystreams produced

8 2. Preliminaries

Initiali-

zation
AutomatonKey

IV

Plaintext

Initial

State Keystream Ciphertext

Figure 2.2: Stream cipher from a high level.

State

Update

Filter

New State

Keystream

Figure 2.3: Automaton of a stream cipher.

by the same key) every time it is invoked, such that keystream blocks are never re-used.

Additional methods for authentication and integrity are needful in many applications.

Compared to other cryptosystems, synchronous stream ciphers are advantageous in

software applications with very high throughput requirements, or in hardware applica-

tions with restricted resources (such as limited storage, gate count, or power consump-

tion). They are also appropriate when buffering is limited or when characters must be

individually processed as they are received. Because they have no error propagation,

synchronous stream ciphers may also be advantageous in situations where transmission

errors are highly probable.

For a binary additive stream cipher it is Z = {0, 1}, and the plaintext, ciphertext and

keystream are binary streams of equal size. The encryption is then defined by c = p⊕ z,

and decryption simply becomes p = c⊕z. If the keystream z is a uniformly random stream

which is used only once, then the binary additive stream cipher is called a one-time pad.

According to Shannon [113], the one-time pad is unconditionally secure, which means

no secret information can be obtained from the ciphertext even for an adversary with

unlimited resources. However, this scheme is not efficient because it requires random keys

of the same size as the plaintext. With a stream cipher according to Def. 2, one can use a

small key to initialize an automaton and generate a pseudo-random keystream of length of

the plaintext. In the standard adversary model of a stream cipher, it is assumed that the

adversary knows some part of the keystream (corresponding to a known-plaintext attack)

for chosen IV’s, and her goal is to distinguish the keystream from a uniformly random

stream, or to predict the keystream, or to recover the internal state (if the update function

and the initialization function are invertible, then the key can be derived from the internal

state).

Another class of stream ciphers are self-synchronizing stream ciphers, where the

keystream is generated as a function of the key and a fixed number of previous ciphertext

2.4 Other Cryptosystems 9

digits. Self-synchronization is possible if ciphertext digits are deleted or inserted, because

the decryption function depends only on a fixed number of preceding ciphertext digits.

One of the rare examples is eSTREAM Phase 3 candidate Moustique. We do not fur-

ther investigate this class. Finally, we remark that some stream ciphers have additional

mechanisms for message authentication (but no eSTREAM candidate since Phase 3).

2.4 Other Cryptosystems

In this section, we briefly present two other important classes of cryptosystems. A block

cipher is a symmetric cryptosystem with P = C = F
n for a block size n. For each key

K, the encryption function Enc(K, p) is a permutation. In the most general case, the key

space corresponds to the set of permutations of size 2n!, where a single key is represented

by a table of size 2n. It is reasonable to use only a subset of the permutations, which can

be generated efficiently with a small key. To encrypt messages longer than the block size,

a mode of operation is used. The output feedback (OFB) mode makes a block cipher into

a synchronous stream cipher. Most block ciphers are constructed by repeatedly applying

a simple round function, which consists of substitutions and permutations (i.e. realizing

the concept of confusion and diffusion). Security of block ciphers is well studied, but

block ciphers are typically less efficient compared to dedicated stream ciphers.

In symmetric cryptography, key management is a main concern. Each pair of par-

ticipants must share a secret key, which gives a huge number of N(N − 1)/2 keys for

N participants. One solution is to use a trusted key distribution center, which shares

a single key with each participant. Another solution is to use public-key cryptosystem.

In a public-key cryptosystem, each participant has a secret key (for decryption) and a

public key (for encryption). The public key can be distributed to all participants, using

an authenticated (but not confidential) channel. It should be computationally difficult to

compute the secret key given the public key, or to decrypt without the secret key (where

the secret key is a trapdoor of a potential one-way function). Public-key algorithms are

based on computationally hard problems, such as factorization. These algorithms are

much less efficient than symmetric algorithms. Hence, public-key cryptosystems are often

used to exchange a secret session key only, and are then replaced by efficient symmetric

cryptosystems to secure the communication channel.

2.5 Cryptographic Hash Functions

A cryptographic hash function is a fixed (and unkeyed) transformation that takes an

input of arbitrary size, and returns a string of fixed size n, which is called the hash value.

The hash value is a concise representation of the (potentially large) input from which it

was computed (i.e. a digital fingerprint). Hash functions are used in many cryptographic

protocols, e.g. for message integrity checks and digital signatures. A hash function should

behave as much as possible like a random function while still being deterministic and

efficiently computable. It should have the following three security properties:

10 2. Preliminaries

1. Preimage resistance: given Hash(x), the complexity to find an input x is not

smaller than 2n.

2. Second preimage resistance: given an input x, the complexity to find a second

input y such that Hash(x) = Hash(y) is not smaller than 2n.

3. Collision resistance: The complexity to find any x and y such that Hash(x) =

Hash(y) is not smaller than 2n/2 using a serial birthday attack (see [122,20] for more

advanced birthday attacks).

Most unkeyed hash functions are designed as iterative processes which hash arbitrary

length inputs by processing successive fixed-size blocks of the input using a compression

function f . This is known as the Merkle-Damg̊ard construction, see e.g. [51]. A hash

input x of arbitrary finite length is divided into fixed-length blocks xi of r bits. This pre-

processing typically involves appending extra bits (padding). Each block xi then serves

as input to the compression function f , which computes a new intermediate result hi (the

chaining variable) of bitlength n as a function of the previous intermediate result hi−1

and the next input block xi. The initial chaining variable h0 is a prespecified value or

an IV, and the final chaining variable is the hash value (or an optional output transfor-

mation could be used). With this construction, collision resistance of the hash function

can be reduced to the collision resistance of the compression function. Commonly used

(iterative) hash functions are MD5 and SHA-1. In 2005, security flaws were identified in

both algorithms, see e.g. [123]. The U.S. Institute of Standards and Technology (NIST)

is initiating an effort to develop one or more additional hash algorithms through a public

competition. In Chapter 8, we present a collision attack on a reduced-round compression

function.

2.6 Designs of Stream Ciphers

We describe some well-known designs for stream ciphers, based on feedback shift registers

and T-functions.

2.6.1 Feedback Shift Registers

Feedback shift registers, in particular linear feedback shift registers, are the basic compo-

nents of many stream ciphers because they are well-suited for hardware implementations,

and produce sequences having large periods and good statistical properties, see e.g. [111].

Definition 3. A binary linear feedback shift register (LFSR) of size n is a finite state

automaton with internal state of n bits. In each clock cycle, the update function L shifts

the state by one position, where the input bit is a linear function of the previous bits.

More precisely, let x = (x0, . . . , xn−1) be the initial state. Then, the output sequence

X = (x0, x1, . . .) is determined by the recursion xt = (c1xt−1 ⊕ . . . ⊕ cnxt−n) for t ≥ n,

where all ci are fixed elements in {0, 1}.

2.6 Designs of Stream Ciphers 11

x3 x2 x1 x0

Figure 2.4: Example of a linear feedback shift register of size n = 4 and with feedback
polynomial C(D) = 1 + D3 + D4.

The connection polynomial of the LFSR is defined by C(D) := 1⊕ c1D⊕ . . .⊕ cnD
n. Let

S(D) be the formal power series S(D) := x0⊕x1D⊕x2D
2⊕ . . ., then the LFSR recursion

is equivalent to C(D)S(D) = P (D) for a polynomial P (D) which is related to the initial

state. If C(D) is a primitive polynomial, then each of the 2n − 1 nonzero initial states

of the corresponding LFSR produces an output sequence with maximum possible period

2n−1. Hence, an LFSR with primitive connection polynomial is called a maximum-length

LFSR. The output sequence of a maximum-length LFSR has good statistical properties,

see [98].

Example 1. Consider an LFSR of size n = 4 and with primitive connection polynomial

C(D) = 1 ⊕ D3 ⊕ D4, see Fig. 2.4. With the initial state x = (1, 1, 0, 0), the output

sequence becomes X = (0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, . . .) and is periodic with period

15. �

Because of the linear structure, an LFSRshould not be used by itself: the LFSR could be

initialized with any n bits of the output to generate the remaining bits of the output (or to

recover the initial state by solving a linear system). There are three general methodologies

for destroying the linearity properties of an LFSR:

1. Filter generators: Use a nonlinear filter function on the contents of a single LFSR.

2. Combination generators: Use a nonlinear combining function (potentially with

memory) on the outputs of several LFSR’s.

3. Clock-controlled generators: Use the output of one (or more) LFSR’s to control

the clock of one (or more).

Nonlinear filters for designs of Type 1 will be analyzed in Chapters 3 and 4. Well-known

examples of Type 2 are the Geffe Generator and the Summation Generator, a real-world

application is E0 (which is used in the Bluetooth technology). Well-known examples of

Type 3 are the Alternating Step Generator (see Chapter 5), the Shrinking Generator, and

the Self-Shrinking Generator, a real-world application is A5 (which is used in the GSM

technology for mobile communication). These three classical types of designs are not

considered as antiquated: the structure is very simple, and serves as a basis for modern

constructions, although many of the proposals are broken [26, 92].

More recent constructions use nonlinear feedback shift registers (NFSR’s), where a non-

linear Boolean function serves as feedback function. Examples are the eSTREAM Phase

2 and 3 candidates Grain (filter generator with NFSR, LFSR and filter), ACHTERBAHN

12 2. Preliminaries

fi

Figure 2.5: A T-function from two 6-bit words to one 6-bit word. For example, bit 4 of
the output is determined by bits 1 to 4 of the two input words.

(combination generator with NFSR’s) and MICKEY (clock-controlled generator with NFSR

and LFSR). It should be noticed that the analysis of NFSR’s is much more involved for

both, the designer and the adversary. Jump registers can be used for efficient clock-

controlled generators. A new type of feedback register was introduced by Klapper and

Goresky [83] and is called a feedback shift register with carry (FCSR), which is equipped

with auxiliary memory for storing the (integer) carry. An FCSR is similar to an LFSR,

except that the contents of the tapped stages of the shift register are added as integers

to the current content of the memory to form a sum. The least significant bit of the sum

is then fed back into the first stage of the shift register, while the remaining higher order

bits are retained as the new value of the memory. FCSR’s can be conveniently analyzed

using the algebra over the 2-adic numbers. An example of such a design is the eSTREAM

Phase 3 candidate F-FCSR, which will be analyzed in Chapter 6.

2.6.2 T-functions

We have seen that LFSR’s are simple primitives which are well understood, but the clean

mathematical structure can also help an adversary to find an attack. In contrast to this

tame approach, one could also use crazy compositions of operations, hoping that neither

the designer nor the adversary will be able to analyze the mathematical behavior of the

scheme. This wild approach is often preferred in real-world designs. Recently, triangular

functions (T-functions) have been introduced by Klimov and Shamir, see [85,86,87,84]. In

a T-function, information does not propagate from left to right. T-functions are semi-wild:

they can look like crazy combinations of nonlinear Boolean and arithmetic operations, but

have many analyzable mathematical properties. Here is a definition:

Definition 4. A (multiword) T-function is a mapping from k n-bit words to l n-bit words,

in which each bit i of any of the outputs (0 ≤ i ≤ n− 1) can depend only on bits 0, . . . , i

of the inputs.

All the Boolean operations and most of the arithmetic operations (such as addition and

multiplication, but not right shift and circular shift) in modern processors are T-functions,

2.7 Attacks on Stream Ciphers 13

and can be executed in one clock cycle. Compositions of T-functions are also T-functions,

which allows to design many T-functions with very efficient software implementation. A

T-function with k = l words could be used iteratively as an update function in a stream

cipher. From an efficiency point of view, a composition of a small number of basic T-

functions would be desirable. From the security point of view, the composition should be

a mixture of Boolean and arithmetic operations, including some nonlinear subexpressions

such as squaring. Klimov and Shamir developed tools to analyze invertibility and the

cycle structure of T-functions. Invertibility is important in a stream cipher, because

if we repeatedly apply an update function to the internal state, we want to prevent

an incremental loss of entropy. The cycle structure of an invertible T-function is also

important, since we do not want the sequence of generated states to be trapped in a short

cycle. A T-function has the single-cycle property, if its repeated application to any initial

state goes through all the 2kn possible states. For a single-cycle T-function used as update

function, no weak initial states are possible. It can be seen as replacement schemes of

maximum-length LFSR’s. However, the period of the least significant bits (or bit-slices) of

T-functions is small by construction: The period for bit(-slice) i is at most 2ki for a state

of k words. Consequently, one should only use the most significant bits in an additional

filter function, or mix lower and higher bits with cyclic shifts.

Example 2. The mapping x 7→ x+(x2∨5) mod 2n is an invertible T-function with a single

cycle. For n = 4 and the initial state x = (1, 1, 0, 0), the sequence of the most-significant

bits becomes X = (1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, . . .) and is periodic with period

16. �

Most processors have either 32 or 64 bit words, and thus univariate mappings with k = 1

are not sufficient. Klimov and Shamir constructed invertible T-functions on multiword

states whose iteration is guaranteed to yield a single cycle. One of their proposals was

used in eSTREAM Phase 1 candidate Mir-1. Another class of single-cycle T-functions on

multiword states named TSC was proposed by Hong et al. in [76], one of their construction

was optimized for hardware implementations. In Chapter 7, we present powerful attacks

on different proposals, and some cryptanalysis of eSTREAM Phase 2 candidate TSC-4.

2.6.3 Alternative Designs

There are also alternative and unique designs of stream ciphers such as RC4, which is used

in the security applications WEP and SSL. The eSTREAM Phase 3 candidates Trivium

and Salsa20 can also be mentioned here, although their design is strongly influenced by

block ciphers. We present some cryptanalysis on these two eSTREAM candidates in

Chapters 3, 8 and 9.

2.7 Attacks on Stream Ciphers

We describe some well-known attacks on stream ciphers, mainly on LFSR-based designs.

Many of these attacks result in necessary conditions for the design of secure stream ciphers.

14 2. Preliminaries

2.7.1 LFSR-synthesis

The linear complexity C of any binary sequence is defined by the length of the shortest

LFSR that generates the sequence. Given at least 2C bits of a binary sequence with linear

complexity C, the Berlekamp-Massey algorithm [93] determines an LFSR of length C in

O(C2) time. In the case of a filter generator with an LFSR of size n, the linear complexity

of the keystream is at most Dl :=
∑l

i=0

(

n
i

)

, where l := deg(f) is the algebraic degree of

the Boolean filter function f . With 2Dl bits of keystream, the remaining keystream can

be synthesized in O(D2
l). As a consequence, linear complexity of a stream cipher should

be large.

2.7.2 Algebraic Attacks

Any stream cipher can be expressed as a system of multivariate algebraic equations,

depending on the secret key and on the known keystream. The observed keystream

can be substituted in this system, and the system can be solved to recover the secret

key. These two steps (find equations and solve the system) are the principle of algebraic

attacks [45, 95]. If the system corresponds to simultaneous equations in a large number

of unknowns and of a complex (nonlinear) type, then solving the system is difficult. An

overdefined nonlinear system could be linearized (where each monomial is replaced by a

new variable) and solved by Gaussian elimination. The efficiency of the method depends

on the algebraic degree of the equations.

Example 3. Consider the system of equations x0x1 = 0, x0 ⊕ x0x1 = 1, x1 ⊕ x0x1 = 0.

With the new variables y0 = x0, y1 = x1, y2 = x0x1, one obtains the linearized system

y2 = 0, y0⊕ y2 = 1, y1⊕ y2 = 0. Gaussian elimination yields y0 = 1, y1 = 0, y2 = 0, which

corresponds to the solution x0 = 1, x1 = 0. �

One could also use more sophisticated methods derived from Buchenberger’s algorithm to

compute a Gröbner basis of a polynomial ideal. The most efficient algorithm is Faugère’s

F5 [56], an alternative method is XL [44]. More recently, SAT-solver have been used [12]

(such as MiniSAT). However, the computational cost of these approaches is difficult to

evaluate and strongly depends on the structure of the system, see [9].

In the case of filter generators, the basic equations are zt = f(Lt(x)) with x =

(x0, . . . , xn−1) and for t = 0, 1, 2, Notice that L(x) and also Lt(x) is linear in x

for any t. Consequently, the degree of f(Lt(x)) corresponds to l := deg(f) ≤ n for any t.

The number of monomials of degree i is
(

n
i

)

, so the overall number of monomials of degree

between 0 and l is Dl :=
∑l

i=0

(

n
i

)

(which is about
(

n
l

)

for l < n/2). If we use linearization,

the number of variables is at most Dl, and time complexity to solve this system is about

O(D3
l) (where the exponent 3 is taken for matrix inversion). This is worse compared to

LFSR-synthesis. The crucial idea of algebraic attacks on filter generators is to reduce the

degree of the equations. Let us first recall the definition of an annihilator : a function g

is called an annihilator of f , if fg = 0. Here is a simple example:

2.7 Attacks on Stream Ciphers 15

Example 4. The function g = x0 ⊕ x1 of degree 1 is an annihilator of f = x0x1 of degree

2, hence fg = 0. �

Let g be an annihilator for f or f⊕1 of low degree d. In the case fg = 0, one can multiply

zt = f(Lt(x)) by g(Lt(x)) and obtains g(Lt(x)) · zt = 0. For zt = 1, this is an equation of

degree d. Similarly, for (f ⊕ 1)g = 0, one obtains g(Lt(x)) · (zt ⊕ 1) = 0 of degree d. The

complexity of algebraic attacks can be summarized by:

1. Relation search step. Finding annihilators g of f or f ⊕ 1 with low degree d

(if these exist at all). The complexity of this step is roughly in O(D3
k), for Dk :=

∑d
i=0

(

k
i

)

and where k ≤ n is the fixed number of input variables to the filter function.

2. Solving step. With R linearly independent annihilators of degree d for f or f ⊕ 1,

a single output bit zt can be used to set up (in average) R/2 equations in x at time

t. The number of monomials in these equations is at most D :=
∑d

i=0

(

n
i

)

, hence

by linearization, data complexity of conventional algebraic attacks becomes about

2D/R, and time complexity O(D3).

In general, the algebraic immunity AI of a Boolean function f is defined by the minimum

degree d of an annihilator for f or f ⊕ 1. In [45] it has been shown that for any function

f with k-bit input vector, functions g 6= 0 and h exist, with fg = h such that e and

d are at most ⌈k/2⌉. This implies that AI(f) ≤ ⌈k/2⌉. For a function with maximum

algebraic immunity, time complexity of algebraic attacks is only about the square root

of simple linearization; data complexity is about the square root of simple linearization

and of LFSR-synthesis. As a consequence, AI of a stream cipher should be large. There

are sophisticated algorithms to determine AI of an arbitrary Boolean function [3, 53].

Recently, some theoretical work on constructions of Boolean functions with maximum AI
was presented [48, 50, 29, 35]. Algebraic Attacks can also be applied to other LFSR-based

designs. However, these attacks are more difficult if the update function L is nonlinear

(e.g. for some T-functions constructions), as the degree of equations is increasing with t.

In this work, an improvement of algebraic attacks is presented in Chapter 4.

2.7.3 Fast Algebraic Attacks

Fast algebraic attacks were introduced by Courtois in [41]. They were confirmed and

improved later by Armknecht in [2] and Hawkes and Rose in [72]. A prior aim of fast

algebraic attacks is to find a relation fg = h with e := deg g small and d := deg h

larger. The equation zt = f(Lt(x)) of filter generators is multiplied by g such that

g(Lt(x)) ·zt = h(Lt(x)). In classical algebraic attacks, the degree d would necessarily lead

to considering a number of unknowns of the order of D :=
∑d

i=0

(

n
i

)

. In fast algebraic

attacks, one considers that the sequence of the functions h(Lt(x)) can be obtained as an

LFSR with linear complexity D. One could use then the Berlekamp-Massey algorithm

to eliminate all monomials of degree superior to e in the equations, such that eventually

one only needs to solve a system in E :=
∑e

i=0

(

n
i

)

unknowns. More precisely, one can

precompute a linear combination
⊕D

i=0 ci ·h(Lt+i(x)) = 0 with fixed coefficients ci ∈ {0, 1}

16 2. Preliminaries

for all t. This gives
⊕D

i=0 ci · g(Lt+i(x)) · zt+i = 0 of lower degree e. The complexity of

fast algebraic attacks can be summarized in these four steps:

1. Relation search step. One searches for functions g and h of low degrees such

that fg = h. For g and h of degrees e and d respectively, with associated values

Dk :=
∑d

i=0

(

k
i

)

and Ek :=
∑e

i=0

(

k
i

)

, such g and h can be found when they exist by

solving a linear system with Dk +Ek equations, and with complexity O((Dk +Ek)
3).

Usually one considers e < d.

2. Precomputation step. In this step, one searches for particular linear relations

which permit to eliminate monomials with degree greater than e in the equa-

tions. This step needs a sequence of 2D bits of stream and has a complexity of

O(D log2(D)) using a direct method presented in [72].

3. Substitution step. At this step, one eliminates the monomials of degrees greater

than e. This step has a natural complexity in O(E2D) but using discrete Fourier

transform, it is claimed in [72] that a complexity O(ED log(D)) can be obtained.

4. Solving step. One solves the system with E linear equations in O(E3). Each

equation requires D bits of keystream, hence data complexity is about CD = D +

E. This is not much larger than in algebraic attacks (with the same asymptotic

complexity).

Notice that, for arbitrary non-zero functions f , g, h, the relation fg = h implies fh = h,

thus we have d ≥ AI(f) and we can restrict to values e with e ≤ AI(f). Fast algebraic

attacks are always more efficient than conventional algebraic attacks if d = AI(f) and

e < d. In case that e turns out to be large for this d, it is of interest to determine

the minimum e where d is slightly larger than AI(f). In Chapter 3, we give efficient

algorithms for the relation search step. A powerful variant of algebraic attacks on the filter

generator was presented recently in [108]. In this work, a precomputation of complexity

O(Dl log2(Dl)) is used to find linear equations in the initial state variables (similar to the

precomputation of FAA’s). The initial state can be recovered after observing about Dl

keystream bits with a complexity of O(Dl).

2.7.4 Correlation and Linear Attacks

In correlation and linear attacks one considers an overdefined system of linear input-

output relations of some correlation (i.e. some noisy equations). In contrast, algebraic

attacks deal with exact equations.

Correlation Attacks. The main scenario of correlation attacks are combination generators,

assuming that the keystream bit zt is correlated to one individual LFSR output sequence

xt due to the combining function, hence Pr(xt = zt) = p 6= 0.5. Here is an example of

bit-correlation:

Example 5. Consider a combination generator with 3 LFSR’s and with combination func-

tion f(x) = x0x1⊕x0x2⊕x1x2. Then, the correlation of the output sequence of any LFSR

to the keystream is p = 0.75. �

2.7 Attacks on Stream Ciphers 17

With a divide-and-conquer strategy, one can determine the initial state of the target

LFSR first, given N bits of keystream. In the original correlation attack proposed by

Siegenthaler [115], one checks all possible initial states of the target LFSR, and chooses the

initial state with the minimum number of deviations to the observed keystream (assuming

p > 0.5). The attack by Siegenthaler can be prevented by using a correlation-immune

combining function. In this case, the keystream is statistically independent of the output

of each constituent LFSR; any correlation attack should then consider several LFSR’s

together.

Fast Correlation Attacks. In [96], fast correlation attacks have been developed. These

attacks are significantly faster than exhaustive search over all initial states of the target

LFSR. Let us first review the statistical model: it is assumed that a linear combination of

some LFSR outputs is correlated to the keystream. This linear combination corresponds

to the output of a unique LFSR of size L. The output of this LFSR is a codeword of size N

of the linear code of dimension L defined by the feedback polynomial. The keystream can

be seen as the result of the transmission of this codeword through the binary symmetric

channel with error probability 1 − p, or Pr(xt = zt) = p 6= 0.5. The attack aims at

recovering L bits of the codeword from the knowledge of N bits of the keystream. With

information theoretic arguments, the minimum number of required keystream bits to

recover the initial state is N = L/(1 − h(p)), where h is the binary entropy function,

but no efficient decoding algorithm is known for achieving this bound. The idea of the

attack in [96] is to use parity-check equations (of degree ≤ N) for the linear code, which

can be derived from the feedback polynomial. Every bit xt satisfies several parity-check

equations, and by substituting the corresponding keystream digits zt in these equations,

we obtain relations for each bit zt which may or may not hold. The probability bias of these

equations is determined by p and by the weight w of the parity-check equations. To test

whether xt = zt, one counts the number of all equations which hold for zt. Under favorable

conditions, one can find some bits zt which have a high probability of being correct, which

means that only slight modifications of the estimate are necessary to determine all bits of

the LFSR. This main idea can be combined with a partial exhaustive search, and the attack

can be extended to the situation where w is large: the precomputation step then consists

in generating parity-check equations of low weight (i.e. finding polynomial multiples of

the feedback polynomial of low weight) but large degree N , see e.g. [34,37]. Another idea

is to use iterative decoding methods for the keystream bits zt: assign to each bit zt a new

probability for xt = zt conditioned on the number of relations satisfied. This procedure

can be iterated, and after a few rounds, those bits zt with small conditional probability

are complemented, until we end up with the original LFSR sequence. The attacks were

improved by a series of variant attacks [80].

Linear Attacks. The bit-correlations of correlation attacks can be viewed as a special case

of linear cryptanalysis [94], which tries to take advantage of high probability occurrences

of linear relations involving keystream bits and initial state bits. In general, the starting

point is a system of linear relations in some of the initial state bits x which hold with

18 2. Preliminaries

probabilities different from 1/2 for the observed keystream. The most likely solution for

x is the one that satisfies the most relations (assuming that all relations have p > 0.5),

see [15] for a recent application on eSTREAM candidate Grain-v0. Another approach is to

use low-weight parity checks for the linear relations and apply iterative methods [64]. In

Chapter 7, we present linear attacks on T-functions. An important measure for correlation

and linear attacks is the nonlinearity of a Boolean function. In Chapter 4, we present an

efficient method to find relations with small nonlinearity.

2.7.5 Differential Attacks

Differential cryptanalysis [24] is a general method of cryptanalysis that is applicable

primarily to block ciphers, but also to stream ciphers and cryptographic hash functions.

One investigates how a difference in the input of the cipher affects the difference in the

output (requiring chosen plaintext). The difference is traced through the network of

transformations F , discovering where the cipher exhibits non-random behavior. The

goal is to find a suitable differential, i.e. a fixed input-difference ∆x and a fixed output-

difference ∆z such that ∆z = F (x)⊕F (x⊕∆x) with high probability for a random input

x. The differential can be exploited to distinguish the output with statistical methods

(or to recover the key using more sophisticated variants). The statistical properties of

the differential mainly depend on the nonlinear part of the cipher. Note that a fixed

differential of first order reduces the algebraic degree of the output function by one. One

method of differential attack on a stream cipher is to find a high-probability differential

for the output function [23]. The known keystream allows computation of the output-

difference, and the inputs of the initialization function (i.e. the key and the IV) should

be chosen such that two states with the desired input-difference are produced. There are

many specialized types of differential attacks. Collisions in hash functions correspond to

differentials with zero output-difference.

2.7.6 Tradeoff Attacks

Tradeoff attacks are generic attacks, where a tradeoff in time, memory and data can be

achieved to attack the stream cipher. During the precomputation phase, which requires P

steps, the adversary explores the general structure of the stream cipher and summarizes

her findings in large tables, requiring memory of size M . During the realtime phase,

which requires T steps, the adversary is given D frames (i.e. data which corresponds to

D different keystreams produced by unknown keys and IV’s), and her goal is to use the

tables to find the key of one frame as fast as possible. In [10], Babbage concludes that the

internal state of the stream cipher should be at least twice as large as the key. Biryukov

and Shamir presented some improved TMD tradeoffs in [25]. In [77, 52] they conclude

that a TMD tradeoff attack can be mounted with P, D, T, M smaller than exhaustive key

search, if the IV size is smaller than half the key size. Furthermore, an attack can be

mounted with D, T, M smaller than exhaustive key search, but without restrictions on P ,

if the IV size is smaller than the key size.

2.8 Statistical Tests 19

2.8 Statistical Tests

In this section, we briefly describe optimal distinguishers and statistical key recovery

attacks, and we describe the χ2 test.

2.8.1 Optimal Distinguishers

Binary hypothesis testing is a formal way for distinguishing between two distributions.

This is a frequently encountered problem in cryptanalysis. We use the well-known ap-

proach by Neyman-Pearson, and some advanced methods described in [11]. Let XN :=

(X0, X1, . . . , XN−1) denote N i.i.d. random variables where each Xi ∈ X and X has

cardinality m. We assume that the distribution of the random variables is either D0 (the

null hypothesis) or D1 (the alternative hypothesis). Both distributions are assumed to be

known. Let xN := (x0, x1, . . . , xN−1) be a realization of the N random variables. Given

xN , the goal is to decide if the random variables have distribution D0 or D1. A (possibly

computationally unbounded) algorithm D which takes as input a sequence of N realiza-

tions xN distributed according to D0 or D1, and outputs 0 or 1 according to its decision,

is called a distinguisher. It can be fully determined by an acceptance region A ⊂ X such

that D(xN) = 1 iff xN ∈ A. Note that D(XN) is a derived random variable. The ability

to distinguish a distribution from another is usually measured in terms of the advantage

of the distinguisher and is defined by

AdvD :=
∣

∣Pr(D(XN) = 0|D0)− Pr(D(XN) = 0|D1)
∣

∣ . (2.2)

Hence, the distinguisher can make two types of errors: it can either output 0 when

the distribution is D1 (which is a false alarm if H0 is the interesting event) or 1 when

the distribution is D0 (which is a non-detection); we will denote these respective error

probabilities by pα := Pr(D(XN) = 0|D1) and pβ := Pr(D(XN) = 1|D0), and the overall

error probability is defined as pe := 1
2
(pα +pβ). It is linked to the advantage by the simple

relation AdvD = 1− 2pe. The Neyman-Pearson Lemma derives an optimal test D, i.e. a

test which minimizes the error pe for given N . It is based on the likelihood ratio LR with

acceptance region

A = {x : LR(xN) ≥ 1} with LR(xN) =
Pr(XN = xN |D0)

Pr(XN = xN |D1)
. (2.3)

Let us now assume that the distributions D0 and D1 are close to each other, i.e. Pr(X =

x|D0) = µx and Pr(X = x|D1) = µx + εx with probability bias |εx| ≪ µx for all x ∈ X .

Baignères et al. introduced the distance ∆(D0, D1) between two close distributions. This

measure is directly linked to the number of samples needed to distinguish both probability

distributions with a good success probability. It is defined by

∆(D0, D1) :=
∑

x∈X

ε2
x

µx
. (2.4)

20 2. Preliminaries

The data complexity of an optimal distinguisher becomes N = d/∆(D0, D1), where the

real number d controls the overall probability of error. If Φ denotes the distribution

function of the standard normal distribution, it is approximately pe ≈ Φ(−
√

d/2). In the

case where D1 is the uniform distribution, we use the notation ∆(D0) instead of ∆(D0, D1)

and have ∆(D0) = |X |∑x ε2
x. This measure is called the squared Euclidean imbalance. In

the case X = {0, 1} we have ε := ε0 = −ε1 and one can see that ∆(D0) = 4ε2 and N is

proportional to ε−2. It is a well accepted fact that the complexity of linear cryptanalysis

is linked to the inverse of the square of the bias.

2.8.2 Key Recovery

According to [11], the framework of optimal distinguishers can be adapted to key recovery.

Assume that one observes 2n realizations x of size N each, where 2n− 1 realizations have

uniform distribution D1, and only one realization has non-uniform distribution D0. The

goal is then to identify the realization with distribution D0. Such a situation could appear

when the adversary wants to distinguish the correct subkey of n bits (assuming that only

the correct subkey gives a distribution D0). We consider the simple key ranking method

where the rank of a subkey corresponds to the grade LR(xN). The correct subkey has a

high expected rank if

N =
4n log 2

∆(D0)
. (2.5)

Then, the expected rank (starting by 1) becomes 1+ (2n− 1)Φ(−
√

n∆(D0)/2). This is a

guess-and-determine attack: a subkey is guessed, and the correct one can be determined.

The remaining bits of the key can then be found with a partial search (verify the observed

keystream).

2.8.3 The Chi-Squared Test

The χ2 test is used to distinguish an unknown distribution D0 from the uniform distri-

bution D1, see e.g. [82]. Again, let XN := (X0, X1, . . . , XN−1) denote N i.i.d. random

variables where each Xi ∈ X and X has cardinality m. We assume that the distribution

of the random variables is either D0 (the null hypothesis) or the uniform distribution D1

(the alternative hypothesis). Let xN = (x0, x1, . . . , xN−1) be a realization, and Nx the

number of observations x in xN . Then, the χ2 statistic is a random variable defined by

χ2 :=
∑

x

(Nx −N/m)2

N/m
. (2.6)

For large N , the χ2 statistic is compared with the threshold of the χ2
α,m−1 distribution

having m − 1 degrees of freedom and significance level α. Consequently, a χ2 test can

be defined by a threshold T , such that the alternative hypothesis is accepted if χ2 < T .

If the random variables in XN have uniform distribution D1, then the expectation of χ2

becomes E(χ2) = m − 1. Now assume that the random variables in XN have a non-

uniform distribution D0 with Pr(X = x|D0) = 1/m + εx, such that |εx| ≪ 1/m for all

2.8 Statistical Tests 21

x ∈ X . With the definitions ε2 :=
∑

x ε2
x and c := Nε2, the expectation of χ2 becomes

about E(χ2) = (c+1)m−1. The difference between the expectations becomes significant,

if c = O(1). Consequently, about N = 1/ε2 samples are required to distinguish a source

with distribution D1 from a source with uniform distribution D0. Note that ε2 differs

from ∆(D0) only by a factor of |X |. It is well-known that a χ2 cryptanalysis needs about

1/∆(D0) queries to succeed, which is not worse (up to a constant term) than an optimal

distinguisher. In fact, the χ2 statistical test is asymptotically equivalent to a likelihood

ratio test. Consequently, if one distribution is unknown, the best practical alternative to

an optimal distinguisher seems to be a χ2 attack.

22 2. Preliminaries

Chapter 3

Algebraic Immunity against Fast Algebraic

Attacks

In this chapter we propose several efficient algorithms for assessing the resistance of

Boolean functions against fast algebraic attacks when implemented in LFSR-based stream

ciphers. An efficient generic algorithm is demonstrated to be particularly efficient for sym-

metric Boolean functions. As an application, it is shown that large classes of symmetric

functions are very vulnerable to fast algebraic attacks despite their proven resistance

against conventional algebraic attacks.

3.1 Introduction

Resistance against fast algebraic attacks is not fully covered by algebraic immunity, as

has been demonstrated, e.g. by a fast algebraic attack on the eSTREAM Phase 2 candi-

date SFINKS [42]. We will later give examples of functions which have optimal algebraic

immunity but are very vulnerable against fast algebraic attacks. It seems therefore rele-

vant to be able to efficiently determine the immunity of existing and newly constructed

Boolean functions against fast algebraic attacks. For determining immunity against fast

algebraic attacks, we give a new algorithm that compares favorably with the known algo-

rithms [95, 53].

The algorithm is applied to several classes of Boolean functions with optimal algebraic

immunity, including symmetric Boolean functions like the majority functions. Symmetric

functions are attractive as the hardware complexity grows only linearly with the number

of input variables. However, it is shown in this chapter that the specific structure of these

functions can be exploited in a much refined algorithm. It is concluded that large classes

of symmetric functions are very vulnerable to fast algebraic attacks despite their optimal

algebraic immunity. A symmetric function would not be implemented by itself but rather

in combination with other nonlinear components in stream ciphers. It seems nevertheless

essential to know the basic cryptographic properties of each component used.

23

24 3. Algebraic Immunity against Fast Algebraic Attacks

3.2 Efficient Computation of Immunity

Given a Boolean function f(x) =
⊕

α fαxα with n input variables, the goal is to decide

whether g(x) =
⊕

β gβx
β of degree e and h(x) =

⊕

γ fγx
γ of degree d exist, such that

fg = h. The known function f is represented preferably by the truth table T (f), which

allows to efficiently access the required elements, and the unknown functions g and h

are represented by the coefficient vectors C(g) and C(h), which leads to the simple side

conditions gβ = 0 for |β| > e and hγ = 0 for |γ| > d. In order to decide if g and h

exist, one has to set up a number of linear equations in gβ and hγ . Such equations are

obtained e.g. by evaluation of f(x) ·⊕β gβx
β =

⊕

γ hγx
γ for some values of x. There

are D + E variables with D :=
∑d

i=0

(

n
i

)

and E :=
∑e

i=0

(

n
i

)

, so one requires at least the

same number of equations. The resulting system of equations can be solved by Gaussian

elimination with time complexity O((D + E)3) = O(D3). If any D + E equations are

linearly independent, then no nontrivial g and h of corresponding degree exist. Otherwise,

one may try to verify a nontrivial solution.

Certainly, there are more sophisticated algorithms, namely we are able to express a

single coefficient hγ as a linear combination of coefficients gβ. If these relations hold for any

value of γ, one may choose γ with |γ| > d such that hγ = 0, in order to obtain relations

in gβ only. Consequently, equations for coefficients of g can be completely separated

from equations for coefficients of h. As there are only E variables gβ, one requires at

least E equations, and the system of equations can be solved in O(E3). Depending on

the parameters n, d, e and on the structure of f , there are different strategies how to

efficiently set up equations.

3.2.1 Setting up Equations

In this section, we consider the product fg = h where f , g and h are arbitrary Boolean

functions in n variables. Recall that α ⊆ β is an abbreviation for supp(α) ⊆ supp(β).

In addition β − α denotes integer subtraction (which is equivalent to bitwise subtraction

if α ⊆ β). There is a well-known relation between elements of the truth table T (f) and

the coefficients vector C(f) of a Boolean function f , which requires introduction of the

following matrix:

Definition 5. The Hadamard matrix HN is an N × N matrix in F, where the element

of row i and column j (counting from 0) is defined by
(

i
j

)

mod 2.

Notice that HN is a lower-triangular and self-inverse matrix. The following relation is

given without proof:

Proposition 1. For any Boolean function f with n input variables, one has T (f) =

H2n · C(f) and C(f) = H2n · T (f).

Prop. 1 can be replaced by an expression that is computed more efficiently.

Lemma 1. Consider a Boolean function f(x) =
⊕

α fαxα. Then it is f(k) =
⊕

α⊆k fα

and fk =
⊕

α⊆k f(α).

3.2 Efficient Computation of Immunity 25

Proof. Prop. 1 can be expressed as f(k) =
⊕

α

(

k
α

)

fα and fk =
⊕

α

(

k
α

)

f(α), where

binomial coefficients are in modulo 2. Lucas’ Theorem says that
(

α
β

)

=
∏
(

αi

βi

)

mod 2,

where αi and βi are the binary expression of α and β, respectively. Consequently, if
(

α
β

)

= 1 mod 2, then βi = 1⇒ αi = 1 for all i, which is equivalent to β ⊆ α. �

With the following theorem, we are able to express a single coefficient hγ as a linear

combination of coefficients gβ, where the linear combination is computed either with

elements of the truth table T (f), or with elements of the coefficient vector C(f).

Theorem 1. Let f(x) =
⊕

α fαxα and g(x) =
⊕

β gβx
β. Set h(x) =

⊕

γ hγx
γ :=

f(x) · g(x). Then, for Aγ,β ∈ F, we have for each γ

hγ =
⊕

β⊆γ

Aγ,β · gβ (3.1)

Aγ,β :=
⊕

β⊆α⊆γ

f(α) =
⊕

γ−β⊆α⊆γ

fα . (3.2)

Proof. From Prop. 1 we have f(k) =
⊕

α⊆k fα and fk =
⊕

α⊆k f(α). We obtain the

relation hγ =
⊕

α⊆γ h(α) =
⊕

α⊆γ f(α)g(α). With g(α) =
⊕

β⊆α gβ, this becomes

hγ =
⊕

α⊆γ

(

⊕

β⊆α

gβf(α)

)

=
⊕

(α,β):β⊆α⊆γ

f(α)gβ =
⊕

β⊆γ

(

⊕

β⊆α⊆γ

f(α)

)

gβ .

For the second expression, first observe that by definition we have xα := xα0

0 · · ·xαn−1

n−1 =
∏

i∈supp(α) xi. As we can replace xe
i by xi for any e ≥ 1, it holds xαxβ =

∏

i∈supp(α)∪supp(β) xi.

Then hγx
γ =

⊕

S fαxαgβxβ with S = {(α, β) : supp(α) ∪ supp(β) = supp(γ)} and hence

hγ =
⊕

β⊆γ (
⊕

S′ fα) gβ with S ′ = {α : supp(α) ∪ supp(β) = supp(γ)} = {α : supp(γ) \
supp(β) ⊆ supp(α) ⊆ supp(γ)}, which is S ′ = {α : supp(γ−β) ⊆ supp(α) ⊆ supp(γ)} as

no carries occur in the subtraction for β ⊆ γ. We finally have S ′ = {α : γ−β ⊆ α ⊆ γ}.�

Example 6. Let us set up an equation for γ = (101)2. Eq. 3.1 brings out

h(101) = A(101),(000) · g(000)

⊕ A(101),(100) · g(100)

⊕ A(101),(001) · g(001)

⊕ A(101),(101) · g(101) .

If we use the Eq. 3.2 in order to determine the coefficients Ai,j, we find

A(101),(000) = f(101) = f(000)⊕ f(100)⊕ f(001)⊕ f(101)

A(101),(100) = f(001) ⊕ f(101) = f(100)⊕ f(101)

A(101),(001) = f(100) ⊕ f(101) = f(001)⊕ f(101)

A(101),(101) = f(000) ⊕ f(100) ⊕ f(001) ⊕ f(101) = f(101) . �

26 3. Algebraic Immunity against Fast Algebraic Attacks

Remark 1. Let us introduce the vector Bγ,β ∈ F
2n

, where the i’th element of Bγ,β is

defined by
(

γ
i

)(

i
β

)

. Then, according to Lucas’ Theorem, the coefficient Aγ,β can also be

written as a scalar product Aγ,β = Bγ,β · T (f) = Bγ,γ−β · C(f).

3.2.2 Determining the Existence of Solutions

Based on Th. 1, we propose Alg. 1 to determine if g and h exist, given f and the corre-

sponding degrees e and d.

Algorithm 1 Determine the existence of g and h for any f

Input: A Boolean function f with n input variables and two integers 0 ≤ e ≤ AI(f)
and AI(f) ≤ d ≤ n.

Output: Determine if g of degree at most e and h of degree at most d exist such that
fg = h.

1: Initialize an E ×E matrix G, and let each entry be zero.
2: Compute an ordered set I ← {β : |β| ≤ e}.
3: for i from 1 to E do

4: Choose a random γ with |γ| = d + 1.
5: Determine the set B ← {β : β ⊆ γ, |β| ≤ e}.
6: for all β in B do

7: Let the entry of G in row i and column β (in respect to I) be Aγ,β

8: end for

9: end for

10: Solve the linear system of equations, and output no g and h of corresponding

degree if there is only a trivial solution.

Let us discuss functionality and complexity of Alg. 1. According to Eq. 3.1, for each

choice of γ one can set up an equation that depends on a linear combination of hγ and

{gβ : β ⊆ γ}. We make use of the side conditions hγ = 0 for |γ| > d, and gβ = 0 for

|β| > e. This can be used to simplify the equations: with a choice of γ such that |γ| > d,

one obtains an equation that depends only on a linear combination of {gβ : β ∈ B}
with B := {β : β ⊆ γ, |β| ≤ e}. In order to compute the linear combination, one has

to compute the coefficients Aγ,β for each β ∈ B. Notice that with Eq. 3.2, Aγ,β has

2|γ|−|β| addends f(α), where {β : β ⊆ γ, |β| = b} has cardinality
(

|γ|
b

)

. Consequently, a

single equation is set up in
∑e

b=0

(

|γ|
b

)

2|γ|−b steps, assuming that f(α) can be accessed in

negligible time. As there are E variables gβ, one requires at least E equations in order to

make a statement about the (non-) existence of nontrivial g (the equations are linearly

independent with high probability). The coefficients Aγ,β of the equations are stored in an

E × E matrix G, initialization takes O(E2) time and memory. This requires an ordered

set I ← {β : |β| ≤ e}, indicating the order of gβ in G; it can be precomputed in O(E)

time. The complexity to set up a single equation increases with |γ| (where we required

|γ| > d), so one may choose |γ| as small as possible. Let |γ| = d + 1 for each equation,

which allows to set up a number of
(

n
d+1

)

equations. In the case of e ≪ d and d ≈ n/2

(which is the typical scope of fast algebraic attacks), one has E <
(

n
d+1

)

, so it is sufficient

3.2 Efficient Computation of Immunity 27

to set up equations with |γ| = d + 1 only. The overall time complexity to set up E

equations becomes

C ′
T = E

e
∑

b=0

(

d + 1

b

)

2d+1−b . (3.3)

Time complexity of the final step of Alg. 1 is O(E3), hence overall time complexity of

Alg. 1 is CT = C ′
T + O(E3). For the specified range of parameters, one has C ′

T <

E(e + 1)
(

d+1
e

)

2d+1. Furthermore, D ≈ 2n−1 ≈ 22d−1, or
√

D ≈ 2d and hence C ′
T ∈

O(e
(

d+1
e

)√
DE).

Proposition 2. The arithmetic complexity of Alg. 1 to determine the existence of g and

h for any f corresponds to CT ∈ O(e
(

d+1
e

)√
DE + E3), provided that e≪ d and d ≈ n/2.

Compared to the complexity O(D3) of Alg. 2 in [95], Alg. 1 is very efficient for g of low

degree, see Fig. 3.1 and the following example.

bc
bc
bc

bc
bc
bc
bc
bc
bc
bc bc bc bc bc bc

220

240

260

280

3 6 9 12
e

CT

bc

bc

bc

bc

bc
bc

bc
bc

bc
bc bc bc bc

230

260

290

2120

2150

4 8 12 16 20 24
e

CT

Figure 3.1: Time complexity of Alg. 1 for n = 30 (left) and n = 50 (right) with d = n/2.
The solid line indicates the complexity D3 of the trivial algorithm.

Example 7. Consider the majority function f with n = 5 inputs. As AI(f) = 3, it may

be interesting to find g and h with e = 1 and d = 3. The function g has E = 6 coefficients

gβ with |β| ≤ e, and we will setup equations for all γ with |γ| > d:

β ∈{(00000), (00001), (00010), (00100), (01000), (10000)}
γ ∈{(11110), (11101), (11011), (10111), (01111), (11111)} .

To construct the matrix G, one has to compute the coefficients Aγ,β for all combinations

of γ and β (if β ⊆ γ), see also Ex. 6. One obtains (in respect to the above order of β):

G =



















1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 1 1 1 1 1



















.

28 3. Algebraic Immunity against Fast Algebraic Attacks

The kernel space has dimension 4, a possible basis of the kernel are the vectors

{(0, 1, 1, 0, 0, 0), (0, 1, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1)} .

This corresponds to the monomials x0⊕x1, x0⊕x2, x0⊕x3, x0⊕x4 respectively. Any linear

combination of these monomials is a solution for g. For example, with g(x) = x0 ⊕ x1,

and f(x) = x0x1x2 ⊕ x0x1x3 ⊕ x0x1x4 ⊕ x0x2x3 ⊕ x0x2x4 ⊕ x0x3x4 ⊕ x1x2x3 ⊕ x1x2x4 ⊕
x1x3x4⊕x2x3x4⊕x0x1x2x3⊕x0x1x2x4⊕x0x1x3x4⊕x0x2x3x4⊕x1x2x3x4 one has indeed

f(x) · g(x) = (x0 ⊕ x1) · (x2x3 ⊕ x2x4 ⊕ x3x4), which is of degree 3. �

This interesting example will be investigated in more detail in Sect. 3.3 for symmetric

functions.

3.2.3 Experimental Results

In [48], a class of (non-symmetric) Boolean functions f with maximum algebraic immunity

is presented; these functions will be referred here as DGM functions. Application of Alg. 1

on their examples for n = 5, 6, 7, 8, 9, 10 reveals that h and g exist with d = AI(f) = ⌈n/2⌉
and e = 1. We point out that this is the most efficient situation for a fast algebraic attack.

Explicit functions g with corresponding degree are also obtained by Alg. 1, see Tab. 3.1

(where we show one single example of g, and dim denotes the dimension of the solution

space for g of degree e). A formal expansion of f(x) · g(x) was performed to verify the

results. A reaction on this attack is presented in [49].

Table 3.1: Degrees of the functions h and g for DGM functions f with n input variables.

n deg f deg h deg g g dim
5 4 3 1 1⊕ x3 4
6 4 3 1 1⊕ x5 4
7 5 4 1 1⊕ x3 ⊕ x4 1
8 5 4 1 1⊕ x4 ⊕ x5 1
9 8 5 1 x3 ⊕ x4 ⊕ x5 ⊕ x6 1

10 8 6 1 x4 ⊕ x5 ⊕ x6 ⊕ x7 1

3.3 Immunity of Symmetric Functions

In this section, we present a general analysis of the resulting system of equations for

symmetric functions and propose a generic and a specific algorithm in order to determine

the existence of g and h of low degrees.

3.3 Immunity of Symmetric Functions 29

3.3.1 Setting up Equations

Consider the case that f(x) is a symmetric Boolean function. This means that f(x) =

f(x0, . . . , xn−1) is invariant under changing the order of the variables xi. Therefore, we

have f(y) = f(y′) if |y| = |y′| and we can identify f with its (abbreviated) truth table

T s(f) := (f s(0), . . . , f s(n)) ∈ Fn+1 where f s(i) := f(y) for a y with |y| = i. Let σi(x) :=
⊕

|α|=i x
α denote the elementary symmetric polynomial of degree i. Then, each symmetric

function f can be expressed by f(x) =
⊕

i f
s
i σi(x) with f s

i ∈ F. Similarly to the non-

symmetric case, f can be identified with its (abbreviated) coefficient vector Cs(f) :=

(f s
0 , . . . , f

s
n) ∈ Fn+1. Again, a relationship between Cs(f) and T s(f) does exist:

Proposition 3. For any symmetric Boolean function f with n input variables, one has

T s(f) = Hn+1 · Cs(f) and Cs(f) = Hn+1 · T s(f).

One can derive a much simpler relation for the coefficients hγ in the case of symmetric

functions f . Notice that in general, g and h are not symmetric.

Corollary 1. Let f(x) =
⊕n

i=0 f s
i σi(x) be a symmetric function and g(x) =

⊕

β gβxβ.

Set h(x) =
⊕

γ hγx
γ := f(x) · g(x). Then, for As

i,j ∈ F, we have for each γ

hγ =
⊕

β⊆γ

As
|γ|,|β| · gβ (3.4)

As
i,j =

⊕

k

(

i− j

i− k

)

f s(k) =
⊕

k

(

j

i− k

)

f s
k . (3.5)

Proof. Notice that Th. 1 holds for any function f , including symmetric functions. As

f(α) = f(α′) for |α| = |α′|, we can rewrite the expressions from Th. 1 to

hγ =
⊕

β⊆γ

(

⊕

β⊆α⊆γ

f(α)

)

gβ =
⊕

β⊆γ





⊕

k

⊕

β⊆α⊆γ,|α|=k

f s(k)



 gβ ,

hγ =
⊕

β⊆γ

(

⊕

γ−β⊆α⊆γ

fα

)

gβ =
⊕

β⊆γ





⊕

k

⊕

γ−β⊆α⊆γ,|α|=k

f s
k



 gβ .

Thus, to prove the claim it is enough to show that |{α : β ⊆ α ⊆ γ, |α| = k}| =
(

|γ|−|β|
|γ|−k

)

and |{α : γ − β ⊆ α ⊆ γ, |α| = k}| =
(

|β|
|γ|−k

)

. For the first claim, observe that for any α

with β ⊆ α ⊆ γ it holds that

αi =







0, γi = 0

1, γi = 1, βi = 1

∗, γi = 1, βi = 0

where ′∗′ denotes that the value can be 0 or 1. This shows that |γ| − |β| entries of α

can be freely chosen if α can have an arbitrary weight. Because of β ⊆ α, it holds that

30 3. Algebraic Immunity against Fast Algebraic Attacks

|α| ≥ |β|. To ensure that |α| = k, exactly k − |β| of the freely selectable entries must be

equal to 1. Thus, the number of combinations is
(

|γ|−|β|
k−|β|

)

=
(

|γ|−|β|
|γ|−k

)

which shows the first

claim. The proof for the second claim is similar. To fulfill γ − β ⊆ α ⊆ γ, it must holds

for the entries of α that

αi =







0, γi = 0

∗, γi = 1, βi = 1

1, γi = 1, βi = 0

.

Because of β ⊆ γ by assumption, exactly |β| entries of α are not fixed. To ensure that

|α| = k, exactly k−(|γ|−|β|) of the freely selectable entries must be equal to 1. Therefore,

the number of combinations is
(

|β|
k−(|γ|−|β|)

)

=
(

|β|
|γ|−k

)

which shows the second claim. �

Example 8. Let us set up an equation for γ = (101)2. It is |γ| = 2, and Eq. 3.4 brings out

h(101) = As
2,0 · (g(000))

⊕ As
2,1 · (g(100) ⊕ g(001))

⊕ As
2,2 · (g(101)) .

If we use Eq. 3.5 in order to determine the coefficients As
i,j, we find

As
2,0 = f s

2 = f s(0)⊕ f s(2)

As
2,1 = f s

1 ⊕ f s
2 = f s(1)⊕ f s(2)

As
2,2 = f s

0 ⊕ f s
2 = f s(2) . �

Remark 2. Let us introduce the vector Bs
i,j ∈ F

n+1, where the k’th element of Bs
i,j is

defined by
(

i−j
i−k

)

. Then, the coefficient As
i,j can also be written as a scalar product As

i,j =

Bs
i,j · T s(f) = Bs

i,i−j · Cs(f).

3.3.2 Determining the Existence of Solutions

Given a symmetric function f , the existence of g and h with corresponding degrees can be

determined by an adapted version of Alg. 1 (which will be referred as Alg. 1S): in step 7,

the coefficient Aγ,β is replaced by As
|γ|,|β|. The discussion of this slightly modified algorithm

is similar to Sect. 3.2.2. However, computation of As
i,j requires only n+1 evaluations of the

function f , which can be neglected in terms of complexity. Consequently, time complexity

to set up equations is only aboutO(E2), and overall complexity of Alg. 1S becomes O(E3).

Next, we will derive a method of very low (polynomial) complexity to determine the

existence of g and h of low degree for a symmetric function f , but with the price that the

method uses only sufficient conditions (i.e. some solutions may be lost). More precisely,

we constrict ourselves to homogeneous functions g of degree e (i.e. g contains monomials

of degree e only, gβ = 0 for all β with |β| 6= e), and Eq. 3.4 becomes

hγ = As
|γ|,e

⊕

|β|=e;β⊆γ

gβ . (3.6)

3.3 Immunity of Symmetric Functions 31

Remember that hγ = 0 for |γ| > d, so the homogeneous function g is determined by the

corresponding system of equations for all γ with |γ| = d + 1, . . . , n. In this system, the

coefficient As
|γ|,e is constant for

(

n
|γ|

)

equations. If As
|γ|,e = 0, then all these equations are

linearly dependent (i.e. of type 0 = 0). On the other hand, if As
|γ|,e = 1, then a number of

(

n
|γ|

)

additional equations is possibly linearly independent. Consequently, if the sum of all

possibly linearly independent equations for |γ| = d + 1, . . . , n is smaller than the number

of variables
(

n
e

)

, Eq. 3.6 gives an underdefined system of linear equations which must have

a nontrivial (and homogeneous) solution g. This sufficient criterion is formalized by

n
∑

i=d+1

As
i,e ·
(

n

i

)

<

(

n

e

)

. (3.7)

Given some degree e, the goal is to find the minimum value of d such that Eq. 3.7 holds.

This can be done incrementally, starting from d = n. We formalized Alg. 2 of polynomial

complexity O(n3). This algorithm turned out to be very powerful (but not necessarily

optimal) in practice, see Sect. 3.3.4 for some experimental results.

Algorithm 2 Determine the degrees of g and h for symmetric f

Input: A symmetric Boolean function f with n input variables.
Output: Degrees of specific homogeneous functions g and h such that fg = h.
1: for e from 0 to ⌈n/2⌉ do

2: Let d← n, number of equations ← 0, number of variables ←
(

n
e

)

.
3: while number of equations < number of variables and d + 1 > 0 do

4: Compute A← As
d,e.

5: Add A ·
(

n
d

)

to the number of equations.
6: d← d− 1.
7: end while

8: Output deg g = e and deg h = d + 1.
9: end for

For a specified class of symmetric Boolean functions f , it is desirable to prove some

general statements concerning the degrees of g and h for any number of input variables

n. In the next section, we apply technique based on Alg. 2 in order to prove a theorem

for the class of majority functions.

3.3.3 Fast Algebraic Attacks on the Majority Function

We denote by f the symmetric Boolean majority function with n ≥ 2 input variables,

defined by f s(i) := 0 if i ≤ ⌊n/2⌋ and f s(i) := 1 otherwise. For example, T s(f) := (0, 0, 1)

for n = 2, and T s(f) := (0, 0, 1, 1) for n = 3. The algebraic degree of this function is

2⌊log2 n⌋. In [29] and [50], it could be proven independently that f has maximum algebraic

immunity.1 First, we show that the coefficients As
|γ|,e from Corollary 1 have a simple form

in the case of the majority function.

1It has been proved in [107] that the majority function is the only symmetric function with maximum
AI in odd number of variables.

32 3. Algebraic Immunity against Fast Algebraic Attacks

Lemma 2. Let f be the majority function in n inputs and d = ⌊n/2⌋+1. Then for d′ < d

one has As
d′,e = 0, and for d′ ≥ d, one has

As
d′,e =

(

d′ − e− 1

d− e− 1

)

. (3.8)

Proof. Recall that f(k) = 0 for k < d. Hence, due to Corollary 1 it is

As
d′,e

Cor. 1
=

n
⊕

k=0

(

d′ − e

k − e

)

· f(k) =
n
⊕

k=d

(

d′ − e

k − e

)

=
d′
⊕

k=d

(

d′ − e

k − e

)

.

The last equation is true because of
(

a
b

)

= 0 mod 2 for a < b. This shows that As
d′,e = 0

for d′ < d. Now, let d′ ≥ d ≥ 1. Then, As
d′,e can be simplified to

As
d′,e =

d′
⊕

k=d

(

d′ − e

k − e

)

=
d′
⊕

k=d

(

d′ − e− 1

k − e

)

⊕
d′
⊕

k=d

(

d′ − e− 1

k − e− 1

)

=

d′−1
⊕

k=d

(

(d′ − 1)− e

k − e

)

⊕
d′
⊕

k=d

(

(d′ − 1)− e

(k − 1)− e

)

= As
d′−1,e ⊕

d′−1
⊕

k=d−1

(

(d′ − 1)− e

k − e

)

= 2 · As
d′−1,e ⊕

(

d′ − e− 1

d− e− 1

)

=

(

d′ − e− 1

d− e− 1

)

. �

The main goal of this section is to prove the following theorem, which discloses the

properties of f (and related functions) with respect to fast algebraic attacks.

Theorem 2. Consider the majority function f with any n ≥ 2 input variables, defined

by f s(i) := 0 if i ≤ ⌊n/2⌋ and f s(i) := 1 otherwise. Then there exist Boolean functions g

and h such that fg ≡ h, where deg h = ⌊n/2⌋+1 and deg g = d−2j, and where j ∈ N
0 is

maximum so that deg g > 0. If n is even, the vector space of solutions g has a dimension

≥
(

n
e

)

−
(

n
e−2

)

, and in the case of n odd a dimension ≥
(

n
e

)

−
(

n
e−1

)

.

Proof. Consider fg = h, where f is the majority function, deg g = e and deg h = d.

Our strategy is to set e and d to values which guarantee that Eq. 3.7 is satisfied, so we

have to analyze the number of non-zero coefficients As
d′,e =

(

d′−e−1
d−e−1

)

mod 2 from Lemma 2

for these values, and determine the size of the left side in Eq. 3.7. Now, let e := d − 2j

where j is chosen maximum such that e ≥ 1. Observe that d− e− 1 = 2j − 1 =
∑j−1

i=0 2i.

For a =
∑

ai2
i, by Lucas’ Theorem, it holds that

(

a
d−e−1

)

=
∏j−1

i=0

(

ai

1

)

·∏n
i=j

(

ai

0

)

mod 2.

Note that
(

a
b

)

= 0 mod 2 iff at least one term
(

0
1

)

= 0 exists in the product. This shows

that
(

a
d−e−1

)

mod 2 = 1 if and only if ai = 1 for i = 0, . . . , j − 1, or, equivalently,

3.3 Immunity of Symmetric Functions 33

a =

(

j−1
∑

i=0

2i

)

+

(

n
∑

i=j

ai · 2i

)

=
(

2j − 1
)

+

(

n
∑

i=j

ai · 2i

)

=
(

2j − 1
)

+ 2j ·
(

n
∑

i=j

ai · 2i−j

)

.

Hence, As
d+i,e =

(

d−e−1+i
d−e−1

)

mod 2 =
(

(2j−1)+i
2j−1

)

mod 2 = 1 if and only if i is a multiple of

2j = d − e. In other words, if d = ⌊n/2⌋ + 1 and if e = ⌊n/2⌋ + 1 − 2j, only equations

in Eq. 3.6 with d′ = d + k · (d − e) and k ≥ 1 impose conditions on the coefficients gβ,

whereas the others are necessarily equal to zero. For k = 1, we have A2d−e,e = 1. We will

prove now that d+ k · (d− e) > n for k = 2. The consequence is that only the coefficients

Ad′,e for d′ = 2d− e are equal to 1. By the definition of j, it holds that

⌊n/2⌋+ 1− 2j+1 ≤ 0⇔ 2j+1 ≥ ⌊n/2⌋+ 1⇔ 2(d− e) ≥ d⇔ d− e ≥ e .

Notice that 2d − e = 2⌊n/2⌋ + 2 − e, which is n + 2 − e for n even, and n + 1 − e for

n odd (and which is at least d + 1). With 2d − e ≥ n + 1 − e and d − e ≥ e, we find

d + 2 · (d − e) = (2d − e) + (d − e) ≥ (n + 1 − e) + e > n. Altogether, the number of

non-trivial equations in Eq. 3.6 is
(

n
2d−e

)

which is equal to
(

n
e−2

)

for n even and
(

n
e−1

)

for n

odd. In both cases, this value is less than
(

n
e

)

, the number of coefficients gβ. Consequently,

the system of equations of Eq. 3.6 is underdefined and non-trivial solutions for g exist.

Further on, one sees that the dimension of the solution space is at least
(

n
e

)

−
(

n
e−2

)

for n

even and at least
(

n
e

)

−
(

n
e−1

)

for n odd. �

Algebraic and fast algebraic attacks are invariant with regard to binary affine transforma-

tions in the input variables. Consequently, Th. 2 is valid for all Boolean functions which

are derived from the majority function by means of affine transformations. We notice

that such a class of functions was proposed in a recent paper, discussing design principles

of stream ciphers [27, 28]. For values n = 2, 3, 4, 6 only, Th. 2 is not meaningful. A very

interesting subcase is n = 2j+1 and n = 2j + 1 for j ≥ 2, for which Boolean functions g

with deg g = 1 exist.

Table 3.2: Degrees of the functions g and h (from fg = h) for dimension n, according to
Th. 2.

n 5 6 7 8 9 10 11 12 13 14 15 16
deg g 1 2 2 1 1 2 2 3 3 4 4 1
deg h 3 4 4 5 5 6 6 7 7 8 8 9

34 3. Algebraic Immunity against Fast Algebraic Attacks

3.3.4 Experimental Results

Application of Alg. 1S reveals that Th. 2 is optimal for the majority function where

d = ⌊n/2⌋ + 1 (verification for n = 5, 6, . . . , 16). An explicit homogeneous function g

can be constructed according to g(x) =
∏e−1

i=0 (x2i + x2i+1). We verified that Alg. 2 can

discover the solutions of Th. 2.

In [29], a large pool of symmetric Boolean functions with maximum algebraic immunity

is presented (defined for n even). One of these functions is the majority function, whereas

the other functions are nonlinear transformations of the majority function. Application of

Alg. 2 brings out that Th. 2 is valid for all functions f (verification for n = 6, 8, . . . , 16).

For some functions f , Alg. 2 finds better solutions than predicted by Th. 2 (e.g. for

T s(f) := (0, 0, 0, 1, 1, 0, 1) where d = 3 and e = 1), which means that Th. 2 is not optimal

for all symmetric functions. All solutions found by Alg. 2 can be constructed according

to the above equation. Furthermore, Alg. 1S finds a few solutions which are (possibly)

better than predicted by Alg. 2 (e.g. for T s(f) := (0, 0, 0, 1, 1, 1, 0) where d = 3 and e = 2),

which means that Alg. 2 is not optimal for all symmetric functions.

3.4 Summary

In this chapter, several efficient algorithms are derived to compute the algebraic immunity

of Boolean functions against fast algebraic attacks. Here, we focus on fast algebraic attacks

related to filtered registers, although the algorithms may be used in different contexts.

We described very fast algorithms for symmetric functions and proved that symmetric

functions do not seem to be very secure in the context of a filtered register. For non-

symmetric functions, our algorithm is very efficient when the degree of g is small.

Chapter 4

Algebraic Immunity of Augmented Functions

In this chapter, the algebraic immunity of S-boxes and augmented functions of stream

ciphers is investigated. Augmented functions are shown to have some algebraic properties

that are not covered by previous measures of immunity.

4.1 Introduction

In the previous chapter, it turned out in some cases that large AI did not help to prevent

fast algebraic attacks (FAA’s). It is an open question if immunity against FAA’s is a

sufficient criterion for any kind of algebraic attacks on stream ciphers. In the case of

block ciphers, the algebraic immunity of S-boxes is a measure for the complexity of a very

general type of algebraic attacks, considering implicit or conditional equations [46, 4].

Present methods for computation of AI of S-boxes are not very efficient, only about

n = 20 variables are computationally feasible (except for power mappings, see [103, 43]).

In this chapter, we integrate the general approach for S-boxes in the context of stream

ciphers and generalize the concept of algebraic immunity of stream ciphers, see Open Prob-

lem 7 in [33]. More precisely, we investigate conditional equations for augmented functions

of stream ciphers and observe some algebraic properties (to be used in an attack), which

are not covered by the previous definitions of AI. As a consequence, immunity against

FAA’s is not sufficient to prevent any kind of algebraic attack: Depending on the Boolean

functions used in a stream cipher, we demonstrate that algebraic properties of the aug-

mented function allow for attacks which need much less known output than established

algebraic attacks. This induces some new design criteria for stream ciphers. Time com-

plexity of our attacks is derived by intrinsic properties of the augmented function. Our

framework can be applied to a large variety of situations. We present two applications

(which both have been implemented). First, we describe efficient attacks on some filter

generators. For example, we can efficiently recover the state of a filter generator based

on certain Boolean functions when an amount of output data is available which is only

linear in the length of the driving LFSR. This should be compared to the data complex-

ity of conventional algebraic attacks, which is about
(

n
e

)

, where n is the length of the

LFSR and e equals the algebraic immunity of the filter function. Our investigation of the

35

36 4. Algebraic Immunity of Augmented Functions

augmented function allows to contribute to open problems posed in [57], and explains

why algebraic attacks using Gröbner bases against filter generators are in certain cases

successful even for a known output segment only slightly larger than the LFSR length.

In a second direction, a large scale experiment carried out with the eSTREAM Phase

3 candidate Trivium suggests some immunity of this cipher against algebraic attacks on

augmented functions. This experiment becomes feasible as for Trivium with its 288-bit

state one can find preimages of 144-bit outputs in polynomial time. Finally, we investigate

conditional correlations based on this framework.

Augmented functions of LFSR-based stream ciphers have previously been studied, e.g.

in [1, 61, 91], where it had been noticed that the augmented function can be weaker than

a single output function, with regard to (conditional) correlation attacks as well as to

inversion attacks. However, for the first time, we analyze the AI of sometimes quite large

augmented functions. Surprisingly, augmented functions did not receive much attention

in this context yet.

4.2 Algebraic Properties of S-boxes

Let F denote the finite field GF(2), and consider the vectorial Boolean function (or S-

box) S : Fn → F
m with S(x) = z, where x := (x0, . . . , xn−1) and z := (z0, . . . , zm−1). In

the case of m = 1, the S-box reduces to a Boolean function, and in general, the S-box

consists of m Boolean functions Si(x). These functions give rise to the explicit equations

Si(x) = zi. Here, we assume that z is known and x is unknown.

4.2.1 Implicit Equations

The S-box can hide implicit equations, namely F (x, z) = 0 for each x ∈ Fn and with z =

S(x). The algebraic normal form of such an equation is denoted F (x, z) =
⊕

cα,βxαzβ =

0, with coefficients cα,β ∈ F and multi-indices α, β ∈ Fn (which can likewise be identified

by their integers). In the context of algebraic attacks, it is of interest to focus on implicit

equations with special structure, e.g. on sparse equations or equations of small degree.

Let the degree in x be d := max{|α|, cα,β = 1} ≤ n with the weight |α| of α, and consider

an unrestricted degree for the known z, hence max{|β|, cα,β = 1} ≤ m. The maximum

number of monomials (or coefficients) in an equation of degree d corresponds to 2mD,

where D :=
∑d

i=0

(

n
i

)

. In order to determine the existence of an implicit equation of

degree d, consider a matrix M in F of size 2n × 2mD. Each row corresponds to an input

x, and each column corresponds to an evaluated monomial (with some fixed order). If

the number of columns in M is larger than the number of rows, then linearly dependent

columns (i.e. monomials) exist, see [40, 46]. The rank of M determines the number of

linearly independent (but potentially not algebraically independent) solutions, and the

solutions correspond to the kernel of MT . Any non-zero implicit equation (which holds

for each input x) may then depend on x and z, or on z only. If it depends on x and z,

then the equation may degenerate for some values of z. For example, x0z0 ⊕ x1z0 = 0

degenerates for z0 = 0.

4.2 Algebraic Properties of S-boxes 37

Table 4.1: Theoretical block size m0 for different parameters n and d.

d
n 16 18 20 32 64 128

1 12 14 16 27 58 121
2 9 11 13 23 53 115
3 7 9 10 20 49 110

4.2.2 Conditional Equations

As the output is assumed to be known, one could investigate equations which are condi-

tioned by the output z, hence Fz(x) = 0 for each preimage x ∈ S−1(z) and of degree d

in x. The number of preimages is denoted Uz := |S−1(z)|, where Uz = 2n−m for balanced

S and m ≤ n. Notice that conditional equations for different outputs z need not be

connected in a common implicit equation, and one can find an optimum equation (i.e. an

equation of minimum degree) for each output z. Degenerated equations are not existing

in this situation, and the corresponding matrix Mz has a reduced size of Uz ×D. Similar

to the case of implicit equations, one obtains:

Proposition 4. Consider an S-box S : Fn → F
m and let S(x) = z. Then, the number of

(independent) conditional equations of degree at most d for some z is Rz = D−rank(Mz).

A sufficient criterion for the existence of a non-zero conditional equation is 0 < Uz < D.

The condition Rz > 0 requires some minimum value of d, which can depend on z. As

already proposed in [4], this motivates the following definition of algebraic immunity for

S-boxes:

Definition 6. Consider an S-box S : Fn → F
m. Given some fixed output z, let d be

the minimum degree of a non-zero conditional equation Fz(x) = 0 which holds for all

x ∈ S−1(z). Then the algebraic immunity AI of S is defined by the minimum of d over

all z ∈ Fm.

The AI can be bounded, using the sufficient condition of Prop. 4. Let d0 be the minimum

degree such that D > 2n−m. If the S-box is surjective, then there exists at least one z

with a non-zero conditional equation of degree at most d0, hence AI ≤ d0. In addition,

the block size m of the output could be considered as a parameter (by investigating

truncated S-boxes Sm, corresponding to partial conditioned equations for S). Let m0 :=

⌊n − log2 D + 1⌋ for some degree d. Then, the minimum block size m to find non-zero

conditional equations of degree at most d is bounded by m0. See Tab. 4.1 for some

numerical values of m0. A single output z is called weak, if non-zero conditional equations

of degree d exist for Uz ≫ D (or if the output is strongly imbalanced). This roughly

corresponds to the condition d≪ d0, or m≪ m0.

38 4. Algebraic Immunity of Augmented Functions

4.2.3 Algorithmic Methods

As already mentioned in [33], memory requirements to determine the rank of M are

impractical for about n > 20. In the case of conditional equations, the matrix Mz can

be much smaller, but the bottleneck is to compute an exhaustive list of preimages, which

requires a time complexity of 2n. However, one could use a probabilistic variant of this

basic method: Instead of determining the rank of Mz which contains all Uz inputs x, one

may solve for a smaller matrix M ′
z with V < Uz random inputs. Then, one can determine

the non-existence of a solution: If no solution exists for M ′
z, then no solution exists for Mz

either. On the other hand, if one or more solutions exist for M ′
z, then they hold true for

the subsystem of V inputs, but possibly not for all Uz inputs. Let the probability p be the

fraction of preimages that satisfy the equation corresponding to such a solution. With the

heuristical argument (1− p)V < 1, we expect that p > 1− 1/V . However, this argument

holds only for V > D, because otherwise, there are always at least D−V solutions (which

could be balanced). Consequently, if V is a small multiple of D, the probability can be

quite close to one. For this reason, all solutions of the smaller system can be useful in

later attacks. As Mz corresponds to a homogeneous system, any linear combination of

these solutions is a solution of the subsystem. However, a linear combination may have

a different probability with respect to all Uz inputs. Determining only a few random

preimages can be very efficient: In a naive approach, time complexity to find a random

preimage of an output z is about 2n/Uz (which is 2m for balanced S), and complexity

to find D preimages is about 2nD/Uz. This is an improvement compared to the exact

method if Uz ≫ D, i.e. equations can be found efficiently for weak outputs. Memory

requirements of the probabilistic algorithm are about CM = D2, and time complexity is

about CT = D2m + D3.

4.3 Algebraic Attacks based on the Augmented Function

In this section, we focus on algebraic cryptanalysis of S-boxes in the context of stream

ciphers. Given a stream cipher, one may construct an S-box as follows:

Definition 7. Consider a stream cipher with internal state x of n bits, an update function

L, and an output function f which outputs one bit of keystream in a single iteration. Then,

the augmented function Sm is defined by

Sm : Fn → F
m

x 7→ (f(x), f(L(x)), . . . , f(Lm−1(x)) .
(4.1)

The update L can be linear (e.g. for filter generators), or nonlinear (e.g. for Trivium). The

input x correspond to the internal state at some time t, and the output z corresponds

to an m-bit block of the known keystream. Notice that m is a very natural parameter

here. The goal is to recover the initial state x by algebraic attacks, using (potentially

probabilistic) conditional equations Fz(x) = 0 of degree d for outputs z of the augmented

function Sm. This way, one can set up equations for state variables of different time steps

4.4 Generic Scenarios for Filter Generators 39

t. In the case of a linear update function L, each equation can be transformed into an

equation of degree d in the initial state variables x. In the case of a nonlinear update

function L, the degree of the equations is increasing with time. However, the nonlinear

part of the update is sometimes very simple, such that equations for different time steps

can be efficiently combined. Finally, the system of equations in the initial state variables

x is solved.

If the augmented function has some weak outputs, then conditional equations can be

found with the probabilistic algorithm of Sect. 4.2.3, which requires about D preimages

of a single m-bit output. One may ask if there is a dedicated way to compute random

preimages of m-bit outputs in the context of augmented functions. Any stream cipher

as in Def. 7 can be described by a system of equations. Nonlinear systems of equations

with roughly the same number of equations as unknowns are in general NP-hard to solve.

However, due to the special (simple) structure of some stream ciphers, it may be easy

to partially invert the nonlinear system. For example, given a single bit of output of a

filter generator, it is easy to find a state which gives out this bit. Efficient computation

of random preimages for m-bit outputs is called sampling. The sampling resistance is

defined as 2−m where m is the maximum value for which we can efficiently produce all

preimages of m-bit outputs (without trial and error). Some constructions have very low

sampling resistance, see [25, 10].

The parameters of our framework are the degree d of equations, and the block-size m

of the output. An optimal tradeoff between these parameters depends on the algebraic

properties of the augmented function. The attack is expected to be efficient, if:

1. There are many low-degree conditional equations for Sm.

2. Efficient sampling is possible for this block size m.

This measure is well adapted to the situation of augmented functions, and can be applied

to sometimes quite large augmented functions, see Sect. 4.5 and 4.6. This way, we intend

to prove some immunity of a stream cipher, or present attacks with reduced complexity.

4.4 Generic Scenarios for Filter Generators

Our framework is investigated in-depth in the context of LFSR-based stream ciphers (and

notably for filter generators), which are the main target of conventional and fast algebraic

attacks. We describe some elementary conditional equations induced by annihilators.

Then, we investigate different methods for sampling, which are necessary to efficiently set

up conditional equations. We suggest a basic scenario and estimate data complexity of

an attack, the scenario is refined and improved.

4.4.1 Equations Induced by Annihilators

Let us first discuss the existence of conditional equations of degree d = AI, where AI
is the ordinary algebraic immunity of f here. With m = 1, the number of conditional

40 4. Algebraic Immunity of Augmented Functions

equations for z = 0 (resp. z = 1) corresponds to the number of annihilators of f ⊕ 1

(resp. f) of degree d. If one increases m, then all equations originating from annihilators

are involved: For example, if there is 1 annihilator of degree d for both f and f ⊕ 1, then

the number of equations is expected to be at least m for any m-bit output z. Notice that

equations of fast algebraic attacks are not involved if m is small compared to n.

4.4.2 Sampling

Given an augmented function Sm of a filter generator, the goal of sampling is to efficiently

determine preimages x for fixed output z = Sm(x) of m bits. Due to the special structure

of the augmented function, there are some efficient methods for sampling:

Filter Inversion. One could choose a fixed value for the k input bits of the filter, such that

the observed output bit is correct (using a table of the filter function). This can be done

for about n/k successive output bits, until the state is unique. This way, preimages of an

output z of n/k bits can be found in polynomial time, and by partial search, preimages

of larger outputs can be computed. Time complexity to find a preimage of m > n/k bits

is about 2m−n/k, i.e. the method is efficient if there are only few inputs k.

Linear Sampling. In each time step, a number of l linear conditions are imposed on

the input variables of f , such that the filter becomes linear. The linearized filter gives

one additional linear equation for each keystream bit. Notice that all variables can be

expressed by a linear function of the n variables of the initial state. Consequently, for an

output z of m bits, one obtains (l+1)m (inhomogeneous) linear equations for n unknowns,

i.e. we expect that preimages can be found in polynomial time if m ≤ n/(l + 1). To find

many different preimages, one should have several independent conditions (which can be

combined in a different way for each clock cycle).

In practice, sampling should be implemented carefully in order to avoid contradictions

(e.g. with appropriate conditions depending on the keystream), see [25].

4.4.3 Basic Scenario

We describe a basic scenario for algebraic attacks on filter generators based on the aug-

mented function: With CD bits of keystream, one has C ′
D = CD −m + 1 (overlapping)

windows of m bits. Assume that there are R :=
∑

z Rz equations of degree d for m-bit

outputs z. For each window, we have about r := R/2m equations, which gives a total of

N = rC ′
D equations.1 Each equation has at most D monomials in the initial state vari-

ables, so we need about the same number of equations to solve the system by linearization.

Consequently, data complexity is CD = D/r + m− 1 bits. The initial state can then be

recovered in CT = D3. This should be compared with the complexity of conventional

1From a heuristical point of view, the parameter r is only meaningful if the conditional equations are
approximately uniformly distributed over all outputs z.

4.4 Generic Scenarios for Filter Generators 41

algebraic attacks CD = 2E/RA and CT = E3, where e := AI, E :=
∑e

i=0

(

n
i

)

, and RA the

number of annihilators of degree e. Notice that the augmented function may give low-

degree equations, which are not visible for single-bit outputs; this increases information

density and may reduce data complexity. Our approach has reduced time complexity if

d < e, provided that sampling (and solving the matrix) is efficient.

4.4.4 Refined Basic Scenario

The basic scenario for filter generators should be refined in two aspects, concerning the

existence of dependent and probabilistic equations: First, with overlapping windows of

m bits, it may well happen that the same equation is counted several times, namely if

the equation already exists for a substring of m′ < m bits (e.g. in the case of equations

produced by annihilators). In addition, equations may be linearly dependent by chance.

If this is not considered in the computation of R, one may have to enlarge data com-

plexity a little bit. Second, one can expect to obtain probabilistic solutions. However,

depending on the number of computed preimages, the probability p may be large and

the corresponding equations can still be used in our framework, as they increase R and

reduce data complexity, but potentially with some more cost in time. As we need about

D (correct and linearly independent) equations to recover the initial state, the probability

p should be at least 1 − 1/D (together with our estimation for p, this justifies that the

number of preimages should be at least D). In the case of a contradiction, one could

complement a few equations in a partial search and solve again, until the keystream can

be verified. Depending on the actual situation, one may find an optimal tradeoff in the

number of computed preimages. Notice that our probabilistic attack deduced from an al-

gebraic attack with equations of degree 1 is a powerful variant of a conditional correlation

attack, see [91]. A probabilistic attack with nonlinear equations is a kind of higher order

correlation attack, see [39].

4.4.5 Substitution of Equations

It is possible to further reduce data complexity in some cases. Consider the scenario where

one has N = rC ′
D linear equations. On the other hand, given an annihilator of degree

e := AI, one can set up a system of degree e as in conventional algebraic attacks. The

N linear equations can be substituted into this system in order to eliminate N variables.

This results in a system of D′ :=
∑e

i=0

(

n−N
i

)

monomials, requiring a data complexity

of CD = D′ and time complexity CT = D′3. Notice that data can be reused in this

case, which gives the implicit equation in CD. Obviously, a necessary condition for the

success of this method is rE > 1. A similar improvement of data complexity is possible

for nonlinear equations of degree d. One can multiply the equations by all monomials of

degree e− d in order to obtain additional equations of degree e, along the lines of XL [44]

and Gröbner bases algorithms.

42 4. Algebraic Immunity of Augmented Functions

Table 4.2: Different setups for our experiments with filter generators.

Setup n k feedback taps filter taps

1 18 5 [2, 3, 5, 15, 17, 18] [1, 2, 7, 11, 18]
2 18 5 [1, 2, 5, 7, 9, 14, 15, 16, 17, 18] [1, 3, 7, 17, 18]
3 18 5 [3, 5, 7, 15, 17, 18] [1, 5, 8, 16, 18]
4 18 5 [4, 5, 6, 10, 13, 15, 16, 18] [1, 6, 7, 15, 18]
5 18 5 [2, 3, 5, 7, 11, 15, 17, 18] [1, 3, 6, 10, 18]
6 20 5 [7, 10, 13, 17, 18, 20] [1, 3, 9, 16, 20]
7 20 5 [1, 2, 4, 7, 8, 10, 11, 12, 13, 15, 19, 20] [1, 5, 15, 18, 20]
8 20 5 [2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 19, 20] [1, 4, 9, 16, 20]
9 20 5 [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 15, 17, 19, 20] [1, 2, 15, 17, 20]
10 20 5 [1, 2, 6, 7, 9, 11, 15, 20] [1, 5, 13, 18, 20]
11 40 5 [3, 8, 9, 10, 11, 13, 14, 15, 18, 19, [1, 3, 10, 27, 40]

23, 24, 25, 26, 27, 30, 33, 34, 36, 40]

4.5 First Application: Some Specific Filter Generators

Many conventional algebraic attacks on filter generators require about
(

n
e

)

output bits

where e equals the algebraic immunity of the filter function. On the other hand, in [57],

algebraic attacks based on Gröbner bases are presented, which in a few cases require only

n + ε data. It is an open issue to understand such a behavior from the Boolean function

and the tapping sequence. We present attacks on the corresponding augmented functions,

requiring very low data complexity. This means, we can identify the source of the above

behavior, and in addition, we can use our method also for other functions.

4.5.1 Experimental Setup for Filter Generators

In Tab. 4.2, we collect the setups of our experiments with filter generators, where n is the

size of the LFSR, and k the number of inputs to the filter function. The feedback taps

are chosen such that the LFSR has maximum period (i.e., the corresponding polynomial

is primitive), and filter taps are chosen according to a full positive difference set (i.e.,

all the positive pairwise differences are distinct). Tap positions are counted from the left

(starting by 1), and the LFSR is shifted to the right.

4.5.2 Existence of Equations

In this subsection, we give extensive experimental results for different filter generators.

Our setup is chosen as follows: The filter functions are instances of the CanFil family

(see [57]) or the Majority functions. These instances all have five inputs and algebraic

immunity 2 or 3. Feedback taps correspond to a random primitive feedback polynomial,

and filter taps are chosen randomly in the class of full positive difference sets, see Tab. 4.2

in Appendix 4.5.1 for an enumerated specification of our setups. Given a specified filter

4.5 First Application: Some Specific Filter Generators 43

Table 4.3: Counting the number of linear equations R for the augmented function of
different filter generators, with n = 20 bit input and m bit output.

Filter m R for setups 6− 10

CanFil1 14 0 0 0 0 0
15 3139 4211 3071 4601 3844

CanFil2 14 0 0 0 0 0
15 2136 2901 2717 2702 2456

CanFil5 6 0 0 0 2 0
7 0 0 0 8 0
8 0 0 0 24 0
9 0 0 0 64 0

10 6 0 0 163 0
11 113 0 2 476 0
12 960 16 215 1678 29

Majority5 9 0 0 0 2 0
10 1 10 1 18 1
11 22 437 40 148 56

generator and parameters d and m, we compute the number Rz of independent conditional

equations Fz(x) = 0 of degree d for each output z ∈ Fm. The overall number of equations

R :=
∑

z Rz for n = 20 is recorded in Tab. 4.3. Thereby, preimages are computed by

exhaustive search in order to exclude probabilistic solutions.

In the case of CanFil1 and CanFil2, linear equations exist only for m ≥ m0 − 1,

independent of the setup. On the other hand, for CanFil5 and Majority5, there exist many

setups where a large number of linear equations already exists for m ≈ n/2, see Ex. 9.

We conclude that the number of equations weakly depends on the setup, but is mainly

a property of the filter function. The situation is very similar for other values of n, see

Tab. 4.4 for n = 18. This suggests that our results can be scaled to larger values of n.

Let us also investigate existence of equations of higher degree: CanFil1 and CanFil2 have

AI = 2 and there is 1 annihilator for both f and f ⊕ 1, which means that at least m

quadratic equations can be expected for an m-bit output. For each setup and m < m0−1,

we observed only few additional equations, whereas the number of additional equations is

exploding for larger values of m. This was observed for many different setups and different

values of n.

Example 9. Consider CanFil5 with n = 20 and setup 9. For the output z = 000000 of

m = 6 bits, there are exactly 214 preimages, hence the matrix Mz has 214 rows and D = 21

columns for d = 1. Evaluation of Mz yields a rank of 20, i.e. a nontrivial solution exists.

The explicit solution is Fz(x) = x1⊕x3⊕x4⊕x5⊕x9⊕x10⊕x11⊕x12⊕x13⊕x14⊕x16 = 0.�

44 4. Algebraic Immunity of Augmented Functions

Table 4.4: Counting the number of linear equations R for the augmented function of
different filter generators, with n = 18 bit input and m bit output.

Filter m R for setups 1-5

CanFil1 12 0 0 0 0 0
13 625 288 908 335 493

CanFil2 12 0 0 0 0 0
13 144 346 514 207 418

CanFil3 12 0 0 4 0 0
13 1272 1759 2173 2097 983

CanFil4 7 0 0 0 0 0
8 19 4 0 0 0
9 102 17 1 0 12

10 533 69 9 20 167
CanFil5 6 1 0 0 0 0

7 4 0 0 0 0
8 15 0 0 0 1
9 55 1 0 0 39

10 411 61 3 0 360
11 2142 1017 166 10 1958

CanFil6 8 0 0 0 0 0
9 0 10 64 0 0

10 0 97 256 0 0
11 0 517 1024 0 0
12 0 2841 3533 1068 0
13 152 19531 17626 12627 9828

CanFil7 11 0 2 0 0 6
12 68 191 36 26 178

Majority5 8 1 0 0 0 0
9 8 3 42 27 14

10 97 94 401 282 158

4.5 First Application: Some Specific Filter Generators 45

4.5.3 Probabilistic Equations

In the previous subsection, the size n of the state was small enough to compute a complete

set of preimages for some m-bit output z. However, in any practical situation where n

is larger, the number of available preimages is only a small multiple of D, which may

introduce probabilistic solutions. Here is an example with n = 20, where the probability

can be computed exactly:

Example 10. Consider again CanFil5 with n = 20 and setup 9. For the output z = 000000

of m = 6 bits, there are 214 preimages and one exact conditional equation of degree

d = 1. We picked 80 random preimages and determined all (correct or probabilistic) linear

conditional equations. This experiment was repeated 20 times with different preimages.

In each run, we obtained between 2 and 4 independent equations with probabilities p =

0.98, . . . , 1. For example, the (probabilistic) conditional equation Fz(x) = x1 ⊕ x2 ⊕ x3 ⊕
x6 ⊕ x9 ⊕ x15 ⊕ x16 ⊕ x17 = 0 holds with probability p = 1− 2−9. �

In the above example, there are only few probabilistic solutions and they have impres-

sively large probability, which makes the equations very useful in an attack. Notice that

experimental probability is in good agreement with our estimation p > 1−1/80 = 0.9875.

The situation is very similar for other parameters. With the above setup and m = 10, not

only z = 000 . . . 0 but a majority of outputs z give rise to linear probabilistic equations.

In the case of CanFil1 and CanFil2, we did not observe linear equations of large probability

for m < m0 − 1. It is interesting to investigate the situation for larger values of n:

Example 11. Consider CanFil5 with n = 40 and setup 11. For the output z = 000 . . . 0 of

m = 20 bits, we determine 200 random preimages. With d = 1, evaluation of Mz yields

a rank of 30, i.e. 11 (independent) solutions exist. With 2000 random preimages, we

observed a rank of 33, i.e. only 3 solutions of the first system were detected to be merely

probabilistic. An example of an equation is Fz(x) = x0⊕x7⊕x9⊕x13⊕x14⊕x17⊕x18⊕
x25 ⊕ x30 ⊕ x33 = 0. �

The remaining 8 solutions of the above example may be exact, or probabilistic with very

high probability. By sampling, one could find (probabilistic) conditional equations for

much larger values of n. For example, with CanFil5, n = 80, m = 40 and filter inversion,

time complexity to find a linear equation for a weak output is around 232.

4.5.4 Discussion of Attacks

Our experimental results reveal that some filter functions are very vulnerable to algebraic

attacks based on the corresponding augmented function. For CanFil5 with n = 20 and

setup 9, we observed R = 163 exact equations using the parameters m = 10 and d = 1,

which gives a ratio of r = 0.16. Including probabilistic equations, this ratio may be

even larger. Here, preimages of any z can be found efficiently by sampling: using filter

inversion, a single preimage can be found in 2m−n/k = 26 steps, and a single equation in

around 213 steps. Provided that equations are independent and the probability is large,

46 4. Algebraic Immunity of Augmented Functions

data complexity is about CD = (n + 1)/r + m− 1 = 140. The linear equations could also

be substituted into the system of degree AI = 2, which results in a data complexity of

about CD = 66. Notice that conventional algebraic attacks would require CD = E = 211

bits (and time complexity E3). As we expect that our observation can be scaled, (i.e.

that r remains constant for larger values of n and m = n/2), data complexity is a linear

function in n. Considering time complexity for variable n, the matrix M and the final

system of equations can be solved in polynomial time, whereas sampling is subexponential

(and polynomial in some cases, where linear sampling is possible).

In [57], CanFil5 has been attacked experimentally with n+ε data, where n = 40, . . . , 70

and ε < 10. Our analysis gives a conclusive justification for their observation. Other

functions such as Majority5 could be attacked in a similar way, whereas CanFil1 and CanFil2

are shown to be much more resistant against this general attack: No linear equations have

been found for m < m0 − 1, and only few quadratic equations.

4.6 Second Application: Trivium

Trivium [32] is a stream cipher with a state of 288 bits, a nonlinear update and a linear

output. It has a simple algebraic structure, which makes it an interesting candidate for

our framework. We consider the S-box Sm(x) = z, where S is the augmented function of

Trivium, x the state of n = 288 bits, and z the output of m bits. We will first analyze the

sampling of Sm, which is very similar to linear sampling of filter generators.

4.6.1 Sampling

The state consists of the 3 registers R1 = (x0, . . . , x92), R2 = (x93, . . . , x176) and R3 =

(x177, . . . , x287). In each clock cycle, a linear combination of 6 bits of the state (2 bits

of each register) is output. Then, the registers are shifted to the right by one position,

with a nonlinear feedback to the first position of each register. In the first 66 clocks,

each keystream bit is a linear function of the input, whereas the subsequent keystream

bit involves a nonlinear expression. Consequently, given any output of m = 66 bits, one

can efficiently determine some preimages by solving a linear system. It is possible to find

preimages of even larger output size. Observe that the nonlinear function is quadratic,

where the two factors of the product have subsequent indices. Consequently, one could

fix some alternating bits of the state, which results in additional linear equations for the

remaining variables. Let c, l, q denote constant, linear, and quadratic dependence on the

initial state. Let all the even bits of the initial state be c, see Tab. 4.5. After update 83,

bits 82 and 83 (counting from 1) of R2 are both l. Variable t2 takes bits 82 and 83 of R2

to compute the nonlinear term. So after update 84, t2 = x177 is q (where nonlinear terms

in t1 and t3 appear somewhat later). After 65 more updates, x242 is quadratic, where x242

is filtered out from R3 in the next update (after 84 updates, other bits are also q and

are filtered out from registers R1 and R2, but on a later point in time). Consequently,

keystream bit number 66 + 84 = 150 (counting from 1) is q, and the first 149 keystream

bits are linear in the remaining variables. The number of remaining variables in the state

4.6 Second Application: Trivium 47

Table 4.5: Evolution of states with partially fixed input.

Initial state After 1 update After 84 updates
R1 = lclcl . . . R1 = llclcl . . . R1 = lllll . . .
R2 = clclc . . . R2 = lclclc . . . R2 = lllll . . .
R3 = clclc . . . R3 = lclclc . . . R3 = qllll . . .

(the degree of freedom) is 144. Consequently, for an output of size m = 144 bits, we can

expect to find one solution for the remaining variables; this was verified experimentally.

The solution (combined with the fixed bits) yields a preimage of z. Notice that we do

not exclude any preimages this way. In addition, m can be somewhat larger with partial

search for the additional bits.

Example 12. Consider the special output z = 000 . . . 0 of m = 160 bits. By sampling and

partial exhaustive search, we find the following nontrivial preimage:

x =

100010111100010111001100010101001101000010010010

000100100100110011111011011101100001001100101000

110000000101011001110000111111011001100001101010

011100000101010011001101111010101011111110100001

000001000001101000100001111001101010100010101111

101000001110100101010011000100111001010010101101 �

4.6.2 Potential Attacks

The nonlinear update of Trivium results in equations Sm(x) = z of increasing degree for

increasing values of m. However, for any output z, there are at least 66 linear equations in

the input variables. It is an important and security related question, if there are additional

linear equations for some fixed output z. A linear equation is determined by D = 289

coefficients, thus we have to compute somewhat more than 289 preimages for this output.

By sampling, this can be done in polynomial time. Here is an experiment:

Example 13. Consider a prescribed output z of 144 bits, and compute 400 preimages x

such that Sm(x) = z (where the preimages are computed by a uniform random choice

of 144 fixed bits of x). Given these preimages, set up and solve the matrix M of linear

monomials in x. For 30 uniform random choices of z, we always observed 66 linearly

independent solutions. �

Consequently, Trivium seems to be immune against additional linear equations, that might

help in an attack. Because of the lack of probabilistic solutions, Trivium is also supposed

to be immune against equations of large probability (compare with CanFil1 and CanFil2).

As pointed out in [75], there are some states resulting in a weak output: If R1, R2 and

R3 are initialized by some period-3 states, then the whole state (and hence the output)

48 4. Algebraic Immunity of Augmented Functions

repeats itself every 3 iterations. Each of these states results in z = 000 . . . 0. Here is an

extended experiment (with partial exhaustive search) for this special output:

Example 14. Consider the output z = 000 . . . 0 of 150 bits, and compute 400 random

preimages x such that Sm(x) = z. By solving the matrix M of linear monomials in x, we

still observed 66 linearly independent solutions. �

4.7 Conditional Correlations

Exact equations (or equations with very large probability) are used in algebraic attacks

on stream ciphers, and probabilistic linear equations are used in correlation attacks and

linear attacks (e.g. for the Boolean function in combination generators). In spite of this

close relationship, these two approaches have never been analyzed in a unified framework.

We briefly sketch how to use the previous methods to find conditional correlations.

4.7.1 Nonlinearity

Consider a Boolean function f : Fn → F, where the output f(x) is assumed to be known.

Let u ∈ Fn and define the dot product by u·x := u0x0⊕. . .⊕un−1xn−1. The problem here is

to find the vector u such that the probabilistic linear equation f(x) = u · x has maximum

probability for uniformly random x. This problem can be restated with the notation

of (conventional) nonlinearity, which is the Hamming distance of f to the set of affine

functions. More precisely, the Walsh-Transform of f is defined by f̂(u) :=
∑

x(−1)f(x)⊕u·x.

The linear correlation coefficient is C := maxu f̂(u) and conventional nonlinearity becomes

NL := 1
2
(2n−C). This means p := Prx(f(x) = u·x) = 1−NL/2n for some optimal u. For

an S-box S : Fn → F
m, one can investigate the maximum probability of Prx(u·S(x) = v·x)

with u ∈ Fm and v ∈ Fn. Zhang and Chan [125] observed that if S(x) is known, then

we can compose S(x) with any (and not necessarily linear) Boolean function g : Fm → F

and consider the maximum probability of Prx(g(S(x)) = v · x). Since we are choosing

from a larger set of equations now, we can find linear approximations with larger bias,

but finding the relation is more difficult. This concept was improved again in [36] by

considering all implicit equations F (x, z) = 0 with z = S(x) which are non-degenerate

for all z and linear in x. They introduced the notation of generalized nonlinearity, which

can be computed in about 22n steps (assuming m < n). We use a similar notation for

conditional equations with fixed output z, see also [92, 91].

Definition 8. Consider an S-box S : Fn → F
m and the set F of linear Boolean functions

F : Fn → F. Define the conditional probability for a fixed output z and a function

F ∈ F by pz := PrS−1(z)(F (x) = 0), where S−1(z) is the set of preimages of size Uz.

Let F̂ :=
∑

S−1(z)(−1)F (x) and Cz := maxF∈F |F̂ |. The conditional nonlinearity of S with

respect to F (and conditioned by z) is defined by NLz := 1
2
(Uz − Cz), and the maximum

conditional probability becomes pz = 1−NLz/Uz.

Note that NLz may be computed for each output z separately, involving the computation

of preimages. According to the definition of AI for an S-box, the nonlinearity NL could

4.7 Conditional Correlations 49

Table 4.6: List of maximal conditional probabilities for CanFil1 with n = 20 and different
setups.

m Setup 6 Setup 7 Setup 8 Setup 9 Setup 10

2 0.625 0.667 0.500 0.563 0.531
3 0.625 0.750 0.625 0.625 0.531
4 0.625 0.750 0.625 0.656 0.625
5 0.625 0.800 0.625 0.664 0.625
6 0.628 0.833 0.657 0.697 0.656
7 0.661 0.835 0.659 0.708 0.658
8 0.677 0.861 0.673 0.734 0.683
9 0.756 0.917 0.733 0.749 0.712

10 0.756 0.935 0.770 0.778 0.762

be (re-)defined by the minimum of NLz for all z. For linear functions, the number of

monomials is D = n and the size of F is 2n. Let us discuss some algorithmic methods to

determine NLz. In a direct approach, each of the 2n linear functions in F is evaluated

for the given set of preimages in order to find the maximum pz. For a balanced S it is

Uz = 2n−m, hence the complexity to compute NLz is about 22n−m, and the complexity to

compute the (alternative) NL is 22n. We can also use the probabilistic algorithm from

Sect. 4.2.3 with only V ≪ Uz random preimages. For V < D, there are at least D − V

independent equations. On the other hand, V should be as large as possible in order

to increase the probability of an equation (by increasing the number of conditions). In

practice, we will choose V slightly below D. If one (or more) solutions F can be found,

one has to estimate the conditional correlation pz with some additional preimages of z.

All steps can be repeated T times to identify the solution F with maximum empirical pz.

The bottleneck of this method is to find preimages of z.

4.7.2 Experimental Results

In Sect. 4.5, it turned out that some Boolean functions of filter generators have many

(exact) linear conditional equations already for small values of m (e.g. CanFil5), whereas

other functions are more resistant (e.g. CanFil1). Here, we investigate the existence of

probabilistic equations for filter generators for even smaller values of m.

Example 15. Consider a filter generator with n = 20, filter CanFil1 and setup 6. Choose

parameters V = 15, T = 20 and compute the (empirical) maximum of the conditional

probabilities, see Tab. 4.6 (and Tab. 4.7 for CanFil5). For example, for the output z =

000 . . . 0 of m = 10 bits, the equation Fz(x) = x0 ⊕ x2 ⊕ x3 ⊕ x7 ⊕ x10 ⊕ x12 ⊕ x13 = 0

holds with probability pz = 0.739. �

Consequently, one can find probabilistic equations for small m, even for some functions

which turned out to be strong with respect to exact equations. The correlations weakly

50 4. Algebraic Immunity of Augmented Functions

Table 4.7: List of maximal conditional probabilities for CanFil5 with n = 20 and different
setups.

m Setup 6 Setup 7 Setup 8 Setup 9 Setup 10

2 0.929 0.928 0.833 0.942 0.929
3 0.978 0.800 0.929 0.985 0.935
4 0.978 0.800 0.978 0.997 0.935
5 0.995 0.933 0.979 0.996 0.949
6 0.995 0.933 0.984 0.998 0.982
7 0.996 0.970 0.985 1.000 0.985
8 0.997 0.977 0.995 1.000 0.987
9 0.998 0.994 0.999 1.000 0.988

10 1.000 1.000 1.000 1.000 0.994

depend on the setup, and strongly depend on the filter. We observe that the probabilistic

algorithm can find the maximum conditional probability pz (resp. the nonlinearity NL)

in most of the cases.

4.8 Summary

Intrinsic properties of augmented functions of stream ciphers have been investigated with

regard to algebraic attacks and linear attacks. Certain properties of the augmented func-

tion enable efficient algebraic attacks with lower data complexity than established alge-

braic attacks. In order to assess resistance of augmented functions against such improved

algebraic attacks, a prespecified number of preimages of outputs of various size of these

functions have to be found. For a random function, the difficulty of finding preimages

increases exponentially with the output size. However, due to a special structure of the

augmented function of a stream cipher, this can be much simpler than in the random

case. For any such stream cipher, our results show the necessity of checking the aug-

mented function for algebraic relations of low degree for output sizes for which finding

preimages is feasible. In this chapter, this has been successfully carried out for various

filter generators as well as for the eSTREAM candidate Trivium.

Chapter 5

Attacks on the Alternating Step Generator

In the previous chapter it was noticed that sampling may be useful along with other

attacks in a unified framework. The results of this chapter represent a positive attempt

to exploit such a connection for a concrete stream cipher: we present some reduced

complexity attacks on the Alternating Step Generator (ASG). The attacks mostly benefit

from the low sampling resistance of the ASG, and of an abnormal behavior related to the

distribution of the initial states of the stop/go LFSR’s which produce a given segment of

the output sequence.

5.1 Introduction

The Alternating Step Generator (ASG), a well-known stream cipher proposed in [71],

consists of two stop/go clocked binary LFSR’s, LFSRx and LFSRy, and a regularly clocked

binary LFSR, LFSRc of which the clock-control sequence is derived. The original descrip-

tion of ASG [71] is as follows. At each time, the clock-control bit determines which of the

two stop/go LFSR’s is clocked, and the output sequence is obtained as bitwise sum of the

two stop/go clocked LFSR sequences. It is known [79,65,78] that instead of working with

the original definition of ASG we can consider a slightly different description for which the

output is taken from the stop/go LFSR which has been clocked. More precisely, at each

step first LFSRc is clocked; then if the output bit of LFSRc is one, LFSRx is clocked and its

output bit is considered as the output bit of the generator, otherwise LFSRy is clocked and

the output bit of the generator is taken from this LFSR. Since in a cryptanalysis point of

view these two generators are equivalent, we use the later one all over this chapter and

for simplicity we still call it ASG.

Several attacks have been proposed on ASG in the literature. Most of these attacks

are applied in a divide-and-conquer based procedure targeting one or two of the involved

LFSR’s. We will focus on a divide-and-conquer attack which targets one of the two stop/go

LFSR’s.

A correlation attack on individual LFSRx or LFSRy which is based on a specific edit

probability has been introduced in [66]. The amount of required keystream is linear in

terms of the length of the targeted LFSR and the correct initial state of the targeted LFSR

51

52 5. Attacks on the Alternating Step Generator

is found through an exhaustive search over all possible initial states. In [79] some reduced

complexity attacks on ASG and SG (Shrinking Generator, see [38]) were presented and the

effectiveness of the attacks was verified numerically for SG while only few general ideas

were proposed for ASG without any numerical or theoretical analysis. These methods

avoid exhaustive search over all initial states, however, the amount of needed keystream

is exponential in terms of the length of the targeted LFSR. One of our contributions of

this chapter is to give a closed form for the reduced complexity attacks on ASG.

Our major objective of this chapter is to investigate a general method which does not

perform an exhaustive search over all possible initial states of the targeted LFSR. We

will take advantage of the low sampling resistance of ASG. For ASG, sampling is easy if

the output length m is chosen to be about the total length of the two stop/go LFSR’s.

Another weakness of ASG which enables us to mount our attack is that different initial

states of any of the two stop/go LFSR’s have far different probabilities to be accepted

as a candidate which can produce a given segment of length m of the output sequence.

Systematic computer simulations confirm this striking behavior. The highly non-uniform

distribution of different initial states of any of the stop/go LFSR’s is valid for any segment

of length about m, and the effect is more abnormal for some special outputs which we

refer to as weak outputs. Thanks to the low sampling resistance of ASG we first try to

find a subset of the most probable initial states which contains the correct one, then using

the probabilistic edit distance [66] we distinguish the correct initial state. Our general

approach can be faster than exhaustive search even if the amount of keystream is linear

in terms of the length of the targeted LFSR, improving the results in [66]. With regard

to reduced complexity attacks, our approach does assume less restricted output segments

than in [79], a fact that has been confirmed by large-scale experiments. This enables

attacks with significantly lower data complexity even for large instances of ASG (whereas

asymptotical complexity is shown to be comparable over known methods).

5.2 Previous Attacks on ASG

Several attacks have been proposed on the ASG in the literature. This section will provide

an overview of the different attacks. We will denote the length of registers LFSRc, LFSRx

and LFSRy by nc, nx and ny, respectively. If we only use parameter n, we apply the

simplification n := nc = nx = ny.

5.2.1 Divide-and-Conquer Linear Consistency Attack

It is shown in [71] that the initial state of LFSRc can be recovered by targeting its initial

state in a divide-and-conquer based attack based on the fact that the output sequence

of the ASG can be split into the regularly clocked LFSRx and LFSRy sequences, which

are then easily tested for low linear complexity. Hence the complexity of this attack is

O(min2(nx, ny)2
nc) assuming that only the feedback polynomial of LFSRc is available.

Under the assumption that the feedback polynomial of all LFSR’s are available, which

is the basic assumption of all other known attacks (including ours in this chapter), the

5.2 Previous Attacks on ASG 53

complexity of this attack would be O(min(nx, ny)2
nc) instead, since a parity check test can

be used in place of linear complexity test. In this case the attack is a linear consistency

attack [124]. We will use the idea of this attack to sample ASG in Sect. 5.4.1.

5.2.2 Edit Distance Correlation Attack

A correlation attack on LFSRx and LFSRy combined, which is based on a specific edit

distance, was proposed in [65]. If the initial states of LFSRx and LFSRy are guessed

correctly, the edit distance is equal to zero. If the guess is incorrect, the probability of

obtaining the zero edit distance was experimentally shown to exponentially decrease in

the length of the output string. Later, a theoretical analysis of this attack was developed

in [78, 63]. The minimum length of the output string to be successful for an attack is

about four times total lengths of LFSRx and LFSRy. As the complexity of computing the

edit distance is quadratic in the length of the output string, the complexity of this attack

is O((nx + ny)
22nx+ny). In addition, it was shown that the initial state of LFSRc can then

be reconstructed with complexity O(20.27nc).

5.2.3 Edit Probability Correlation Attack

A correlation attack on individual LFSRx or LFSRy which is based on a specific edit

probability was developed in [66]. For a similar approach, see [79]. The edit probability is

defined for two binary strings: an input string, produced by the regularly clocked targeted

LFSR from an assumed initial state, and a given segment of the ASG output sequence. The

edit probability is defined as the probability that the given output string is produced from

an assumed input string by the ASG in a probabilistic model, where the LFSR sequences

are assumed to be independent and purely random. It turns out that the edit probability

tends to be larger when the guess about the LFSR initial state is correct. More precisely,

by experimental analysis of the underlying statistical hypothesis testing problem, it was

shown that the minimum length of the output string to be successful for an attack is about

forty lengths of the targeted LFSR. As the complexity of computing the edit probability is

quadratic in the length of the output string, the complexity of reconstructing both LFSR

initial states is O(max2(nx, ny)2
max(nx,ny)). This yields a considerable improvement over

the edit distance correlation attack if nx and ny are approximately equal and relatively

large, as is typically suggested (for example, see [98]).

Remark 3. Note that ”edit distance correlation attack” means that the initial states of

LFSRx and LFSRy can be recovered regardless of the unknown initial state of LFSRc,

whereas ”edit probability correlation attack” means that the initial state of LFSRx (LFSRy)

can be recovered regardless of unknown initial states of LFSRy (LFSRx) and LFSRc. How-

ever, the targeted LFSR initial states should be tested exhaustively. The main motivation

for this chapter is to investigate if the initial states of LFSRx (LFSRy) can be reconstructed

faster than exhaustive search regardless of unknown initial states of LFSRy (LFSRx) and

LFSRc.

54 5. Attacks on the Alternating Step Generator

5.2.4 Reduced Complexity Attacks

A first step to faster reconstruction of LFSR’s initial states was suggested in [79], in which

some reduced complexity attacks on ASG and SG are presented. In the next section, we

will give a general expression in the parameter nx, the length of target register LFSRx.

A second movement to faster reconstruction of LFSR initial states was suggested in [68],

using an approach based on computing the posterior probabilities of individual bits of the

regularly clocked LFSRx and LFSRy sequences, when conditioned on a given segment of

the output sequence. It is shown that these probabilities can be efficiently computed and

the deviation of posterior probabilities from one half are theoretically analyzed. As these

probabilities represent soft-valued estimates of the corresponding bits of the considered

LFSR sequences when regularly clocked, it is argued that the initial state reconstruction

is thus in principle reduced to fast correlation attacks on regularly clocked LFSR’s such as

the ones based on iterative probabilistic decoding algorithms. Although this valuable work

shows some vulnerability of the ASG towards fast correlation attacks, the practical use

of these probabilities has not yet been deeply investigated. Nonetheless, these posterior

probabilities can certainly be used to mount a distinguisher on ASG. This can be compared

with [62], a similar work on SG for which a distinguisher was later developed in [69].

5.3 Johansson’s Reduced Complexity Attacks

In [79] some reduced complexity attacks on the ASG and SG were presented, and the

effectiveness of the attacks was verified numerically for the SG (while only few general

ideas were proposed for the ASG without any numerical or theoretical analysis). We

give a closed form for the reduced complexity attack on ASG, using the approximation
(

n
w

)

≈ 2nh(w/n) where h(p) is the binary entropy function defined as

h(p) := −p log2(p)− (1− p) log2(1− p) . (5.1)

In the first scenario, the attacker waits for a segment of m consecutive zeros (or ones)

in the output sequence and assumes that exactly m/2 of them are from LFSRx. This

is true with probability β =
(

m
m/2

)

2−m. The remaining n − m/2 bits of LFSRx are

then found by exhaustive search. Time and data complexities of this attack are CT =

n22n−m/2β−1 = n22n+m/2
(

m
m/2

)−1
and CD = 2m−1β−1 = 22m−1

(

m
m/2

)−1
(using overlapping

blocks of keystream). Ignoring the polynomial and constant terms and equaling the time

and data complexities, we have n −m/2 = m, which shows m = 2
3
n. Thus the optimal

complexities of this attack are CT = O(n22
2
3
n) and CD = O(2

2
3
n). These arguments apply

to both LFSRx and LFSRy.

Remark 4. The total time of the attack is composed of the time to filter the blocks of data

with desired properties, and of the time to further process the filtered blocks. Although

the unit of examination time of these two phases are not equal, we ignore this difference

to simplify the analysis.

5.4 New Reduced Complexity Attack 55

In another scenario in [79], it is suggested to wait for a segment of length m containing

at most w ones (zeros) and make the assumption that only half of the zeros (ones) come

from the LFSRx. All the ones (zeros) and the remaining zeros (ones) are assumed to come

from the LFSRy. This is true with probability β = 2−w
(

m−w
(m−w)/2

)

2−(m−w). The time and

data complexities of this attack are then CT = n22n−(m−w)/2β−1 and CD = 2m−1
(

m
w

)−1
β−1,

respectively. With w := αm, ignoring the constant and polynomial terms, and equaling

the time and data complexities, we have n− (1−α)m/2+αm = m−h(α)m+αm, which

results in m = n/(3/2−α/2−h(α)). The minimum value of the exponents m(1−h(α)+α)

is 0.6406n, which is achieved for α ≈ 0.0727 (and hence m = 0.9193n and w = 0.0668n).

Therefore, the optimal complexities are CT = O(n220.64n) and CD = O(20.64n). Note that

this complexity is only for reconstruction of the initial state of LFSRx. The complexity for

recovering the initial state of LFSRy highly depends on the position of ones (zeros) in the

block. In the best case, the block starts with w ones (zeros) and the complexity becomes

CT = n22n−(m+w)/2. In the worst case, the attacker has to search for the positions of ones

(zeros), and the complexity becomes CT =
(

(m+w)/2
w

)

n22n−(m−w)/2. It is difficult to give

an average complexity, but we expect that it is close to the worst case complexity. With

m = 0.9193n and w = 0.0668n, this gives CT = O(n220.69n) to recover the initial state

of LFSRy. Consequently, as a distinguishing attack, this scenario operates slightly better

than the previous one, but as an initial state recovery it is slightly worse.

5.4 New Reduced Complexity Attack

Before we describe our attack in detail, let us introduce some notations. We use A := (ai)

for a general binary sequence, Am
k := (ai)

m
i=k for a segment of it and Am := (ai)

m
i=1 for

a prefix of length m. The number of 1’s in A is denoted by wt(A). We define the first

derivative of A as (ai ⊕ ai+1) and denote it by Ȧ. Let C, X, Y and Z denote the regular

output sequences of LFSRc, LFSRx, LFSRy and the output sequence of the ASG itself,

respectively. The initial state of the LFSR’s can be represented by c = Cn, x = Xn and

y = Y n. The output sequence of the ASG of size m is denoted by z = Zm.

5.4.1 Sampling Resistance

Let us consider the augmented function of ASG with S : F3n → F
m. Any initial state

(c, x, y) of ASG which can produce z, a given prefix of size m of the output sequence

of ASG, is called a preimage of z. As in the previous chapter, the sampling resistance

is defined as 2−m where m is the maximum value for which we can efficiently produce

all preimages of m-bit outputs. As will be shown in this subsection, the low sampling

resistance of ASG is an essential ingredient for our attack. Let S−1(z) of size Uz = |S−1(z)|
denote the set of all preimages of z. Based on the divide-and-conquer linear consistency

attack, introduced in Sect. 5.2, we can compute S−1(z) according to Alg. 3. Let us

discuss the complexity of Alg. 3. If Uz ≤ 2n, then the overall complexity is 2n, because

the complexity of Steps 3 to 8 are O(1). On the other hand, if Uz > 2n, then Steps 3

56 5. Attacks on the Alternating Step Generator

to 8 introduce additional solutions, and overall complexity is about Uz. The following

statement is given under the assumption of balancedness, i.e. the average number of

preimages of ASG for any output z of m bits is about 23n−m, where m ≤ 3n.

Algorithm 3 Sampling of ASG

Input: Output sequence z of m bits.
Output: Find S−1(z) with all preimages of z.
1: Initially, set S−1(z) = ∅.
2: for all non-zero initial states c do

3: Set X = Y = ∅.
4: Compute Cm, a prefix of length m of the output sequence of LFSRc.
5: Based on Cm, split up z into Xw and Y m−w, where w = wt(Cm).
6: Add all (non-zero) x to X , if LFSRx can generate Xw.
7: Add all (non-zero) y to Y , if LFSRy can generate Y m−w.
8: For all x ∈ X and y ∈ Y , add (c, x, y) to the set S−1(z).
9: end for

Statement 1. Time complexity of Alg. 3 is CT = O(max(2n, 23n−m)).

With the previous definition of sampling resistance, this algorithm can be considered as an

efficient sampling algorithm iff Uz ≥ O(2n) or equivalently m ≤ 2n. That is, the sampling

resistance of ASG is about 2−k with k = 2n the total length of the two stop/go LFSR’s.

A related problem is how to find a multiset A with T uniformly random independent

elements of S−1(z). We suggest to modify Alg. 3 as follows: S−1(z) is replaced by A and

T is added as another input parameter. In Step 2, a uniform random (non-zero) initial

state c is chosen, and Steps 3 to 8 are not modified. The new Steps 2 to 8 are then

repeated, until T preimages have been found. This modified algorithm will be referred

to as Alg. 3B. We assume correctness of the algorithm, i.e. the preimages found with

Alg. 3B are uniformly random elements of S−1(z) (for which we will give experimental

evidence). The following statement is presented under the assumption that the average

number of preimages of ASG for any output z, given some fixed initial state of LFSRc, is

about 22n−m, where m ≤ 2n.

Statement 2. Time complexity of Alg. 3B is CT = O(T) for m ≤ 2n, and CT =

O(min(2n, T2m−2n)) for m > 2n, where 1 ≤ T ≤ O(23n−m).

5.4.2 Conditional Distribution of the Initial States

With the sampling algorithm described in Sect. 5.4.1, we can find T random preimages

of an output sequence z. The natural question which arises is how large should T be so

that our subset contains the correct initial state? The answer is related to the conditional

distribution of different initial states of LFSRx which can produce a given segment of length

m of the output sequence of the ASG. Consider the following two general propositions:

5.4 New Reduced Complexity Attack 57

Proposition 5. Let X0, . . . , XT be a sequence of i.i.d. random variables, defined over the

finite set {s1, . . . , sN} with probability distribution pi := Pr(Xj = si). Then, the probability

P := Pr(X0 ∈ {X1, . . . , XT}) that a realization of X1, . . . , XT contains a realization of X0

is

P = 1−
N
∑

i=1

(1− pi)
T pi . (5.2)

Proof. The probability P can be expressed as

Pr(X0 ∈ {X1, . . . , XT}) = 1− Pr(X0 6= Xj, 1 ≤ j ≤ T)

= 1−
N
∑

i=1

Pr(X0 6= Xj, 1 ≤ j ≤ T | X0 = si) · Pr(X0 = si)

= 1−
N
∑

i=1

Pr(si 6= Xj, 1 ≤ j ≤ T) · Pr(X0 = si)

= 1−
N
∑

i=1

(1− pi)
T pi . �

Proposition 6. Let H := −∑N
i=1 pi log2(pi) be the entropy of random variable Xj. With

about T = 2H , the probability Pr(X0 ∈ {X1, . . . , XT}) is significant.

Proof. From Prop. 5 we have Pr(X0 ∈ {X1, . . . , XT}) = 1−∑N
i=1(1− pi)

T pi. With the

assumption Tpi ≪ 1, we obtain (1−pi)
T ≈ 1−Tpi, which gives the approximation Pr(X0 ∈

{X1, . . . , XT}) ≈ 1−∑N
i=1(1−Tpi)pi = T

∑N
i=1 p2

i . Assuming Pr(X0 ∈ {X1, . . . , XT}) ≈ 1,

we have T ≈ 1/
∑N

i=1 p2
i , or equivalently T ≈ 2G with G := − log2

∑N
i=1 p2

i . This can

be compared with the entropy function H . Both H and G are approximated with a

multivariate Taylor series of order 2 at the point p0, such that pi = p0 + εi. If T2 denotes

the second order part, this gives

T2(H) =
Np0

ln 2
− 1

ln 2
− log2 p0

T2(G) =
2

ln 2
− 2

Np0 ln 2
− log2 N − log2 p2

0 .

Now let p0 := 1/N , then we have T2(H) = log2 N and T2(G) = − log2 N + 2 log2 N =

log2 N . Consequently, the difference becomes T2(H)− T2(G) = 0, hence H = G of order

2 on the points pi = 1/N . �

Remark 5. The quantity G := − log2

∑N
i=1 p2

i is the Rényi entropy of order 2. It is known

that guessing a random value, drawn from a known nonuniform probability distribution,

on average requires the number of steps related to the Rényi entropy of order 2, e.g.

see [117] or references therein. Prop. 6 shows that this is still true when the distribution

is not directly known but can be simulated. One can directly use this entropy instead

58 5. Attacks on the Alternating Step Generator

of Shannon entropy which is only an approximation in this regard, however, we prefer to

use the better known Shannon entropy. For the case pi = 1/N we have G = H = log2 N ,

hence T = N and P = 1−∑N
i=1(1− 1/N)N(1/N). For N ≫ 1 we have (1− 1/N)N ≈ e−1

which shows P ≈ 1 − e−1 ≈ 0.63. We guess that in general we have P ≥ 1 − e−1. Our

extensive simulations for several distributions verify this conjecture.

To apply these propositions to the situation of ASG, let S−1(z|x) of size Ux be a subset

of S−1(z), defined by {(c, x, y) ∈ S−1(z)} for fixed x. The conditional probability for a

fixed initial state x of LFSRx is then defined by p(z|x) = Ux/Uz. Consequently, we need to

draw about T = 2Hx uniformly random elements of S−1(z) to include the correct initial

state of LFSRx where Hx is the conditional entropy of the initial state of the LFSRx given

z, defined by

Hx(z) = −
∑

x

p(z|x) · log2 p(z|x) . (5.3)

The same argument applies to LFSRy, and the symmetry of ASG motivates the simpli-

fication H := Hx = Hy (if not mentioned otherwise). Another natural question is the

expected number of different elements Q drawn in this sample of size T . This is related to

the Coupon-Collector Problem with non-uniform distribution. However, we can assume

that Tp≪ 1, which results in Q ≈ T .

Remark 6. Any adversary who would know the distribution p(z|x) could try to recover

the unknown initial state of LFSRx by considering the most probable initial state first,

then the second most probable one and so on. Here, to cope with unknown distribution

p(z|x), we simulate it by choosing uniformly random elements of S−1(z) (where element x

is chosen with probability p(z|x)). This procedure is similar to [97] in which an equivalent

description of the underlying cipher was used, for which the initial states were no longer

equiprobable.

Remark 7. As mentioned in Sect. 5.2.4, it has been suggested in [68] to take advantage

of the posterior probabilities of the individual bits of the regularly clocked LFSRx and

LFSRy sequences, when conditioned on a given segment of the output sequence for faster

reconstruction of LFSR initial states. Our attack can be considered as a generalization of

this attack in which we take advantage of the posterior probabilities of the initial states

rather than individual bits, when conditioned on a given segment of the output sequence.

Although unlike [68] we are able to give an estimation for the time and data complexities

of our attack, a theoretical analysis of the conditional entropy of the initial states remains

an open problem, see Sect. 5.5.1.

5.4.3 Description of the Attack

In the basic edit probability correlation attack on the ASG [67, 66], the edit probability

is computed for each of the 2n possible initial states of LFSRx (given a segment of length

N ≈ 40n of the output sequence of the ASG) to find the correct initial state. This is

repeated also for LFSRy, and finally the initial state of LFSRc can be recovered. In our

5.4 New Reduced Complexity Attack 59

improved attack, we take the output sequence z of m bits into account to compute a

smaller multiset A of candidates of initial states, which is of size T and contains the

correct initial state of LFSRx (resp. LFSRy) with some probability P , see Prop. 5. The

multiset A is constructed with Alg. 3B. In Alg. 4, we give a formalization of this attack.

Remark 8. One would think that it is better to compute the edit probability between the

ZN and only the LFSR output sequence of all distinct initial states suggested by multiset

A to avoid processing the same initial state several times. However, this needs memory of

O(|A|) and extra effort to keep the track of the non-distinct initial states. Since |A| ≈ T

the achieved gain is negligible and therefore we alternatively compute the edit probability

at the time where a preimage is found.

Algorithm 4 Attack on ASG

Input: Parameters T , m, N , output ZN .
Output: Recover the initial state of ASG with some error probability pe.
1: Given the segment z = Zm, find T preimages using Alg. 3B.
2: Compute the edit probability between ZN and the output sequence for each suggested

initial state.
3: Choose the most probable candidates for LFSRx resp. LFSRy.
4: Recover LFSRc and verify the validity, see Sect. 5.2.3.

Parameters for the Entropy. The complexity of the attack is related to the conditional

entropy H . However, for large instances of ASG, the conditional probabilities and hence

H are unknown. To be able to evaluate our attack and give an explicit expression for the

data and time complexities, we need to know the relation between conditional entropies H

and all parameters which can possibly affect them. The parameters are LFSR’s feedback

polynomials and the output prefix z, which implicitly include the lengths of LFSR’s and

output segment length as well. In our simulations we noticed that feedback polynomials

have almost no effect and the only important parameters are LFSR lengths n, the size of the

output segment m (as larger values of m reduce uncertainty about the correct preimage),

and the weight w of the output segment z or the weight w of the first derivative of the

output segment z (as will be shown in our simulations). The entropy is significantly

reduced if |wt(z)/m− 0.5| ≫ 0 (i.e. many zeros or ones) or if wt(ż)/m≪ 0.5 (i.e. many

runs of zeros or ones). This can be explained by the fact that a biased output segment

results in a biased LFSR segment, and we will refer to such outputs as weak outputs. In

Sect. 5.5.1, we will predict the average value of H depending on these parameters using

some regression analysis, hence H = f(n, m, w).

Time Complexity. Let us discuss time complexity of Alg. 4. According to Prop. 6, we

set T = 2H . Complexity of Step 1 is described in Statement 2. Computation of the edit

probability distance of a single preimage takes about O(n2), hence complexity of Step 2

is at most O(n2T). Finally, the complexity of Step 4 is O(20.27n), which can be neglected

here.

60 5. Attacks on the Alternating Step Generator

Statement 3. Time complexity of Alg. 4 is about CT = O(n22H) for m ≤ 2n, and

CT = O(2H+m−2n) for m≫ 2n.

This should be compared to the attack by Golic et al. of complexity CT = O(n22n) using

an output sequence of length about CD = 40n which was described in Sect. 5.2.3, and

Johansson’s attack of complexity CT = O(n22
2
3
n) using an output sequence of length

CD = O(2
2
3
n) as described in Sect. 5.3.

Data Complexity. The parameter w has some influence on the data complexity of our

attack. Once we know that the weight of z is at most w or at least m − w, or that the

weight of the first derivative of z is at most w, a prefix of length about N = 40n suffices

to recover the initial states, see [66]. However, in order to obtain such an output segment

Zt+m
t+1 for some t, the required amount of keystream bits is CD = 2m(3

∑w
i=0

(

m
i

)

)−1. This

can be roughly approximated by CD = O(2m(1−h(w/m))).

Success Probability. The error probability pe of the attack depends on three events: 1)

The probability that our multiset A of size T = 2H contains the correct initial state.

2) The probability that our prediction of the entropy gives at least H . 3) The success

probability of the edit distance correlation attack. The first probability corresponds to

P according to Eq. 5.2. The second probability comes from the fact that we use an

estimation of the average value of H instead of the exact value of H .

5.5 Experimental Results

In this section, we give experimental results on ASG. We estimate the conditional entropy,

give a detailed discussion of the complexity for different scenarios and present an example

of an attack.

5.5.1 Distribution of Initial States

For specific instances of ASG, we investigate the distributions of initial states. Here, ASG

is small enough such that an exact computation of initial states with Alg. 3 is feasible. We

use registers of the same length, but our results do not significantly change if the lengths

are pairwise coprime and about the same, as suggested in [98]. The following example has

illustrative character: First, we compute the distributions for one fixed output sequence.

Second, the block size m is varied for average-weighted output sequences. Third, an

output sequences of low weight is investigated.

Example 16. Consider a setup with n = 20 and some randomly chosen primitive feedback

polynomials. Fix a random output sequence z of m = 40 bits according to

z = 1110110110100101010000100100101011000110 .

5.5 Experimental Results 61

bc bc

bc

bc
bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc bc bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc bc bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc bc bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc bc bc bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc bc bc bc
bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc bc bc bc bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc bc bc bc bc bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc bc bc bc bc bc bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc bc bc bc bc bc bc bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc bc bc bc bc bc bc bc bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc bc bc bc bc bc bc bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc bc bc bc bc bc bc bc bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc
bc bc bc bc bc bc bc bc bc bc bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc
bc
bc
bc bc bc bc bc bc bc bc bc bc bc

bc
bc
bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc
bc
bc
bc bc bc bc bc bc bc bc bc bc bc bc

bc
bc
bc
bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

w
m

H
n

Figure 5.1: H/n versus w/m for all 0 ≤ w ≤ m and 5 ≤ n ≤ 21.

The number of preimages is Uz = 1 046 858 = 220.00, and the entropies are Hc = 17.49,

Hx = 17.32, and Hy = 17.34. If this output is padded by the 2 additional bits 01, then

the number of preimages becomes Uz = 264265 = 218.01 and the entropies are Hc = 16.26,

Hx = 16.46, and Hy = 16.45. On the other hand, consider the following output sequence

for m = 40 and with weight w = 7,

z = 0001010000100000000110000001000100000000 .

The number of preimages for this low-weight output sequence is Uz = 1 117 725 = 220.09,

with entropies Hc = 17.39, Hx = 12.24, and Hy = 12.63. �

Let us discuss this example. The number of preimages is about 260−m, as expected. In

all three registers, the entropy is not maximal for the random output sequence of size

m = 40. This may be explained by the fact that sequences are not fully random, as they

satisfy a linear recurrence. In the stop/go LFSR’s, the entropy is strongly reduced for

outputs of low weight, without any losses in the number of preimages. Notice that Hc

does not depend on the weight of the output, which is optimal for efficient sampling.

In the following we will focus on the case m = 2n. The entropy H of the stop/go

LFSR’s is exactly determined for different values of n and w, where n = 5, . . . , 21 and

w = 0, . . . , m. More precisely, given some n (and randomly chosen primitive feedback

polynomials), we determine the average entropy H using 500 randomly chosen outputs of

weight w. The values of H/n as a function of w/m are shown in Fig. 5.1. The inner dots

in this figure relate to smaller values of n, and the outer dots relate to larger values of n.

A convergence behavior of H/n for increasing n is perceivable from this figure.

It turns out that H/n can be well approximated by a scaled binary entropy function,

namely H/n ≈ γ · h(w/m) with 0 < γ ≤ 1 depending on n. Notice that γ = maxw(H/n),

which can be well approximated by γ ≈ 1 − 1/(0.19n + 3.1). Fig. 5.2 shows some addi-

tional figures of the average entropy, together with our approximations using nonlinear

regression. Fig. 5.3 compares the average value of the entropy as a function of the weight

of the output sequence and as a function of the weight of the derivative of the output

sequence. Consequently, with this regression analysis, the average value of the entropy is

62 5. Attacks on the Alternating Step Generator

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc
bc
bc
bc
bc bc

bc bc
bc bc bc bc

bc bc bc bc bc bc bc
bc
bc
bc
bc
bc
bc
bc
bc

bc

bc
bc

bc

bc

bc

bc

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

w
m

H
maxw(H)

bc bc

bc

bc

bc

bc
bc

bc
bc

bc
bc

bc
bc bc

bc
bc

bc bc

0.78

0.80

0.82

0.84

0.86

12 16 20 24
n

maxw(H)

Figure 5.2: Up: H/(maxw(H)) versus w/m for n = 21, approximated by the entropy
function. Down: maxw(H) versus n, approximated by γ(n).

approximated by:

H(n, m, w) ≈ γ(n) · n · h
(w

m

)

(5.4)

γ(n) ≈ 1− 1

0.19n + 3.1
. (5.5)

In the case w = wt(ż) the shape is not symmetric, however it seems that for w/m < 0.5

for a fixed n the figures of H/n versus w/m are well comparable regardless of what w

represents (w = wt(ż) or w = wt(z)), see Fig. 5.3. For m > 2n, the expected entropy

does not correspond to this functional form anymore. The maximum of H against w/m

decreases linearly with m, but the graph of H/n versus w/m is broader compared to

h(w/m), which means that a reduction of the entropy requires an output of very low

weight. We do not further investigate this scenario.

5.5.2 Complexity of the Attack

Our attack allows different time/data trade-offs. We describe the complexity of our attack

for m = 2n and different values of parameters n and w. According to Statement 3, time

complexity of our attack is CT = O(n22H). Including the approximation for H , we obtain

CT = O(n22γnh(w/m)). Given an random output sequence, the complexity of our attack

5.5 Experimental Results 63

bc

bc

bc

bc

bc

bc

bc

bc
bc
bc
bc
bc bc

bc bc bc
bc bc bc bc bc bc bc

bc
bc
bc
bc
bc

bc
bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc
bc
bc
bc bc

bc
bc bc

bc bc bc
bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc bc

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

w
m

H
n

Figure 5.3: H/n versus w/m for n = 17 in two cases: w = wt(ż) and w = wt(z).

is CT = O(n22γn). In this case the data complexity is minimal and our attack should

be compared to the attack by Golic et al. [66] which shows an improvement by a factor

2(1−γ)n. In the limit γ → 1 (hence for n→∞), our attack reduces to the previous attack.

However for moderate values there is some gain. For example, we expect γ = 0.945 for

n = 80, which gives an improvement of a factor 24.4.

Reduced complexity attacks can be mounted by using weak outputs. This can be

compared to the attack by Johansson [79]. Asymptotical data complexity of our attack

becomes CD = O(2m(1−h(w/m))). Similar to what we do in Sect. 5.3, the optimized com-

plexity is achieved if time and data complexities are almost equal. Considering only the

exponential terms and γ = 1, this happens when h(w/m)n = m(1 − h(w/m)), that is

h(w/m) = 2/3 and hence w ∈ {0.174m, 0.826m}. The asymptotical complexities become

CT = O(n22
2
3
n) and CD = O(2

2
3
n), which is identical to the complexities of the attack by

Johansson, see Sect. 5.3. However, compared to the simple attack in [79], it is clear that

our attack allows for more flexibility in the structure of the output sequence: the weight

can be arbitrary, we can also use outputs of low weight derivative, and we do not need a

hypothesis about the origin of the output bits. With a more subtle (non-asymptotical)

investigation of the complexities, we show that data (and/or time) complexity can be

significantly reduced with our attack. More precisely, we evaluate the exact complexities

of our and Johansson’s attack for reasonable value of n. Regarding Johansson’s attack,

consider the special point m = 2
3
n in the time/data tradeoff curve. For n = 80, this gives

CT = 269.4 and CD = 255.2. If we choose w = 0.21m in our attack, we obtain about the

same time complexity and require only CD = 242.3 data. This is an improvement of a

factor 212.9 (notice that a significant reduction can be expected even for γ = 1).

5.5.3 Example of an Attack

In this section, we present a large-scale example of a partial attack. We fix a random initial

state in all three registers, such that the corresponding output sequence has weight w =

0.174m. Then, H is computed according to Eq. 5.4 and 5.5. Alg. 3B is used to compute

the multiset A of size T = 2H , and we check if the correct initial state of the LFSRx (resp.

LFSRy) is included in A. This is repeated several times, in order to determine the success

64 5. Attacks on the Alternating Step Generator

probability P . In addition, time complexity of Alg. 3B is measured experimentally: For

each choice of c, the complexity is increased by the number of preimages found (and by

one if no preimage can be found), see Remark 8. For m = 2n, this should be compared

to CT = O(T), see Statement 2. Notice that we do not implement the edit probability

correlation attack and rely on the results of [66].

Example 17. Let n = 42 and fix a random initial state such that the corresponding output

sequence z of m = 84 bits has weight w = 14. The expected entropy becomes H = 24.16,

we set T = 2H = 18782717 and apply Alg. 3B. This is repeated 200 times, and the correct

initial state of LFSRx is found in 84 cases which shows a success probability of P = 0.42

for our algorithm. The average time complexity of the sampling algorithm is 225.35. �

5.6 Summary

A reduced complexity attack on the Alternating Step generator (ASG) has been presented,

the success of which has been confirmed experimentally. For comparison, the complexity

of the best previous attack has been determined and described in closed form. Esti-

mates of the overall complexity of our new attack are shown to improve the complexity of

the previous attack. Our attack allows for greater flexibility in known output data con-

straints, and hence for lower data complexity, for being successful. The attack method

demonstrates the usefulness of a quite general attack principle exemplified in the case of

ASG: to exploit low sampling resistance and heavily biased inputs for outputs satisfying

certain constraints.

Chapter 6

Analysis of F-FCSR

We have seen that algebraic attacks (and related concepts) can be a real threat for LFSR-

based stream ciphers, but are much less efficient for stream ciphers with nonlinear driving

devices such as FCSR’s. In this chapter, we investigate the security of the eSTREAM

phase 3 stream cipher candidate F-FCSR. Our analysis shows a link to an equivalent

representation of the FCSR.

6.1 Introduction

As a potential replacement device of LFSR’s, feedback shift registers with carry (FCSR’s)

have been investigated. The eSTREAM phase 3 candidate F-FCSR consists of an FCSR

with multiple linear (thus hardware-efficient) filters applied to the main register of the

FCSR automaton. The security of F-FCSR was investigated in different directions, and it

was recently observed in [116] that an equivalent description exists. It is an open question

if this equivalent description results in a simplified structure to be used in a cryptanalytic

attack (as it was the case for ASG in the previous chapter). The new description reveals

that (1) only one variable of the main state is updated in each iteration, (2) the memory

is very small, but (3) with a transformed filter. We focus our analysis on this alternative

description of F-FCSR.

6.2 Theoretical Background

An FCSR can be represented in Fibonacci or Galois architecture, see [70]. In this section,

we review the definition and some basic theory from [5, 6, 70, 83] on FCSR’s in both

representations.

6.2.1 2-Adic Numbers and Periods

Following the definition in [83], we call a state of a finite state machine (an FCSR, for

instance) periodic if, left to run, the machine will return to that same state after a

finite number of steps. Similarly, we call a sequence U = (u0, u1, . . .) periodic (or strictly

65

66 6. Analysis of F-FCSR

∑ ∑ ∑ x0x1. . .xn−1

an−2 a1 a0

d0d1dn−2dn−1

Figure 6.1: FCSR with Galois architecture.

periodic) with period T if ui+T = ui for all i ≥ 0. We call a sequence U eventually periodic

if there exists a t ≥ 0 such that U ′ = (ut, ut+1, . . .) is periodic. A 2-adic integer is a formal

power series α =
∑∞

i=0 ui2
i with ui ∈ {0, 1}. The collection of all such formal power series

forms the ring of 2-adic numbers. This ring especially contains rational numbers p/q

where p and q are integers and q is odd. Such rational numbers and eventually periodic

binary sequences are linked by the following well-known theorem [83].

Theorem 3. There is a one-to-one correspondence between rational numbers α = p/q

(where q is odd) and eventually periodic binary sequences u which associates to each

such rational number α the bit sequence u = (u0, u1, u2, . . .) of its 2-adic expansion. The

sequence u is strictly periodic if and only if α ≤ 0 and |α| < 1.

6.2.2 Galois FCSR’s

Description. A Galois FCSR (which is similar to a Galois LFSR) consists of n binary reg-

ister cells x = (x0, . . . , xn−1) with some fixed binary feedback positions d = (d0, . . . , dn−1),

and n− 1 binary memory cells a = (a0, . . . , an−2). We also use the integer representation

x =
∑n−1

i=0 2ixi (correspondingly for d and a). Starting from an initial configuration (x, a),

x0 is output, and the sums σi = xi+1 + aidi + x0di are computed for 0 ≤ i < n (with

xn = 0, an−1 = 0). Then, the state is updated by xi ← σi mod 2 for 0 ≤ i < n, and

ai ← σi div 2 for all 0 ≤ i < n− 1, see Fig. 6.1.

Evolution of the States. We consider here the special case where memory bits of a Galois

FCSR are only present on those positions with feedback (which means that the effective

number of memory bits is l ≤ n, and a can only have some restricted values). In this

case, the Galois FCSR can be described by the connection integer q = 1− 2d. The initial

state is denoted (x, a), with an associated value p = x + 2a (assuming that x is not the

all-zero or all-one state). Note that different states (x, a) may lead to the same p, i.e., the

function to compute p from (x, a) is not injective. The sequence generated by the FCSR

is the 2-adic expansion of p/q, i.e., the output sequence depends only on p and q [70]. In

other words, let pt be the state at time t, with initial state p0 = p. Then the Galois FCSR

6.2 Theoretical Background 67

div 2 mod 2
b

∑

d0 d1 . . . dn−1

yn−1 yn−2 . . . y0

Figure 6.2: FCSR with Fibonacci architecture.

produces 2pt+1 = pt mod q, or

pt = 2−tp mod q . (6.1)

The output bit at time t is then zt = pt mod 2. It is 0 ≤ p ≤ |q|, hence the output

sequence is periodic (see Th. 3). According to Eq. 6.1, the period of the output sequence

is the order of 2 modulo q. The maximum value of the period is |q| − 1 and can only be

reached if |q| is a prime [5]. In the case of a maximum-length FCSR, the transition graph

representing the evolution of the states (x, a) consists of a main cycle of length |q| − 1

with small paths converging to it. It is known [8] that any state (x, a) converges to the

main cycle (i.e. it synchronizes) after at most n+4 iterations. Furthermore, a single cycle

of the output consists of two half periods (which are binary complements of each other).

6.2.3 Fibonacci FCSR’s

Description. A Fibonacci FCSR consists of a main register y = (y0, . . . , yn−1) of n bits,

with some fixed binary feedback taps d = (d0, . . . , dn−1) and an additional memory reg-

ister b of l bits. Starting from an initial configuration (y, b), y0 is output, the sum

σ = b +
∑n−1

i=0 yidn−i−1 is computed, and the registers are updated according to y ←
(y1, . . . , yn−1, σ mod 2) and b ← σ div 2, see Fig. 6.2. If the Fibonacci FCSR is in a

periodic state, then the value of the memory b is in the range 0 ≤ b < wt(d), where wt(d)

denotes the Hamming weight of d, see [70].

Evolution of the States. The connection integer is again defined by q = 1 − 2d, and the

state is represented by the integer p. Then, the output sequence of the Fibonacci FCSR is

again the 2-adic expansion of p/q. However, p does not correspond to y + 2b here, but to

p = b2n −
n−1
∑

k=0

k
∑

j=0

dj−1yk−j2
k (6.2)

where d−1 = −1, see [70]. If memory bits of a Galois FCSR are only present on those

positions with feedback (i.e., for Galois FCSR’s represented by a connection integer q),

then the Galois FCSR can be mapped to a Fibonacci FCSR (and vice versa) with the same

connection integer q = 1−2d such that both produce the same output. Note that a Galois

68 6. Analysis of F-FCSR

FCSR can be implemented more efficiently than a Fibonacci FCSR since the additions may

be carried out in parallel.

6.3 Sequences Produced by a Single Galois Register Cell

In a Galois FCSR, the values xi in the main register are modified in each cycle, and not

only shifted. Assume an initial state (x, a) and a connection integer q = 1 − 2d. Then,

according to Th. 4 in [5], there exists some pi such that the sequence xt
i of values produced

by a fixed register cell i in a Galois FCSR corresponds to the 2-adic expansion of pi/q.

From [7], we know that pi = Fi(x, a) · q + Mi · p with Fi(x, a) =
∑n−1

j=i (xj + 2aj)2
j−i and

with constants Mi = 2
∑n−1

j=i dj2
j−i. The following proposition is a simple consequence of

this for periodic states:

Proposition 7. Consider a maximum-length Galois FCSR with initial state (x, a) and

output sequence pt mod 2, where p0 = x + 2a. If (x, a) is a periodic state, the sequence

xt
i of a fixed register cell i corresponds to pt+si mod 2 with a phase shift si = − log2(Mi)

mod q and Mi = 2
∑n−1

j=i dj2
j−i.

Proof. If (x, a) is periodic, the 2-adic expansions of pi/q have to be strictly periodic

for all i. Th. 3 implies that 0 ≤ pi < |q|, hence pi = pi mod q = Mi · p mod q. In a

maximum-length Galois FCSR, each possible value of pi mod q is passed after a number

of si iterations of p, hence pi = 2−sip mod q, and we can set Mi = 2−si mod q. �

Note that the phase shifts si are independent of the initial state p and depend on i (and

q) only. Here is an example:

Example 18. Consider the toy example of [5] with q = −347, hence n = 8 and d = 174.

The output of the FCSR is strictly periodic with period −q − 1 = 346. We find M0 = 1,

M1 = 174, M2 = 86, M3 = 42, M4 = 20, M5 = 10, M6 = 4, M7 = 2. The phase shifts are

s0 = 0, s1 = 1, s2 = 23, s3 = 250, s4 = 67, s5 = 68, s6 = 344, s7 = 345. �

6.4 A Canonical Representative

Note that more than one state (x, a) may be mapped to p ∈ Z|q|+1 . We define an

equivalence relation ∼ on the set of FCSR-states in Galois representation by

(x, a) ∼ (x′, a′)⇔ x + 2a ≡ x′ + 2a′ mod q .

With the following proposition, we can define a canonical representative for the equiva-

lence classes [p].

Proposition 8. For a state (x, a) with p = x + 2a of a maximum-length Galois FCSR

with connection integer q, the only strictly periodic state in the equivalence class [p] is the

state (x′, a′) with x′
i = Mi · p mod q mod 2 and a′ = (p− x′)/2.

6.5 Analysis of F-FCSR in Fibonacci Representation 69

Proof. Let p = x + 2a. We have x′ + 2a′ = x′ + 2p−x′

2
= x′ + p − x′ = p, hence

(x′, a′) ∼ (x, a). In the case p = 0, we have (x, a) = (0, 0) = (x′, a′), and (xt, at) = (0, 0)

for all t, so (x′, a′) is periodic. Similarly for p = |q|, the only possible state (x, a) is

(2n − 1, d − 2n−1), and this state is periodic [5]. If p 6= 0, the state transition graph

representing the evolution of the states (xt, at) consists of a main cycle of length |q| − 1

and paths converging to it. Hence, for each state (x, a) there exists exactly one equivalent

state (x̃, ã) that lies on the main cycle. For this state (x̃, ã), the sequences x̃t
i have to be

strictly periodic. Due to Prop. 7, the first bit of the 2-adic expansion of p̃i/q and hence

x′
i is equal to p̃i mod 2 with pi = Mi · p mod q. Moreover, ã is uniquely determined by

x̃ and p, which implies (x̃, ã) = (x′, a′). �

This suggests to define the state (x′, a′) as the canonical representative for the equivalence

class [x′ + 2a′]. Here is an example:

Example 19. Let q = −347, hence n = 8 and d = 174. For p = 100, we find the canonical

representative (x′, a′) = (80, 10) which is a strictly periodic state. �

6.5 Analysis of F-FCSR in Fibonacci Representation

We recall the specification of two instances of the F-FCSR family of stream ciphers and

present our analysis in Fibonacci representation.

6.5.1 Filtered FCSR’s

In [6], the stream cipher F-FCSR-H with security level 80 bits was presented. It consists

of a Galois FCSR of size n = 160 and with a memory of size l = 82. There are k = 8

fixed linear filter functions (applied on the intermediate state bits of the Galois FCSR)

to produce 8 keystream bits in each iteration. A similar stream cipher F-FCSR-16 with

security level 128 bits was presented, with n = 256, l = 130 and k = 16. According

to [5, 7], we can expect the FCSR to be in a periodic state after the key/IV setup has

completed. Our observations imply that both versions of F-FCSR can be equivalently

described based on a Fibonacci FCSR instead of a Galois FCSR, but with a transformed

filter. This transformation can be done in different ways, which gives different scenarios

of potential attacks.

6.5.2 Transformation with Nonlinear Filter

If the initialization p of the Galois FCSR of F-FCSR is known, it can be mapped to

an initial state of a Fibonacci FCSR such that both versions produce the same output.

The advantage of the Fibonacci representation (from a cryptanalytic point of view) is

that only one bit of the main state is modified per iteration, and 8 bits are sent to the

keystream. However, this also requires a transformation of the linear filter to obtain the

correct keystream: the linear filter of F-FCSR operates on the intermediate states of the

70 6. Analysis of F-FCSR

Galois FCSR. In order to compute the input of the filter function, we need to compute

the values of certain Galois main register cells in each clock cycle:

Proposition 9. The value xi of the i-th cell in the main register of the Galois FCSR can

be computed from the (strictly) periodic state (y, b) of the corresponding Fibonacci FCSR

by

xi = Mi

(

b2n −
n−1
∑

k=0

k
∑

j=0

dj−1yk−j2
k

)

mod q mod 2 . (6.3)

Proof. We first use Eq. 6.2 to compute the value of p that corresponds to the Fibonacci

state (y, b) and then apply Prop. 8 to compute pi. �

Every keystream bit is a linear combination of several bits given by Eq. 6.3. This results

in a nonlinear system of equations in the unknowns (y, b).

6.5.3 Transformation with Linear Filter

Given some periodic initialization (x, a) of a maximum-length Galois FCSR, the sequence

of a cell i corresponds to the output with a phase shift si, see Prop. 7. Consequently, the

F-FCSR keystream can be produced by a linear filter applied on the FCSR output, where

the required size of the FCSR output depends on the values of the involved si. The FCSR

output can be produced with a Fibonacci FCSR (initialized by the state corresponding

to p). Alternatively, one could think of an FCSR-combiner with linear filter, where the

number of identical FCSR’s corresponds to the number of filter taps, and where the initial

states are not independent, but related according to Prop. 7.

6.5.4 Potential Attack with Linearization

We describe a trivial attack on a Fibonacci FCSR with n = 160, l = 82 and with k = 8

linear filters. Initially, there are 160 binary variables (ignoring the memory), and each

updated bit is represented by a new variable (ignoring the details of the construction and

assuming independence). Each iteration gives another 8 linear equations in these (initial

and newly introduced) state variables. The main state can be recovered by solving the

system of linear equations, if the number of equations is at least as large as the number of

variables. This requires r iterations, where 8r ≥ 160 + r. Consequently, r = 23 iterations

are sufficient, or 184 bits of keystream. Gaussian elimination of this system requires a

computational complexity of about 1843, which is 223. After recovering the main state, one

can recover the memory state. If the FCSR is in a periodic state (which can be expected

already after the initialization phase), then the effective size of the memory state reduces

to 7 bits. Consequently, the memory can be guessed, or recovered by FCSR-synthesis,

and the whole state can be recovered in about 230 steps and with less than 200 bits of

keystream. A similar attack is possible for any other construction of this type with k > 1.

However, the stream cipher F-FCSR with Fibonacci representation and with linear

filters has initially a number of variables which corresponds to the maximum of involved

6.6 Summary 71

si. In Tab 6.1, we observe that the phase shifts si for the first filter of F-FCSR-H are

distributed over a significant part of the period of the FCSR output sequence. Depending

on the linear filters, the extracted bits to produce one keystream bit may involve the

whole cycle of the FCSR output. On the other hand, the FCSR-combination generator

requires many new variables. Consequently, we expect that the above scenario does not

constitute a practical threat to neither of the two F-FCSR instances.

Table 6.1: List of phase shifts for the first filter of F-FCSR-H.

i si

8 0x084D55C1E9BF6DABABE0BDA75592EE7F4C4DE6BA9

24 0x0F21C59484E27CB4F6D6D72A0F8141F0E2B4734C7

40 0x0C5FA773C15C6E3BE3E651BC3BB22FE735750A436

56 0x0F65F15C09715290BDB70A07C2520E6CB0A081382

80 0x0A778DF1C1F0E55E6B7B6EE796363498223BA75AC

96 0x1171C8C7A5E76A27EAB1E7C54D700A01112A5CE8A

104 0x060AA060A404D38A7307AFA25D3B9ED593CD05F15

112 0x061AD53ACAC8385A916026572D0FE291A53C93D3E

128 0x0FE422A9803989E98E16DB607440C1F40AF8BD82B

136 0x10076D047EA8E3B35E0C9C71B6CDAB88BEE0E6321

6.6 Summary

In this chapter we have given a simplified description of the sequences produced by a

single cell of a Galois FCSR given the register’s initial state is periodic. Additionally

we have shown how to compute for a given state of a maximum length FCSR the unique

equivalent periodic state. Based on these observations and the well-known correspondence

between Fibonacci and Galois representations of FCSR’s, we have proposed several new

attack strategies. Currently, our analysis does not lead to an efficient attack, but may be

useful as a starting point for further cryptanalytic research.

72 6. Analysis of F-FCSR

Chapter 7

Attacks on T-functions

In the previous chapter, we have seen that FCSR’s may be suitable building blocks to

replace linear driving devices in stream ciphers. Another suggestion is to use nonlinear T-

functions. In this chapter, we analyze a class of stream ciphers based on T-functions. We

use statistical and linear methods to mount very efficient distinguishing and key recovery

attacks, and we observe a non-randomness of the initialization function of one eSTREAM

proposal.

7.1 Introduction

In this chapter, we analyze several proposals of stream ciphers based on T-functions and

exhibit substantial weaknesses in some of these constructions. The flaws are extended to

dedicated attacks. First we analyze the statistical properties of the pure square mapping,

which allows us to find an efficient distinguisher (with an expected 232 data complexity)

on TF-0 as well as on a previously unbroken multi-word mapping described in [87] and

labeled here as TF-0M, both based on the squaring operation. TF-0M operates on a

256-bit state and the output sequence consists of the 32 most significant bits. Then, we

cryptanalyze the TSC-family of stream ciphers [76], which operates on a 128-bit state and

outputs 32 bits of the state using a filtering function. We find a very efficient distinguisher

for TSC-1 with an expected 225 data complexity, which can be used for key recovery; for

TSC-2, we describe a different distinguishing attack with an expected 234 data complexity.

To confirm our theoretical results, the attacks have been implemented and run many times

with success. Our attacks have a negligible error probability and a remarkably small time

complexity. For eSTREAM Phase 2 candidate TSC-4, we identify a non-randomness in

the initial state over the full eight-round initialization phase.

7.2 Cryptanalysis of Square Mappings

Klimov and Shamir have proposed different types of T-functions based on the squaring

operation [85, 87]. After introducing the framework of this section, we focus on the pure

square mapping and derive a hypothesis about their probability distribution. This dis-

73

74 7. Attacks on T-functions

tribution is used in order to distinguish the proposed mappings TF-0 and TF-0M with

significant advantage.

Let us consider a scheme which consists of an update function L and an output func-

tion f . Let us further define the random variables X and X ′ over the set X = {0, 1}n,
with uniformly distributed X and with X ′ = L(X). Equivalently, Z and Z ′ are random

variables over Z = {0, 1}m with uniformly distributed Z and with Z ′ = f(L(X)). Given

the distributions D1, D0 (corresponding to the distributions of Z, Z ′) and some uniform

random or pseudo-random output respectively, we can perform a statistical test in order

to assign the output to a distribution. According to Sect. 2.8, let ∆(D0) be the imbal-

ance of the distribution D0. We are interested in the data complexity N = d/∆(D0) of

the (optimal) distinguisher, corresponding to some designated overall error probability

pe = Φ(−
√

d/2). For small1 word sizes n, the distribution D0 can be determined by an

exhaustive computation of f(L(x)) for all 2n elements x, resulting in a precomputation

time complexity of 2n and a memory complexity (measured with the number of required

memory cells) of 2m. We assume that the test is performed online, hence we do not need

additional memory in order to store the data. The online time complexity is identical to

the data complexity. However, a precomputation of D0 might be infeasible for large values

of n (e.g. n = 64 bit). We perform some detailed analysis of D0 for small word sizes n and

establish an analytical hypothesis for the approximated distribution of Z ′, considering

only the most biased elements. This significantly reduces the offline time and memory

complexity, but might increase the online time and data complexity of the distinguisher,

given some pe. For small word sizes n, the hypothesis can be verified with the accurate

distributions, and for large n, the quality of the hypothesis will be directly examined by

the experimental data complexity of the distinguisher.

7.2.1 Distribution of the Pure Square Mapping

Let us define the pure square mapping (PSM) by L(x) = x2 mod 2n and f(x) = x ≫
(n−m), which are the m most significant bits of word x. Iteration produces some fixed

points such as 0 or 1, hence L can not be considered as an update function for a real

application. However, we will be able to reduce more complex single-cycle mappings

to some modified square mappings and apply the results obtained in this section; in

other words, we will consider the pure square mapping as an ideal case, resulting in

distinguishers with minimal data complexity compared to modified square mappings.

We first mention that Klimov and Shamir [85] found an analytical expression for

probabilities of single bits of the square mapping. Applying the notation X ′ = L(X) for

an uniformly distributed X, they found that Pr([X ′]0 = 0) = 1
2
, Pr([X ′]1 = 0) = 1 and

Pr([X ′]i = 0) = 1
2
(1 + 2−

i
2) for i > 1. However, as we will have to deal with an additional

carry bit later on (which would reduce this bias significantly), we are more interested in the

distribution of words. We explain how to derive highly biased probability distributions for

X ′ = L(X) and Z ′ = f(L(X)). As shown in the next proposition, L is not a permutation,

1The term small is used with respect to current computational possibilities, i.e. n . 40 bit for personal
computers nowadays.

7.2 Cryptanalysis of Square Mappings 75

resulting in an unbalanced distribution of X ′ (there are some predictable elements L(x)

with exceptionally large bias).

Proposition 10. Consider the function L : {0, 1}n → {0, 1}n with L(x) = x2 mod 2n.

For successive elements x ∈ {0, . . . , 2n− 1}, the images L(x) have a cyclic structure with

cycle length 2n−2. Hence L is neither injective nor surjective.

Proof. As x2 − (2n−1 + x)
2

= 0 mod 2n, we have two cycles of length 2n−1, and as

(2n−2 + x)
2− (2n−2 − x)

2
= 0 mod 2n, both cycles have two mirrored sequences of length

2n−2. Hence the output of successive numbers x has the shape abc . . . cbaabc . . . cba. �

Due to the specified output function in PSM, the bias is transferred to the distribution

of Z ′. For a truly random scheme, any element of the output occurs with probability

p0 = 2−m. For the particular scheme PSM with m = n/2, we observed (for small word

sizes n) that there exist 4 outcomes with biased probability 2 · p0, 12 outcomes with

biased probability 1.5 · p0 and so on. This property appears to be independent of n, and

we therefore can establish a hypothesis for the most biased elements (which are explicitly

known). Let Zi be the aggregate containing elements of constant biased probability pi.

The parameter si denotes the cardinality of Zi, and ni denotes the minimal word size for

a stable occurrence of pi. The parameters ni, si and pi are summarized in Tab. 7.1. Then

we have for i = 0, . . . , k (limited by the condition n ≥ nk)

Z0 = {2(n−n0)/2 · j2; j = 0, . . . , s0}
Zi = {2(n−ni)/2 · (1 + 8j); j = 0, . . . , si}
Z∞ = Z −∑Zi .

(7.1)

The values in Tab. 7.1 are determined with empirical methods, however ni and si are

exact at least for word sizes within our computational possibilities. In the case of PSM,

pi is exact for i = 0, 1, but fluctuating for i > 1 so we have to take an average value.

A further approximation is done with the remaining elements in Z∞, which are assigned

to a constant (standardized) probability. The number of aggregates k determines the

accuracy of the approximation. However, k is constrained by the condition n < nk, and

as the values of pi are only accurate for ni up to about 40, we usually choose k = 8 for

n > 40 bit. This corresponds to a memory complexity of 217. Regarding the complexities

of a distinguisher, increasing the number of aggregates k is coupled with more time, more

memory and less data.

Table 7.1: Parameters of the approximated distribution for the first 9 aggregates.

i 0 1 2 3 4 5 6 7 8
pi2

m 2.000 1.500 1.200 1.100 1.050 1.030 1.002 1.005 1.003
ni2

−2 2 3 4 5 6 7 8 9 10
log2(si) 2 3 5 7 9 11 13 15 17

76 7. Attacks on T-functions

7.2.2 Attacking the Single-Word Mapping TF-0

Let us now consider the running single-word proposal TF-0 with the update function

L(x) = x + (x2 ∨ C) mod 2n where C = 5, 7 mod 8, and with the output function

f(x) = x≫ (n−m) as described in [85,88]. As the low-order bits are known to be weak,

the authors of the scheme proposed m = 1, 8, 16, 32 for the standard word size n = 64 bit.

Klimov and Shamir showed that L is an invertible T-function over an n-bit state x with

a single cycle of length 2n. The number of extracted bits m controls a tradeoff between

security and efficiency of the scheme. We give some relationship to PSM with the next

proposition.

Proposition 11. Consider the scheme TF-0. If one requires C < 2n−m, it is f(L(x)) −
f(x) = f(x2) + α mod 2m for n−m > 2 and for a carry bit α ∈ {0, 1}.
Proof. As L(x) = y = x + (x2 ∨ C) mod 2n, we conclude y − x = x2 ∨ C mod 2n for

C < 2n−m. Hence, f(y − x) = f(x2 ∨ C) mod 2m and f(y − x) = f(x2) mod 2m for

C < 2n−m. We finally have f(y)− f(x)−α = f(x2) mod 2m for C < 2n−m and for some

carry bit α ∈ {0, 1}. �

Prop. 11 states that the difference of two consecutive outputs of TF-0 differs only by

an additive carry bit α ∈ {0, 1} from the output of PSM. Therefore, we may accurately

approximate the distribution of the random variable f(L(X))− f(X) by the distribution

of PSM (i.e. we neglect the influence of the carry bit). We choose the standard parameters

C = 5, n = 64 and m = n/2 and use 9 aggregates for the distribution D0. This gives

an imbalance of ∆(D0) = 2−28, and for pe = 0.05 the estimated data complexity of the

distinguisher is 232. This could be verified with experiments, and is somewhat larger

than the lower limit derived by extrapolation for the accurate probability distribution. If

the scheme is used as a pseudo-random number generator in large computer simulations,

the output may not be considered as random after 232 iterations, although we have a

single-cycle of 264 states. This observation is consistent with the practice nowadays, not

to use more data than
√

P of a pseudo-random number generator (PRNG) with period P .

However, we also examined modified output functions with a smaller number of extracted

bits m. Experiments show that (independently of the word size n), decreasing m by one

bit increases the data complexity by a factor of 2. We conclude that, in contradiction to

previous assumptions, not only the lower bits of this T-function are weak, but also the

higher bits. This is an intrinsic property of the scheme, which will have consequences for

other square mappings and may have consequences for more complicated output functions.

We mention that state-recovery attacks on TF-0 have been described in [14,86]. More-

over, Mitra and Sarkar [99] described a time-memory tradeoff for the squaring problem,

which may be applied to consecutive output differences of TF-0. The most efficient algo-

rithms have a complexity of about 216.

7.2.3 Attacking the Multi-Word Mapping TF-0M

Several multi-word update functions proposed in [87] have been attacked with a time-

memory tradeoff by Mitra and Sarkar [99]. We now present a distinguishing attack against

7.3 Cryptanalysis of TSC-1 77

a multi-word proposal which has not been broken yet, and which we will refer as TF-0M.

The update function L corresponds to Eq. 12 in [87], it is an invertible T-function over a

4n-bit state x = (x0, x1, x2, x3) with a single cycle of length 24n:

L :











x0

x1

x2

x3











7→











x0 + (s2
0 ∨ C0)

x1 + (s2
1 ∨ C1) + κ0

x2 + (s2
2 ∨ C2) + κ1

x3 + (s2
3 ∨ C3) + κ2











. (7.2)

It is s0 = x0, s1 = s0 ⊕ x1, s2 = s1 + x2, s3 = s2 ⊕ x3. The constants are satisfying

[Ci]0 = 1 for i ∈ {0, 1, 2, 3}, and [C3]2 = 1. All operations are carried out on n bit

words and κi denotes the carry bit of xi. The output function is f(x) = x3 ≫ (n −m)

with m = n/2. We choose the standard word size n = 64 bit. We observe that the multi-

word update function of Eq. 7.2 consists of 4 approximatively independent and identically

distributed random variables similar to the single-word update function of TF-0. We may

concentrate only on the most significant variable x3. The argument to be squared s3 can

be approximated as uniformly distributed, and therefore produces the same output as x2.

The carry bit modifies the output with a probability of 2−33; this infrequent event will not

have a significant influence to the distinguisher. Therefore, we do not have to modify the

approximate distribution used for the distinguisher. Theoretical data complexity remains

the same, and simulations result in an experimental data complexity of 232 for a 256 bit

state with 224 unknown bits. We have performed 20 experiments, observing no incorrect

decision of our distinguisher. The data complexity is very close to the complexity for

TF-0, confirming our assumption on the influence of κ and s. We emphasize the practical

applicability of this result and the small number of required data, compared to the large

number of unknown bits. As before, we also considered to extract less bits m < n/2.

Again, we found that decreasing m by one bit increases the data complexity by a factor

of 2. Hence reduction of m may still not prevent practical attacks.

7.3 Cryptanalysis of TSC-1

We start this section with a description of the recent proposal of stream cipher TSC-1 [76].

We find a very efficient distinguishing attack on TSC-1, which can be transformed in a

state-recovery attack.

7.3.1 Description of the Scheme

The stream cipher TSC-1 consists of a state vector of 128 bits x = (x0, x1, x2, x3), an

update T-function L and an output function f . Bit-slice i of the state is defined by

[x]i = ([x0]i, [x1]i, [x2]i, [x3]i). The update function consists of an odd 32-bit parameter

α(x) and a single-cycle S-box S, mapping a 4 bit input to a 4 bit output. If [α]i = 0,

then the mapping Se is applied on bit-slice i of the state, otherwise the mapping So is

applied. e (resp. o) is an even (resp. odd) number. This procedure is repeated for all 32

78 7. Attacks on T-functions

bit-slices in a single update period. With the satisfaction of these properties, L is a single-

cycle T-function, hence the period of the cipher is 2128. The odd parameter is defined by

α = (p+C)⊕p⊕2s with a constant C, p = x0∧x1∧x2∧x3 and s = x0+x1+x2+x3. Except

for the lower few bits, each output bit of α is equal to 1 almost half of the time. Due to

the properties of an odd parameter, one has [α]0 = 1, meaning that the least significant

bit-slice is always mapped by So. Consequently, the bits from the least significant bit-slice

of the state will be referred as irregular bits. In TSC-1, the powers of the S-box are e = 2

and o = 1, the constant used in the odd parameter is C = 0x12488421, the S-box (in

standard notation) is defined by S = (3,5,9,13,1,6,11,15,4,0,8,14,10,7,2,12) and the output

function is

f(x) = (((x0 ≪ 9) + x1) ≪ 15) + ((x2 ≪ 7) + x3) .

The output functions have a period of 2128, however, three state variables in the output

equation determine the remaining variable, hence the maximum security of the ciphers is

96 bit. Furthermore, there are some time-memory tradeoffs on TSC with large precom-

putation time complexities.

7.3.2 Description of the Attack

In this section, we present a linearization attack on TSC-1. Probabilistic linear relations

in the update function (i.e. relations between state bits at different time instants) and in

the output function (i.e. relations between state bits and output bits) are combined, in

order to obtain relations between output bits at different time instants. Provided that

the relations are biased, the output of TSC-1 can be distinguished from a random stream.

Let us first discuss a linear approximation of the T-function. We focus on a single bit

[xt
j]i and analyze the statistical effect of ∆ iterations to this bit. Let Y∆ be the indicator

variable of the event [xt
j]i = [xt+∆

j]i, implying that a fixed bit is repeated after ∆ iterations.

After ∆ iterations, bit-slice i (including the bit under observation) is mapped δ times by

S, with ∆ ≤ δ ≤ 2∆ (the mapping S is applied 2∆ − δ times, and the mapping S2 is

applied δ − ∆ times). Hence, in order to compute Pr(Y∆ = 1), we have to analyze the

distribution of δ and the bit-flip probabilities of the mappings Sδ. Let us denote b∆(δ) the

probability that after ∆ iterations, the S-box is applied δ times. For regular bit-slices, we

reasonably assume equal probabilities for the application of S and S2 (which is, however,

a simplification for some lower bit-slices), and binomial distribution for b∆,

b∆(δ) =

(

∆

δ −∆

)

·
(

1

2

)∆

. (7.3)

For the irregular bit-slice, it is b∆(δ) = 1 for δ = ∆, and zero otherwise. In order to

describe the effect of the mappings Sδ, let us analyze the S-box. We will denote w an

uniform random number 0 ≤ w ≤ 15, and i an index 0 ≤ i ≤ 31. Let also Xδ be the

indicator variable of the event [w]i = [Sδ(w)]i for any fixed bit position i. The S-box

is designed such that the bit-flip probability for an application of S and S2 is balanced.

However, there is a huge bias of the bit-flip probability for some multiple applications of

7.3 Cryptanalysis of TSC-1 79

S, namely for Pr(Xδ = 1) with δ = 0 mod 4 (this observation is of course portable to

the mapping S2). We find Pr(X4 = 1) = Pr(X12 = 1) = 1/8, Pr(X8 = 1) = 3/4 and of

course Pr(X16 = 1) = 1. These results are independent of bit-position i, other values of

δ result in balanced probabilities. Finally, the bit-flip probability P (Y∆) of a single bit in

the state for ∆ iterations simply becomes the weighted sum

Pr(Y∆ = 1) =
2∆
∑

δ=∆

Pr(Xδ = 1) · b∆(δ) . (7.4)

We find a maximal bias for ∆ = 3 with Pr(Y3 = 1) = 0.3594, and still a large bias for many

other values of ∆. The predicted probabilities are in good agreements with experiments.

In the case of irregular bits, Eq. 7.4 simply becomes Pr(Y∆ = 1) = Pr(X∆ = 1) with a

large bias for ∆ = 0 mod 4. In the fictive case of a perfect single-cycle S-box (which,

however, does not exist) with Pr(Xδ = 1) = 1/2 for δ 6= 16 and Pr(X16 = 1) = 1, Eq. 7.4

becomes Pr(Y∆ = 1) = (b∆(16) + 1)/2 for regular bits. A maximal bias is obtained for

∆ = 11, resulting in Pr(Y11 = 1) = 0.6128.

Let us combine Eq. 7.4 with a simple linear approximation of the output function.

The bias of Y∆ strikes through the output function, such that the loops in the state are

also present in the output. We consider a single bit [zt]i of the output and analyze the

statistical effect of ∆ iterations to this bit. Let Z∆ be the indicator variable of the event

[zt]i = [zt+∆]i, implying that a fixed bit of the output is repeated after ∆ iterations.

We approximate the output function by [z]i = [x0]i+8 ⊕ [x1]i+17 ⊕ [x2]i+25 ⊕ [x3]i ⊕ c, for

i = 0, . . . , 31 (additions of indices are performed modulo 32) and a carry bit c ∈ {0, 1}. For

bit-positions i = 0, 7, 15, 24, one irregular bit is involved in the linear approximation of [z]i;

consequently, these output bits are called irregular. Neglecting the carry bit and availing

the fact that the output bits are composed of independent state bits, the probability

Pr(Z∆ = 1) is approximated using Matsui’s Piling-up Lemma [94]. For regular output

bits, we obtain

Pr(Z∆ = 1) =
1

2
+ 23 ·

(

Pr(Y∆ = 1)− 1

2

)4

. (7.5)

Notice that ε = Pr(Y∆ = 1) − 1
2

is the probability bias. In the case of irregular output

bits, one of the four factors ε in Eq. 7.5 is substituted by ε′ = Pr(X∆ = 1) − 1
2
. Let

us consider the case of ∆ = 3; it is Pr(Z3 = 1) = 0.5031 for regular output bits (and

a balanced probability for irregular output bits). However, as we neglected the carry

bit in this simple model, the above probability is considered as an upper limit. Notice

that the carry is also biased and inclines towards absorbing itself. Experiments show

that indeed, most of the regular output bits are biased for ∆ = 3. We emphasize that

higher bits are affected equivalently to lower bits. Due to the integer addition, the exact

bias depends on the bit-position. We find the maximum bias for bit-position i = 1 with

Pr = 0.5003. A similar result is obtained for ∆ = 8 and i = 0. This biased probability

distribution D0 is accessible to a cryptanalyst with known plaintext and may be used to

distinguish the outcome of the cipher from a uniform random outcome. The imbalance

80 7. Attacks on T-functions

of the distribution is ∆(D0) = 2−21, and for pe = 0.05 the estimated data and online

time complexity of the distinguisher is 225 (4 MB of keystream); offline time complexity

is negligible. We performed a number of experiments (taking all biased bits into account)

and verified the predicted complexity. As described above, a variant of this attack even

works without taking into account any specific property of the single-cycle S-box.

7.3.3 A State-Recovery Attack

The bias of Z∆ can be transformed in a state-recovery attack by guess-and-determine. In

a first step, we guess the least-significant bit-slice [xt]0, which may be iterated separately.

The four corresponding bits are subtracted independently from appropriate output bits

in order to construct a modified index variable. Considering Eq. 7.5, we expect the bias

to significantly increase for a right guess, and we expect a balanced output for a false

guess. After recovering [xt]0, we may continue with consecutive bit-slices. Considering

all available equations, experiments showed that a single bit-slice may be accepted or

rejected (with a reasonable probability of error) using 225 iterations. Repeating this for

all 24 values of a single bit-slice, and for all 25 bit-slices, we obtain an overall complexity

of about 234. A similar result has also been obtained by Peyrin and Muller [101].

7.4 Cryptanalysis of TSC-2

In this section, we describe the proposal TSC-2 and find an efficient distinguishing attack.

7.4.1 Description of the Scheme

The stream cipher TSC-2 [76] is defined as TSC-1, with the following differences: In TSC-2,

one has e = 0 (hence, the identical mapping is used), o = 1 and C = 0x00000001. The

S-box is defined by S = (5,2,11,12,13,4,3,14,15,8,1,6,7,10,9,0) and the output function is

f(x) = (((x0 ≪ 11) + x1) ≪ 14) + (((x0 ≪ 13) + x2) ≪ 22) + ((x0 ≪ 12) + x3) .

7.4.2 Description of the Attack

The 32 bits of α determine the update of the 128 bits of the state. Hence we may wait

for appropriate values of α in order to initiate some attacks. In TSC-2, an interesting

case is the minimal-weight parameter α = 1, for which only the least significant bit-

slice is modified and two similar successive outputs may be detected. The detector is an

algorithm which takes as input the keystream z and gives out 1 if α = 1, and 0 otherwise.

The detector can make two types of errors: it can either output 1 when α 6= 1 (false

alarm) or 0 when α = 1 (non-detection). The error probabilities are denoted by pα and

pβ, respectively.

7.4 Cryptanalysis of TSC-2 81

The complete set of states U resulting in α(xt) = 1 is given with the conditions
∑3

i=0 xt
i ∈ {0x00000000, 0x80000000} and [xt]0 ∈ {0x0, 0x3, 0x5, 0x6, 0x9, 0xA, 0xC},

where [xt]i denotes bit-slice i of the state matrix. In the following, let us assume that

such a state occurs at time t = 0. Hence we have α0 = 1, and only the least significant

bit-slice of the state is changed by the mapping L : x0 → x1; consequently, we suppose

that the subsequent outputs z0 and z1 have low distance. Let us analyze the exemplary

integer modular difference z0 − z1 for x ∈ U with [x0]0 = 0x5; we find that [x1]0 = 0x4

and [x0]i = [x1]i for i 6= 0. The output function produces z0 = z1 + (1 ≪ 25) + (1 ≪

3) + (1 ≪ 12) and hence z0 − z1 = 0x02001008. In fact, we find that z0 − z1 = const

for any x ∈ U , where the constant const depends only on the least-significant bit-slice

[x0]0 in most of the cases, see Tab. 7.2. For less than 1% of the states in U , the integer

modular difference is not constant because an addition in the output function may cause

a carry bit, which propagates from the msb to the lsb due to the cyclic shift.

Table 7.2: List of output differences for α = 1, some of which will be applied in the attack.

[x0]0 [x1]0 z0 − z1

0x0 0x5 0xFDBFEFF8

0x3 0xC 0x01C05007

0x5 0x4 0x02001008

0x6 0x3 0xFE3FEFF8

0x9 0x8 0x02001008

0xA 0x1 0xFE002FF9

0xC 0x7 0xFDFFAFF9

Detection of single constants only would result in a huge amount of false alarms. However,

examining Tab. 7.2, we find a path for the iteration of [x0]0 with 0x6 → 0x3 → 0xC

which is closed in U , meaning that α0 = α1 = α2 = 1. Therefore, we may restrict the

detector to detect only a subset of states V ⊂ U , where V is defined by the conditions
∑3

i=0 xt
i ∈ {0x00000000, 0x80000000} and [xt]0 ∈ {0x6, 0x3}. The detector takes three

successive outputs, computes two differences of consecutive outputs and compares them

with the fixed values; if there is a match of both, the detector returns 1, and 0 otherwise.

The probability of x ∈ V is 2−33, and a false detection due to random outputs2 occurs

with probability 2−64. As the differences are constant almost all the time, the error pβ

(which would increase the running time of the detector) is negligible, too. The time and

data complexity is around 233 (no precomputation and negligible memory).

The detector can be transformed in a distinguisher by feeding the detector with a

fixed amount of data N . If the detector always returns 0, then the distinguisher returns 0

(random stream); if the detector returns 1 at least once, then the distinguisher returns 1

(keystream produced by TSC-2). The probability of false positives can be neglected, and

the probability of false negatives is pβ = (1 − 2−33)n. For pβ = 0.05, we obtain a data

complexity of about N = 234. With a successful detection of α(xt) = 1, we obtain the

2In order to increase the set V , we do not make use of the connection of the whole path.

82 7. Attacks on T-functions

information
∑3

i=0 xt
i ∈ {0x00000000, 0x80000000}, as well as the value of bit-slice [xt]0

and the output equation f(xt) = zt. This information may be used for a state-recovery

attack with a complexity smaller than 296. However, TSC-2 appears to be seriously injured

with our efficient distinguishing attack, and we did not study the state-recovery attack in

more detail.

7.5 Non-randomness of TSC-4

The attack on TSC-1 exploits a bit-flip bias for multiple applications of the state update

function L. In [102], a similar attack was applied for eSTREAM Phase 2 candidate TSC-3.

For the tweaked version TSC-4, this bias still exists for regular updates, but the strong

filter function f prevents from an attack. In this section, we disregard the details of the

filter function and investigate the statistical properties of multiple warm-up updates of

TSC-4: While the regular updates have some guaranteed properties, the warm-up updates

use additional ad hoc operations that are designed to accelerate diffusion. Notice that our

analysis is embedded in a more general context: we actually consider the initialization

function F of TSC-4 and try to detect some non-random behavior in a set of outputs (i.e.

in the TSC-4 initial states) that are produced by a set of well-chosen inputs (i.e. in the

IV’s).

7.5.1 Description of the Scheme

The stream cipher TSC-4 is specified in [100]. It consists of two states x and y of 4× 32

bits each, denoted x = (x0, x1, x2, x3)
T and y = (y0, y1, y2, y3)

T . We first describe the

regular update function L, which updates the two states x and y independently by single-

cycle T-functions. In the case of state x, a 32-bit parameter αx is computed as a function

of x. It is defined by αx = p ⊕ (p + cx) ⊕ s with p = x0 ∧ x1 ∧ x2 ∧ x3 and s =

(x0 + x1 + x2 + x3)≪ 1 and constant cx = 0x51291089. If [αx]i = 1, then the fixed S-box

S = (9,2,11,15,3,0,14,4,10,13,12,5,6,8,7,1) is applied to bit-slice i of x, and if [αx]i = 0,

then the S-box S6 is applied to bit-slice i of x (for all i = 0, . . . , 31). The state y is

similarly updated where parameter αy has constant cy = 0x12910895. Notice that the

least significant bit-slice is always mapped by S. The output function f produces a

keystream byte z by combining some bytes of both states (using integer addition, XOR,

shift and rotation), see [100] for more details.

Let us consider the initialization function of TSC-4. To start, the internal state of

256 bits is loaded with the secret key K = (k0, . . . , k9) and the initialization vector

V = (v0, . . . , v9) each of 10× 8 bits (a single 32-bit word is denoted as a concatenation of

four 8-bit words).

x =











x0

x1

x2

x3











=











k3 k2 k1 k0

k7 k6 k5 k4

v3 v2 v1 v0

v7 v6 v5 v4











, y =











y0

y1

y2

y3











=











v1 v0 v9 v8

v5 v4 v3 v2

k1 k0 k9 k8

k5 k4 k3 k2











7.5 Non-randomness of TSC-4 83

Table 7.3: Average imbalance ∆(D0) in the statistical model for r = 6, . . . , 12 rounds,
and for different bit-slices.

r lsb in x lsb in y non-lsb in x non-lsb in y

6 2−3.1 2−3.9 2−9.7 2−11.8

8 2−6.0 2−8.2 2−13.8 2−17.1

10 2−8.9 2−13.0 2−18.2 2−22.6

12 2−11.4 2−15.9 2−23.4 2−28.1

A single round of the initialization function (denoted as a warm-up update) consists of a

regular update and some additional operations: A byte z = f(x) is produced, x1 and y0

are rotated to the left by eight positions, and then byte z is XORed to the 8 least significant

bits of x1 and y0. The specifications of TSC-4 propose r = 8 rounds.

7.5.2 Statistical Model of Initialization

We investigate the statistical properties of the initialization process. In our statistical

model, we assume that the parameter α (with exception of the lsb) and the feedback z

are uniformly randomly distributed. For a single bit-slice i (not the least significant one)

in the state x, our assumptions imply for each round:

1. Bit-slice i is mapped uniformly randomly by S or by S6.

2. After application of the S-box, bit 1 of bit-slice i is chosen uniformly randomly.

With a fixed input w ∈ {0, . . . , 15}, these two steps are repeated for r rounds, so we can

analyze the distribution of the output v ∈ {0, . . . , 15}. Within this model, the distribution

can be computed exactly in 22r steps. The other cases (i.e. the least-significant bit-slice

and the state y) are treated similarly. The imbalance is measured by ∆(D0), where D0 is

the distribution with probabilities Pr(v) for an output v (given some fixed parameters).

In Tab. 7.3, the imbalance is shown for different parameters. To simplify the presentation

we compute imbalance for all inputs w and show the average values only. As expected,

the average imbalance is decreasing with the number of rounds r. In the case of the least-

significant bit-slice in the state x, it is reduced by a factor of about 2.6 with each additional

round. Interestingly, the position of the random bit (see Step 2) has a notable influence

on the distribution and diffusion is better for state y. And, as expected, diffusion is better

for bit-slices which are not on the least-significant position (intuitively a combination of

S and S6 results in larger diffusion than using S only).

7.5.3 Experimental Results

Now we attempt to detect the bias of the previous subsection in the genuine initialization

function F (K, V) of TSC-4. We need N different inputs (K, V) where the value of a fixed

bit-slice i is the same for all inputs. Each bit-slice consists of two key bits and two IV

84 7. Attacks on T-functions

Table 7.4: Average χ2 statistic in the experiment for r = 8 rounds and a varying number
of samples.

All Keys
N average χ2 value % values > 80

210 40 3
212 119 67
214 421 100

bits. Consequently, bit-slice i is the same for all inputs, if the key is fixed (and unknown),

and if the IV bits of bit-slice i are fixed (though the other IV bits can be varied). The

N outputs can then be used to evaluate the distribution of bit-slice i. Provided that the

assumptions on the model of the previous section are valid, bit-slice i = 0 of the state x

is expected to have maximum bias. Here is an example for r = 8 rounds.

Example 20. Take N different inputs (K, V) where V = (v0, . . . , v9). The key is fixed,

IV bytes v0, v1 . . . , v7 are zero, and v8, v9 increments from 0 to N − 1. Compute N =

210 outputs after r = 8 rounds of F (K, V) and evaluate the imbalance ∆(D0) of the

distribution of the least-significant bit-slice in the initial state x. In 100 experiments using

random keys, we find an imbalance of ∆(D0) = 2−5.2. The results for the corresponding

χ2 statistics are listed Tab. 7.4. �

The measured bias is in good agreement with the model of Section 7.5.2, which predicts an

average imbalance of ∆(D0) = 2−6.0 in this setup3. Of course, the initial state cannot be

accessed by an attacker, so the χ2 test has perhaps a certificational character. However,

the setup of Ex. 20 does not require any key bit to be known, and the number of samples

N is very small. Consequently, this non-randomness may be a basis for future attacks that

includes analysis of the filter function f . The non-randomness is not limited to the least

significant bit-slice. A notable example is i = 8 (and with other parameters as in Ex. 20).

This is a consequence of the specific setup in Ex. 20 where bit-slices i = 8, 9 . . . of x after

the first round are the same for all N states and so the effective number of rounds is only

r−1 (in addition, the biased bit 1 of bit-slice 0 is rotated into bit-slice 8). The experiment

with i = 8 was carried out for a varying number of rounds, see Fig. 7.1. The imbalance

∆(D0) in terms of r can be approximated by an exponential decay and in one round it is

reduced by a factor of about 2.5. By extrapolation, we expect that about r = 35 rounds

would be necessary to obtain an imbalance of ∆(D0) = 2−40. In an extended experiment

one could also measure the effectiveness of the combined initialization function F and

update function Lt. For example, with r = 8, t = 50, we observed an average value of

∆(D0) = 2−14 when using the same setup as previously. However we did not observe a

bias in the keystream.

3Notice that two input bits of bit-slice i = 0 are always zero in the setup of Ex. 20. This has a small
influence on the modeled bias in Tab. 7.3.

7.6 Summary 85

bc

bc

bc

bc

bc

bc

bc

bc

bc
2-12

2-10

2-8

2-6

2-4

7 9 11 13
r

∆

Figure 7.1: The average imbalance ∆(D0) for r = 6, . . . , 14 rounds.

7.6 Summary

In this chapter, we examined some specific proposals of stream ciphers based on T-

functions. Two proposals by Klimov and Shamir are based on the squaring operation,

namely a single word T-function as well as a previously unbroken multi-word T-function

with a 256-bit state, both revealing some part of the state. It turned out that the integer

differences of consecutive outputs have significant statistical deviation even in the high-

order bits. Based on that deviation, we described efficient distinguishing attacks with

a 232 data complexity. We conclude that the squaring operation has some undesirable

properties when used in the design of T-functions and possibly in other cryptographic

primitives. The two proposals by Hong et al. have a 128-bit state, which are controlled

by a 32-bit parameter and tiny S-boxes. The output function uses some integer additions

and rotations. For one of the proposals, we found small loops in the state and in the

output produced by the S-box, resulting in a distinguishing attack of complexity 225. For

the other proposal, we wait for an appropriate value of the parameter, which produces

some detectable structure in the output. This results in a distinguisher of complexity 234.

We conclude that the small size of the parameter (and potentially also the tiny S-boxes)

may be critical, and that the integer additions and rotations in the output functions have

a very limited randomizing effect. In the case of TSC-4, we considered the way the key

and the initialization information is used. The initial cipher state is derived using eight

applications of a warm-up function. Non-randomness over all eight iterations can be de-

tected in the initial state with about 1000 inputs. Each additional round increases the

data requirements by a factor of about 2.5 and this non-randomness requires the attacker

to choose IV bits only.

86 7. Attacks on T-functions

Chapter 8

Attacks on Salsa20 and Related Primitives

The stream cipher Salsa20 is currently one of the most promising software oriented eS-

TREAM candidates. It is a unique design with a trivial update function and a complex,

round-based output function, similar to block ciphers or hash functions. The only oper-

ations used are integer addition, exclusive-or and rotation, hence it is a suitable aim for

differential attacks. In this chapter, we investigate Salsa20 and related primitives such as

ChaCha and the compression function Rumba.

8.1 Introduction

Salsa20 [17] is a stream cipher introduced by Bernstein in 2005 as a candidate in the eS-

TREAM competition, and has been selected for the third phase. Bernstein also submitted

to public evaluation the 8 and 12 round variants Salsa20/8 and Salsa20/12 [18], though

these are not formal eSTREAM candidates. More recently, he suggested a modification

of the core function aiming at bringing faster diffusion without slowing down encryption,

calling the variant ChaCha [21]. The compression function Rumba [20] was later presented

in the context of a study of generalized birthday attacks [122] applied to incremental

hashing [13], as the component of a hypothetical iterated hashing scheme. Rumba maps a

1536-bit value to a 512-bit (intermediate) digest, and Bernstein only conjectures collision

resistance for this function, letting a further convenient operating mode provide extra

security properties as pseudo-randomness.

First, we present a framework for finding high-probability differential trails for reduced-

round Salsa20 (throughout we assume that the IV’s can be chosen). This results in a

key recovery attack on Salsa20/6, and a related-key attack on Salsa20/7. Inspired from

correlation attacks, and from the notion of neutral bit, as introduced by Biham and

Chen [22], we present then a novel method for probabilistic detection of the output-

difference. More precisely, we first use an empirical measure of the correlation between

certain key bits of the state and the bias observed after working a few rounds backward,

in order to split key bits into two subsets: the extremely relevant key bits to be subjected

to an exhaustive search and filtered by observations of a biased output-difference value,

and the less significant key bits ultimately determined by exhaustive search. We present

87

88 8. Attacks on Salsa20 and Related Primitives

the first key-recovery attack for Salsa20/8, and improve a previous attack on seven rounds

by a factor 238. The method can also be applied to break 7 rounds of ChaCha. In a second

part, we show collision and preimage attacks for derived versions of Rumba, and present a

differential analysis of the original version using methods of linearization and neutral bits:

our main result is a collision-search algorithm for 3-round Rumba running in about 279

steps (compared to 2256 with a birthday attack). We also give examples of near-collision

over three and four rounds.

8.2 Description of Salsa20

The stream cipher Salsa20 [17] works with 32-bit words and takes as input a key K =

(k0, k1, . . . , k7) of n = 256 bits, a nonce V = (v0, v1) of 64 bits and a counter T = (t0, t1)

of 64 bits to produce a 512-bit block of the keystream. The counter is initialized by zero,

and incremented after each application of the encryption function. At each application,

Salsa20 acts on the following 4× 4 matrix of 32-bit words:

x =











x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15











=











c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k6 k7 c3











. (8.1)

The constants are c0 = 0x61707865, c1 = 0x3320646E, c2 = 0x79622D32 and c3 =

0x6B206574. There is also a mode for a 128-bit key K ′, where the 256 key bits in the

matrix are filled with K = K ′‖K ′. If not mentioned otherwise, we focus on the 256-bit

version. Let xr denote the state after r rounds of Salsa20 (where the superscript 0 is

omitted). Then, the keystream block z is produced using the following rule

z = x + x20 , (8.2)

using wordwise addition modulo 232. The round function is based on the following non-

linear operation, which transforms a vector (x0, x1, x2, x3) to (y0, y1, y2, y3) by sequentially

computing
y1 = x1 ⊕ ((x3 + x0) ≪ 7)

y2 = x2 ⊕ ((x0 + y1) ≪ 9)

y3 = x3 ⊕ ((y1 + y2) ≪ 13)

y0 = x0 ⊕ ((y2 + y3) ≪ 18) .

(8.3)

This operation is called the quarterround function, see Fig. 8.1. In odd numbers of

rounds (which are called columnrounds in the original specification of Salsa20), the nonlin-

ear operation is applied to the columns (x0, x4, x8, x12), (x5, x9, x13, x1), (x10, x14, x2, x6),

(x15, x3, x7, x11). In in even numbers of rounds (which are also called the rowrounds), the

nonlinear operation is applied to the rows (x0, x1, x2, x3), (x5, x6, x7, x4), (x10, x11, x8, x9),

(x15, x12, x13, x14). At each application 512 bits of keystream are generated by using the

entirety of the final state as the keystream. We write Salsa20/R for R-round variants, i.e.

8.3 Key-Recovery Attack on Salsa20/6 89

x0

x1

x2

x3

- -

- -

- -

- -

y0

y1

y2

y3

q

q

6

?- j≪7

j

6

q

q

- j≪9

j

6
- 6

q

q

- j≪13

j

6
- 6

q

q

- j≪18

j?

?-

Figure 8.1: The quarterround function of Salsa20.

with z = x + xR. Note that the r-round inverse function is defined differently whether it

inverts after an odd or and even number of rounds.

8.3 Key-Recovery Attack on Salsa20/6

In this section we will demonstrate a non-random behavior which is detectable over six

rounds of Salsa20. To start, we illustrate our approach by building on the earlier work

of Crowley [47] and we describe a framework that allows a more sophisticated analysis to

take place. This is achieved in two steps. First, we identify interesting differential effects

in a simplified version of Salsa20. Second, we identify key and IV choices (where the

IV denotes then nonce V and counter T here) that allow us to ensure that the behavior

of the genuine Salsa20 is reasonably well-approximated by the simplified version. This

technique allows us to make a systematic research of possible input differences ID’s and

consequently to find ID’s with optimal properties. As mentioned, our observations are

differential in nature. We will work with two copies of the state where x is filled with

the input (K, V, T) and a second state x′ is initialized according to x′ = x ⊕ ∆ where

∆ = (∆0, . . . , ∆15) is the ID. Note that the specifications of Salsa20 require that any ID
must be zero in the diagonal words ∆0, ∆5, ∆10, and ∆15. After r rounds of Salsa20 the

output difference OD is given1 by ∆r = xr ⊕ (x′)r.

8.3.1 A Linearized Version of Salsa20

In previous work, Crowley [47] identified a truncated differential over three rounds of

Salsa20. Consider setting ∆i = 0 for i 6= 9 and ∆9 = 0x80000000. Then the following

truncated differential for the first three rounds holds with a theoretical probability 2−12.

In practice a variety of effects conspire to give an average probability of 2−9.

1Note that due to the feedforward in Salsa20 that uses addition modulo 232 this is not necessarily the
same as the difference in the corresponding keystream.

90 8. Attacks on Salsa20 and Related Primitives











0 0 0 0

0 0 0 0

0 0x80000000 0 0

0 0 0 0











col
row
col−→











? ? ? 0x02002802

? ? ? ?

? ? ? ?

? ? ? ?











Given the behavior exhibited in x3
3⊕(x′

3)
3 it is tempting to look for some impact in the next

round. Yet, it is not clear how to proceed in a methodical manner. To establish an ap-

propriate framework for analysis, we introduce an alternative algorithm LinSalsa20. This

is identical to Salsa20 except that all integer additions have been replaced by exclusive-

or. The corresponding round functions are denoted LinColumnround and LinRowround.

Assume that two initial states x and x′ = x ⊕ ∆ are iterated by LinSalsa20. Then since

LinSalsa20 is completely linear in GF(2), the difference ∆r = xr ⊕ (x′)r coincides exactly

with computing r iterations of ∆ with LinSalsa20. This computation does not require

knowledge of the key and we refer to a differential path generated by LinSalsa20 as a

linear differential. It is straightforward to see that there are many (admissible) input

differences for which the output of LinSalsa20 is trivially non-random.

Proposition 12. Consider an input ∆i ∈ {0xFFFFFFFF, 0x00000000} for all words i =

0, . . ., 15. Then, for any number of updates with LinSalsa20, one has ∆r
i ∈ {0xFFFFFFFF,

0x00000000}.
However we need to be more careful. While LinSalsa20 allows some straightforward anal-

ysis, the further the behavior of LinSalsa20 is from the true Salsa20, the less useful it will

be. Since a differential of large Hamming weight is likely to induce carries and hence non-

linear behavior to the genuine Salsa20, we will need a linear differential of low Hamming

weight. Such a differential is intended to offer a reasonably good approximation to the

same differential in genuine Salsa20. We will consider a linear differential to be of low

weight if any computation involving active words in the difference only uses words of low

Hamming weight (≪ 16). Let us consider Crowley’s differential within this linear model.

Example 21. Consider an input difference with ∆9 = 0x80000000 as the one non-zero

word. The weight of differences for the first four rounds is as follows.











0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0











col−→











0 2 0 0

0 3 0 0

0 1 0 0

0 1 0 0











row−→











4 2 2 2

7 10 3 6

1 3 4 1

0 1 1 2











col−→











9 19 6 5

3 13 5 5

4 11 11 7

1 16 2 10











row−→











13 13 14 10

13 13 13 19

16 18 19 11

11 17 20 15











The top line of this differential is as far as Crowley goes, but when using LinSalsa20

it appears we can go one round further. Indeed, one can identify a low-weight linear

8.3 Key-Recovery Attack on Salsa20/6 91

differential for word x4
12, among others. Note that x12 is a right-to-diagonal word (with

wrap) and is updated first in round four; the 16 in x3
13 has no effect on x4

12. �

8.3.2 Non-randomness in Four Rounds of Salsa20

Consider the linear differential of Ex. 21 and set ID to be identical to that of [47]. By

using LinSalsa20 we suspect a statistical imbalance in ∆4
12 = x4

12 ⊕ (x′
12)

4. Given a set of

N different pairs of (K, V, T) for a fixed key K, where each pair takes the same fixed ID,

the distribution of the output difference for the N pairs can be analyzed. However, we

might consider a subset of the bits or even a single bit, and by examining each bit in ∆4
12

one finds that bit 26 is heavily unbalanced2. This differential is denoted ([∆4
12]26 | [∆9]31),

and the bias ε of the OD is defined by

Pr
V,T

([∆4
12]26 = 1 | [∆9]31) =

1

2
+ ε , (8.4)

where the probability holds over all nonces and counters (note that our statistical model

considers the counter to be random). Furthermore, considering key as a random variable,

we denote the median value of of ε by ε⋆. Hence, for half of the keys this differential will

have a bias of at least ε⋆. The imbalance can be detected using a optimal distinguisher

or a χ2 test, see Sect. 2.8.

The behavior of the differential heavily depends on the input. The presence or ab-

sence of carries, on which Salsa20 relies, depends on the actual values of the operands.

Thus some inputs will dampen, and others amplify, the evolution of a differential. The

imbalance in bit 26 is greater the closer Salsa20 is to LinSalsa20. Therefore to find optimal

inputs we will need to consider which conditions allow the non-linear differential trail to be

closely approximated by the linear differential. The only non-linear operation in Salsa20 is

integer addition in the quarterround function, denoted xa +xb. Given a corresponding ID
(∆a, ∆b), the nonlinear OD corresponds to the XOR of xa + xb and (xa⊕∆a) + (xb⊕∆b).

Thus, the nonlinear OD is identical to the linear OD, if

(xa + xb)⊕ ((xa ⊕∆a) + (xb ⊕∆b)) = ∆a ⊕∆b . (8.5)

Each non-zero bit in ∆a and ∆b may cause integer addition to create or annihilate a

sequence of carry bits. Hence we focus on low-weight trails to keep more control of

such events. Note that a difference in the most significant bit is always linear. We will

(indirectly) consider Eq. 8.5 to place conditions on the inputs so that a differential in

Salsa20 follows a linear differential in LinSalsa20 for some steps before diverging. We refer

to this as partially linearizing the differential. Such conditions might be on the nonce, on

the counter (assuming that the nonce and the counter are user-controlled inputs), or on

the key (thereby establishing classes of weak keys). A close inspection of the first round

of the differential of Ex. 21 reveals that the first two additions, differentially speaking, act

as XOR while the third does not. However, depending on how t1 is incremented, we can

2In fact there are many unbalanced bits in the state of Salsa20 after four rounds.

92 8. Attacks on Salsa20 and Related Primitives

Table 8.1: Non-randomness in four rounds of Salsa20.

All keys and nonces Weak key class
N av. χ2 value % values > 40 av. χ2 value % values > 40

212 33 20 51 34
214 123 41 192 46
216 315 46 656 68

establish conditions on the key to ensure that it does. Thus there are keys for which the

imbalance in bit 26 is boosted. The key conditions for the weak key class are on k0 and

k6. First set the following bits of k0 to the values shown:

bit number: 0 1 20 21 22 23

value: 0 1 0 0 1 1

Next set bit 7 of k6 equal to bit 7 of A where c1 = 0x3320646E and A = (((k0 + c1) ≪

7) + c1) ≪ 9. Note that all these conditions are randomly satisfied with a probability of

2−7. A more sophisticated set of conditions can be derived to linearize the entirety of the

first round. However for clarity we restrict ourselves to the simpler case.

Example 22. Take N inputs (K, V, T) with randomly fixed key K and random (V, T). For

each input, we use values of t1 to generate an associate input with ID ∆9 = 0x80000000

(and zero otherwise). Compute the OD after four rounds of Salsa20 and evaluate the bias

of bit 26 of ∆4
12. In 100 experiments using random keys and nonces, we find an average

bias of ε = 0.04. In the case of the weak key class, we find ε = 0.05. The results for the

corresponding χ2 statistics are listed in Tab. 8.1. �

8.3.3 Non-randomness in Six Rounds of Salsa20

The results presented in Section 8.3.2 give statistical weaknesses, as measured by the bias

of a single bit, over four rounds of Salsa20. The statistical anomaly can be detected two

rounds later. We intercept the required keystream z and we guess the necessary key words

to partially unwind the last two rounds of state update and recover word x4
12. The five key

words to guess are k3, k4, k5, k6, k7. Thus, for a single guess of the relevant words of key,

the backwards computation is carried out over two rounds for N pairs of output, where

each output was generated using the chosen input difference. The χ2 statistic of the target

bit of the target word is evaluated, and a χ2 test is applied. Our analysis tells us that a

correct key guess will yield a significant χ2 score. We assume that an incorrect key guess

results in essentially random candidate values for the bit we test. Thus, a significantly

large χ2 value suggests that the key guess may be correct. The remaining key words can

be searched exhaustively and the entire key guess verified against the keystream. If the

χ2 value for a key guess is not significant we move on to a new guess. Clearly, the scale

of the imbalance in the target bit is important to the success of this method. The closer

8.3 Key-Recovery Attack on Salsa20/6 93

Table 8.2: Demonstration of a key recovery attack on five rounds of Salsa20.

All keys and nonce Weak key class
N % success rate % success rate

212 20 28
214 29 41
216 44 54

Salsa20 behaves to LinSalsa20 then the greater the imbalance in the target bit, and the

greater the χ2 score we expect to observe. This helps an attacker in two ways:

1. If certain keys and IV’s give a high χ2 score, then a greater proportion of the keys

from an identified set should be susceptible to attack.

2. Higher χ2 scores permit less keystream or greater precision in an attack.

To begin to get a picture of how things might behave in practice, we have implemented a

restricted version of this style of attack. In principle we could use the four round differen-

tial of Ex. 22 to attack six rounds of Salsa20. To keep the experiments tractable, however,

we use the same differential to attack a restricted five-round version as a demonstration

(i.e. we unwind one round only).

Example 23. We recover nine bits (bits 4 to 12) of k3 under the assumption that k5 has

been correctly guessed. Over 100 random keys and N pairs, we give the success rate

when assuming the correct key lies among the candidate values giving the three highest

χ2 values. We repeat the experiment for the weak key class identified in Ex. 22. For

the weak key class we observe that the same proportion of keys can be recovered when

using one quarter of the text, see Tab. 8.2. We recall that the weak keys only improve

the differential propagation and that our attack is also working for other keys. �

8.3.4 Complexity Estimation

As demonstrated in Ex. 23, at least in principle, our observations can be used in the way

we intend. In this section, the complexity of an optimal distinguisher is evaluated in more

detail. The subkey of our attack has a size of m bits, so we have a set of 2m sequences

of N random variables with 2m − 1 of them verifying the hypothesis H1 (with uniform

distribution D1), and a single one verifying the hypothesis H0 (having distribution D0

characterized by ε). The decision rule to accept Hi can lead to two types of errors, pα = 2−c

for false alarms and pβ for non-detection. A complexity of 2mN/(1−pβ) is needed to find a

number of 2mpα subkey candidates. Each subkey candidate is then checked for correctness

together with the remaining l = n−m key bits, requiring a complexity of 2l2mpα = 2n−c

with n = 256. In practice, we choose an overall error probability pe = Φ(−
√

d/2) (note

that both pα and pβ are bounded by 2pe) and set N = d/∆(D0) with the imbalance

94 8. Attacks on Salsa20 and Related Primitives

∆(D0) = 4ε2 according to Sect. 2.8. The probability pβ can be ignored, and pα ≈ pe

should be chosen such that it minimizes CT = 2mN + 2256−c. Note that the potential

improvement from key ranking techniques is not considered here, see e.g. [81]. The data

complexity of our attack is CD = N , if the counter can be chosen arbitrarily. In the

case of Salsa20/6 we have m = 160 and ε = 0.04, and the work effort for a key-recovery

attack is estimated to be around 2176 operations using N = 216 pairs of keystream blocks

sampled appropriately from the same keystream. However, since the entirety of the target

word can be recovered for any single key guess, using a single bit to test a key will miss

much of the information available. We will exploit this in Sect. 8.5 to attack more rounds

of Salsa20.

8.4 Related-Key Attack on Salsa20/7

The linear model can also be used to find longer differentials. A well-chosen multi-bit

input may cause smaller diffusion than a single-bit input; non-zero bits can be placed in

positions where they are annihilated in the update process. To illustrate, we focus again

on a single column where the weight of the input (starting with the diagonal element) is

(0, 2, 1, 1). With a fixed relative position of the non-zero bits in this input, one can obtain

an output after the first linear quarterround of the form (0, 1, 0, 0). The absolute position

of the non-zero bits and the choice of column are free parameters and naturally lead to

an identified sub-class of inputs. These all have the same properties in LinSalsa20.

Example 24. Consider an input difference with non-zero words ∆2 = 0x00000100, ∆6 =

0x00001000, and ∆14 = 0x80080000.











0 0 1 0

0 0 1 0

0 0 0 0

0 0 2 0











col−→











0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0











row−→











0 0 0 0

0 0 0 0

0 0 0 0

1 1 3 4











col−→











4 1 3 4

1 2 4 8

1 0 7 10

3 1 3 14











row−→











13 1 6 7

11 14 5 7

7 4 14 5

14 21 18 17











col−→











13 16 17 17

6 16 19 23

14 13 18 15

18 16 15 15











One can identify a truncated low-weight linear differential for x5
9 which is an out-of-

diagonal word. Note that some words in the final array may have a lower Hamming

weight, but their generation required computations using average-weighted words and so

they are unlikely to be relevant to genuine Salsa20. �

The non-zero bits of this differential are located in column two. Word x14 is updated

first by y14 = x14 ⊕ (x10 + x6)≪ 7. A second state x′
i = xi ⊕∆i is updated in the same

way and, according to Eq. 8.5, the difference of this first update will follow the linear

8.4 Related-Key Attack on Salsa20/7 95

Table 8.3: Non-randomness in five rounds of Salsa20.

All Keys and Nonces Weak Nonce Class
N av. χ2 value % values > 40 av. χ2 value % values > 40

220 5 4 27 26
222 16 11 105 73
224 78 17 383 89

differential if the following equation holds:

(x10 + x6)⊕ ((x10 ⊕∆10) + (x6 ⊕∆6)) = ∆10 ⊕∆6 . (8.6)

Notice that ∆10 is zero and that ∆6 has a single non-zero bit in position 12. Further,

x10 = c2 and x6 = v0. Bits 12 . . . 9 of c2 are defined as (. . . 0110 . . .)2. Consequently, if

bits 11 . . . 9 of v0 are chosen as (. . . 000 . . .)2, then no carry is produced from the right,

and Eq. 8.5 is satisfied. Subsequently x2 is updated and so provided the previous update

followed the linear differential, the only non-zero bit in the difference will be in bit 31 and

the linear trial will be followed. Updating x6 is similar while updating x11 only involves

zero differences. Thus we have identified conditions on three bits of v0, part of the nonce,

so that the first round of genuine Salsa20 with the ID of Ex. 24 follows the linear trail.

In fact, the ID of Ex. 24 turns out to be optimal, i.e. it seems to have minimum weight

after two rounds of Salsa20; bitwise rotations of ID reduce the number of msb’s while

shifting the difference to another column shifts the input-condition to a key word instead

of v0. Without input conditions on v0, the first round would follow the linear trail with a

probability of about Pr = 0.175.

Example 25. Take N inputs (K, V, T) with randomly fixed key K and random (V, T).

For each input, we use values of k1, v0, k7 to generate an associate input with ID ∆2 =

0x00000100, ∆6 = 0x00001000, ∆14 = 0x80080000 (and zero otherwise). Compute the

OD after five rounds of Salsa20 and evaluate the bias of bit 1 of ∆5
9. In 100 experiments

using random keys and nonces, we find an average bias of ε = 0.001. In the case of the

weak nonce class, we find ε = 0.002. In Tab. 8.3 the results are listed for the corresponding

χ2 statistics. �

We can intercept the required keystream of Salsa20/7 and guess the necessary key words

to partially unwind the last two rounds of state update to recover ∆5
9. The six key words

to guess are k0, k2, k3, k4, k5, k6. According to Sect. 8.3.4, Salsa20/7 might be broken

in around 2218 operations using 226 pairs of keystream blocks taken from two sets of

keystream. However, for the five round imbalance we used non-zero differences in part of

the key k1 and k7, so the attack is only valid under a related-key scenario. The practical

validity of such an attack is debatable [16], so we merely observe that over seven of the

20 rounds in Salsa20, statistical imbalances can be detected.

96 8. Attacks on Salsa20 and Related Primitives

8.5 Key-Recovery Attack on Salsa20/8

In the previous sections, we focused on sophisticated differentials for Salsa20 and used

deterministic backwards computation to distinguish the right subkey. In this section, we

introduce differential attacks based on a new technique called probabilistic neutral bits

(PNB’s). In order to apply it to Salsa20, we first identify suitable choices of truncated

single-bit differentials, then describe a general framework for probabilistic backwards com-

putation, and introduce the notion of PNB’s, along with a method to find them. After

this, we outline the overall attack, and state our results for Salsa20/7, Salsa20/8. Even-

tually, we discuss our attack scenarios and possibilities of improvements.

8.5.1 Probabilistic Backwards Computation

In the following, assume that the differential ([∆r
p]q | [∆0

i]j) of bias εd is fixed, and the

corresponding outputs z and z′ are observed for nonce V , counter T and key K. Having

K, V and T , one can invert the operations in z = x + xR and z′ = x′ + (x′)R in order

to access to the r-round forward differential (with r < R) from the backward direction

thanks to the relations xr = (z − x)r−R and (x′)r = (z′ − x′)r−R. More specifically, define

f(K, V, T, z, z′) as the function which returns the q-th lsb of the word number p of the

matrix (z − x)r−R ⊕ (z′ − x′)r−R, hence f(K, V, T, z, z′) = [∆r
p]q. Given enough output

block pairs with the presumed difference in the input, one can verify the correctness of

a guessed candidate K ′ for the key K by evaluating the bias of the function f . More

precisely, we have Pr(f(K ′, V, T, z, z′) = 1) = 1
2

+ εd conditioned on K ′ = K, whereas

for (almost all) K ′ 6= K we expect f be unbiased i.e. Pr(f(K ′, V, T, z, z′) = 1) = 1
2
. The

classical way of finding the correct key requires exhaustive search over all possible 2256

guesses K ′. However, we can search only over a subkey of m = 256 − l bits, provided

that an approximation g of f which effectively depends on m key bits is available. More

formally, let K̄ correspond to the subkey of m bits of the key K and let f be correlated

to g with bias εa i.e.:

Pr
V,T

(f(K, V, T, z, z′) = g(K̄, V, T, z, z′)) =
1

2
+ εa . (8.7)

Note that deterministic backwards computation (i.e. K̄ = K with f = g) according to

Sect. 8.3 and Sect. 8.4 is a special case with εa = 1. Denote the bias of g by ε, i.e.

Pr(g(K̄, V, T, z, z′) = 1) = 1
2

+ ε. Under some reasonable independency assumptions, the

equality ε = 2εdεa holds. Again, we denote ε⋆ the median bias over all keys (we verified in

experiments that ε⋆ can be well estimated by the median of 2εdεa). Here, one can verify

the correctness of a guessed candidate K̄ ′ for the subkey K̄ by evaluating the bias of the

function g based on the fact that we have Pr(g(K̄ ′, V, T, z, z′) = 1) = 1
2

+ ε for K̄ ′ = K̄,

whereas Pr(g(K̄ ′, V, T, z, z′) = 1) = 1
2

for K̄ ′ 6= K̄. This way we are facing an exhaustive

search over 2m subkey candidates opposed to the original 2256 key candidates which can

potentially lead to a faster attack. We stress that the price which we pay is a higher data

complexity.

8.5 Key-Recovery Attack on Salsa20/8 97

8.5.2 Probabilistic Neutral Bits

Our new view of the problem, described in Sect. 8.5.1, demands efficient ways for finding

suitable approximations g(K̄, W) of a given function f(K, W) where W is a known pa-

rameter; in our case, it is W = (V, T, z, z′). In a probabilistic model one can consider W

as a uniformly distributed random variable. Finding such approximations in general is an

interesting open problem. In this section we introduce a generalized concept of neutral

bits [22] called probabilistic neutral bits (PNB’s). This will help us to find suitable ap-

proximations in the case that the Boolean function f does not properly mix its input bits.

Generally speaking, PNB’s allows us to divide the key bits into two groups: significant

key bits (of size m) and non-significant key bits (which are the l PNB’s). In order to

identify these two sets we focus on the amount of influence which each bit of the key has

on the output of f . Here is a formal definition of a suitable measure:

Definition 9. The neutrality measure of the key bit ki with respect to the function f(K, W)

is defined as γi, where Pr = 1
2
+γi is the probability (over all K and W) that complementing

the key bit ki does not change the output of f(K, W).

We use the following Alg. 5 to compute the neutrality measure of a single key bit of

Salsa20.

Algorithm 5 Computation of the neutrality measure

Input: Number of rounds R and r, key bit index i.
Output: Determine the neutrality measure γi.
1: Choose the number of samples T and let ctr = 0.
2: for i from 1 to T do

3: Pick a random state x (with fixed constants) and apply the ID to get x′.
4: Compute z = x + xR and z′ = x′ + (x′)R.
5: Compute (z − x)r−R and (z′ − x′)r−R and observe the OD.
6: Flip the i-th key bit in x and x′.
7: Compute (z − x)r−R and (z′ − x′)r−R and observe the OD.
8: Increment ctr if the OD’s are equal.
9: end for

10: Output γi = ctr/T − 1/2.

Singular cases of the neutrality measure are:

• γi = 1/2: f(K, W) does not depend on i-th key bit (i.e. it is a neutral bit).

• γi = 0: f(K, W) is stat. independent of the i-th key bit (i.e. it is a significant bit).

• γi = −1/2: f(K, W) linearly depends on the i-th key bit.

In practice, we set a threshold γ and put all key bits with γi ≤ γ in the set of significant

key bits. The less significant key bits we get, the faster the attack will be, provided

that the bias εa defined in Eq. 8.7 remains non-negligible. Having found significant and

non-significant key bits, we simply let K̄ be the significant key bits and define g(K̄, W)

as f(K, W) with non-significant key bits being set to a fixed value (e.g. all zero). Note

98 8. Attacks on Salsa20 and Related Primitives

that, contrary to the mutual interaction between neutral bits in [22], here we have directly

combined several PNB’s without altering their probabilistic quality. This can be justified

as the bias εa smoothly decreases while we increase the threshold γ.

Remark 9. Tsunoo et al. [118] used nonlinear approximations of integer addition to iden-

tify the dependency of key bits, whereas the independent key bits—with respect to non-

linear approximation of some order—are fixed. This can be seen as a special case of our

method.

Remark 10. It is reasonable to assume that a false subkey, which is close to the correct

subkey, may introduce a non-negligible bias. In general, this results in an increased value

of pα. If many significant key bits have neutrality measure close to zero, then the increase

is expected to be small, but the precise practical impact of this observation is unknown

to us.

8.5.3 Overview of the Attack

We sketch the full attack described in the previous subsections. It is split up in a precom-

putation step (independent of the key) and in the effective attack, see Alg. 6 and Alg. 7.

The cost of precomputation is negligible compared to the effective attack, and complexity

of the effective attack is the same as in Sect. 8.3.4.

Algorithm 6 Precomputation of the attack

1: Choose an r-round differential with ID in the nonce or counter.
2: Choose a threshold γ.
3: Construct the function f defined in Sect. 8.5.1.
4: Empirically estimate the neutrality measure γi of each key bit for f .
5: Put all key bits with γi ≤ γ in the significant key bits set of size m = 256− l.
6: Construct the function g using f by assigning a fixed value to the PNB’s, see Sect. 8.5.1

and Sect. 8.5.2.
7: Estimate the median bias ε⋆ by empirically measuring the bias of g using many ran-

domly chosen keys, see Sect. 8.5.1.
8: Estimate the data and time complexity of the attack, see Sect. 8.3.4.

Algorithm 7 Effective attack

Input: N pairs of keystream blocks produced with relevant ID, a function g.
Output: Recover the secret key.
1: for each choice of the subkey of m bits do

2: Compute the bias of g using the N keystream block pairs.
3: If the optimal distinguisher legitimates the subkey candidate as a (possibly) correct

one, perform an additional exhaustive search over the l PNB’s in order to check the
correctness of this filtered subkey and to find the PNB’s.

4: end for

5: Output the recovered key.

8.5 Key-Recovery Attack on Salsa20/8 99

8.5.4 Experimental Results

We used automatized search to identify optimal differentials for the reduced-round ver-

sions Salsa20/7 and Salsa20/8. This search is based on the following observation: The

number l of PNB’s for some fixed threshold γ mostly depends on the OD, but not on

the ID. Consequently, for each of the 512 single-bit OD’s, we can assign the ID with

maximum bias εd, and estimate time complexity of the attack. Below we only present the

differentials leading to the best attacks. The threshold γ is also an important parameter:

Given a fixed differential, time complexity of the attack is minimal for some optimal value

of γ. However, this optimum may be reached for quite small γ, such that l is large and

|ε⋆
a| small. We use at most 224 random nonces and counters for each of the 210 random

keys, so we can only measure a bias of about |ε⋆
a| > const · 2−12 (where const ≈ 5 for a

reasonable estimation error). In our experiments, the optimum is not reached with these

computational possibilities (see e.g. Tab. 8.4), and we note that the described complexities

may be improved by choosing a smaller γ.

Attack on 256-bit Salsa20/7. We use the differential ([∆4
1]14 | [∆0

7]31) with |ε⋆
d| = 0.0655.

The OD is observed after working three rounds backward from a 7-round keystream block.

To illustrate the role of the threshold γ, we present in Tab. 8.4 complexity estimates along

with the number l of PNB’s, the values of |ε⋆
d| and |ε⋆|, and the optimal values of c for

several threshold values. For γ = 0.25, the attack runs in time 2152 and data 227. The

previous best attack in [118] required about 2190 trials and 212 data.

Table 8.4: Different parameters for our attack on 256-bit Salsa20/7.

γ l |ε⋆
a| |ε⋆| c CT CD

0.50 39 0.500 0.0655 30 2230 213

0.45 97 0.328 0.0430 86 2175 216

0.40 103 0.241 0.0317 91 2170 217

0.35 113 0.101 0.0133 99 2162 219

0.30 124 0.025 0.0032 106 2156 224

0.25 131 0.009 0.0011 109 2152 227

Attack on 256-bit Salsa20/8. We use the differential ([∆4
1]14 | [∆0

7]31) with |ε⋆
d| = 0.0655.

The OD is observed after working four rounds backward from an 8-round keystream

block. For the threshold γ = 0.06 we find l = 36, |ε⋆
a| = 0.0006, and |ε⋆| = 0.00008. For

c = 8, this results in time 2251 and data 230. The list of PNB’s is {26, 27, 28, 29, 30, 31,

71, 72, 120, 121, 122, 148, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177,

210, 211, 212, 224, 225, 242, 243, 244, 245, 246, 247}. Note that our attack reaches the

same success probability and supports an identical degree of parallelism as brute force.

The previous attack in [118] claims 2255 trials with data 210 for success probability 44%,

but exhaustive search succeeds with probability 50% within the same number of trials,

100 8. Attacks on Salsa20 and Related Primitives

with much less data and no additional computations. Therefore their attack does not

constitute a break of Salsa20/8.

Attack on 128-bit Salsa20/7. Our attack can be adapted to the 128-bit version of Salsa20/7.

With the differential ([∆4
1]14 | [∆0

7]31) and γ = 0.2, we find l = 38, |ε⋆
a| = 0.023, and

|ε⋆| = 0.0030. For c = 20, this breaks Salsa20/7 within 2111 time and 221 data. Our attack

fails to break 128-bit Salsa20/8 because of the insufficient number of PNB’s.

Discussion. In our attacks on reduced-round 256-bit Salsa20, we exploit 4-round differ-

entials, then we attack the cipher by going three of four rounds backwards. We made

intensive experiments in order to observe a bias after going five rounds backwards from

the guess of a subkey, in order to attack Salsa20/9, but without success. Four is probably

the maximal number of rounds one can invert from a partial key guess while still observing

a non-negligible bias after inversion, and such that the overall cost improves from exhaus-

tive key search. Can one hope to break further rounds by statistical cryptanalysis? We

believe that it would require novel techniques and ideas, rather than the relatively simple

XOR difference of 1-bit input and 1-bit output. For instance one might combine several

biased OD’s to reduce data requirements, but this requires almost equal subset of guessed

bits; according to our experiments, this seems hard to achieve. Exploiting multibit differ-

entials such as the single-bit ID in [∆7]26 and OD in [∆4
1]0 ⊕ [∆4

2]9 with εd = −0.30 does

not improve efficiency either. Note that an alternative approach to attack Salsa20/7 is to

consider a 3-round biased differential, and observe it after going four rounds backwards.

This is however much more expensive than exploiting directly 4-round differentials. For

the variant with a 128-bit key, we can break up to seven Salsa20 rounds.

8.6 Key-Recovery Attack on ChaCha7

We present the stream cipher ChaCha and use the same method as for Salsa20/8 to attack

up to 7 rounds.

8.6.1 Description of the Scheme

The stream cipher ChaCha [21] is similar to Salsa20 with the following three modifications:

1. The input words are placed differently in the initial matrix:

x =











x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15 .











=











c0 c1 c2 c3

k0 k1 k2 k3

k4 k5 k6 k7

t0 t1 v0 v1











. (8.8)

8.6 Key-Recovery Attack on ChaCha7 101

2. The nonlinear operation of Round transforms a vector (x0, x1, x2, x3) to (y0, y1, y2, y3)

by sequentially computing

b0 = x0 + x1, b3 = (x3 ⊕ b0) ≪ 16

b2 = x2 + b3, b1 = (x1 ⊕ b2) ≪ 12

y0 = b0 + b1, y3 = (b3 ⊕ y0) ≪ 8

y2 = b2 + y3, y1 = (b1 ⊕ y2) ≪ 7 .

(8.9)

3. The round function is defined differently: in odd numbers of rounds, the nonlinear

operation is applied to the columns (x0, x4, x8, x12), (x1, x5, x9, x13), (x2, x6, x10, x14),

(x3, x7, x11, x15), and in in even numbers of rounds, the nonlinear operation is applied

to the diagonals (x0, x5, x10, x15), (x1, x6, x11, x12), (x2, x7, x8, x13), (x3, x4, x9, x14).

As for Salsa20, the round function of ChaCha is trivially invertible. R-round variants

are denoted ChaChaR. The core function of ChaCha suggests that “the big advantage of

ChaCha over Salsa20 is the diffusion, which at least at first glance looks considerably

faster” [19].

8.6.2 Experimental Results

ChaCha is expected to have faster diffusion than Salsa20. Our experiments argue in favor

of this conjecture, since we found many biased differentials over 3 rounds, but none over

4 rounds. Such differentials of weight one in both ID and OD can easily be found by

automatized search.

Attack on 256-bit ChaCha6. We use the differential ([∆3
11]0 | [∆0

13]13) with |ε⋆
d| = 0.013.

The OD is observed after working three rounds backward from an 6-round keystream

block. For the threshold γ = 0.3 we find l = 147, |ε⋆
a| = 0.009, and |ε⋆| = 0.00024. For

c = 121, this results in time 2140 and data 231.

Attack on 256-bit ChaCha7. We use again the differential ([∆3
11]0 | [∆0

13]13) with |ε⋆
d| =

0.013. TheOD is observed after working four rounds backward from an 7-round keystream

block. For the threshold γ = 0.25 we find l = 35, |ε⋆
a| = 0.012, and |ε⋆| = 0.00030. For

c = 10, this results in time 2248 and data 227. The list of PNB’s is {3, 6, 15, 16, 31, 35,

67, 68, 71, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 103, 104, 127, 136, 191, 223, 224, 225,

248, 249, 250, 251, 252, 253, 254, 255}.

Attack on 128-bit ChaCha6. Our attack can be adapted to the 128-bit version of ChaCha6.

With the differential ([∆3
11]0 | [∆0

13]13) and γ = 0.25, we find l = 51, |ε⋆
a| = 0.007, and

|ε⋆| = 0.00018. For c = 25, this breaks ChaCha6 within 2107 time and 230 data. Our attack

fails to break 128-bit ChaCha7.

102 8. Attacks on Salsa20 and Related Primitives

Discussion. In our attacks on reduced-round ChaCha, we exploit 3-round differentials,

then we attack the cipher by going three of four rounds backwards. For five rounds, we

did not observe a bias anymore. Unlike Salsa20, our exhaustive search showed no bias in 4-

round ChaCha, be it with one, two, or three target output bits. This argues in favor of the

faster diffusion of ChaCha. But surprisingly, when comparing the attacks on Salsa20/8 and

ChaCha7, results suggest that after four rounds backwards, key bits are more correlated

with the target difference in ChaCha than in Salsa20. Nevertheless, ChaCha looks more

trustful on the overall, since we could break up to seven ChaCha rounds against eight for

Salsa20. For the variant with a 128-bit key, we can break up to six ChaCha rounds.

8.7 Analysis of Rumba

In this section, we describe our results for the recently proposed compression function

Rumba. Our goal is to efficiently find colliding pairs for reduced rounds of Rumba, i.e.

input pairs (M, M ′) such that RumbaR(M) ⊕ RumbaR(M ′) = 0. Note that, compared

to our attacks on Salsa20 (where a single biased bit could be exploited in an attack), a

collision attack targets all 512 bits (or most of the 512 bits in the scenario of near-collision

attacks).

8.7.1 Description of the Scheme

Rumba is a compression function built on Salsa20, mapping a 1536-bit message to a 512-

bit value. The input M is parsed as four 384-bit chunks m0,. . . ,m3, and the output value

is

Rumba(m) = F0(m0)⊕ F1(m1)⊕ F2(m2)⊕ F3(m3)

= (x0 + x20
0)⊕ (x1 + x20

1)⊕ (x2 + x20
2)⊕ (x3 + x20

3) ,

where each Fi is an instance of the function Salsa20 with distinct diagonal constants, and

the remaining 384 bits of xi contain the message. A single word j of xi is denoted xi,j .

Note that the Fi functions include the feedforward operation of Salsa20. RumbaR stands

for R-round variant. The constants for Rumba are in Tab. 8.5.

Table 8.5: Constants for Rumba.

F0 F1 F2 F3

c0 0x73726966 0x6f636573 0x72696874 0x72756f66

c1 0x6d755274 0x7552646e 0x6d755264 0x75526874

c2 0x30326162 0x3261626d 0x30326162 0x3261626d

c3 0x636f6c62 0x6f6c6230 0x636f6c62 0x6f6c6230

8.7 Analysis of Rumba 103

8.7.2 Collisions and Preimages in Modified Versions

We show here the weakness of two modified versions of Rumba, respectively an iterated

version with 2048-bit input compression function, and the compression function without

the final feedforward.

On the Role of Diagonal Constants. The compression function Rumba is fed with 1536 bits,

copied in a 2048-bit state whose remaining 512 bits correspond to the diagonal constants.

It is tempting to see these values as the IV of an iterated hash function, and use diagonal

values for the chaining variable. However, Bernstein implicitly warned against such a

construction, when claiming that “Rumba20 will take about twice as many cycles per

eliminated byte as Salsa20 takes per encrypted byte” [20]. Indeed, the 1536-bit input should

contain both the 512-bit chaining value and the 1024-bit message, and thus for a 1024-bit

input the Salsa20 function is called four times (256 bits processed per call), whereas in

Salsa20 it’s called once for a 512-bit input. We confirm here that diagonal values should

not be replaced with the chaining variables, by presenting a method for finding collisions

within about 2128/6 trials, against 2256 with a birthday attack: pick an arbitrary 1536-bit

message block M0, then compute Rumba(M0) = h0‖h1‖h2‖h3, and repeat this until two

distinct 128-bit chunks hi and hj are equal, say h0 and h1, corresponding to the diagonal

constants of F0 and F1 in the next round; consequently, these functions will be identical

in the next round. A collision can then be obtained by choosing two distinct message

blocks M1 = m1
0‖m1

1‖m1
2‖m1

3 and (M ′)1 = m1
1‖m1

0‖m1
2‖m1

3, or M1 = m1
0‖m1

0‖m1
2‖m1

3 and

(M ′)1 = (m′
0)

1‖(m′
0)

1‖m1
2‖m1

3. How fast is this method? By the birthday paradox, the

amount of trials for finding a suitable M0 is about 2128/6 (here 6 is the number of distinct

sets {i, j} ⊂ {0, . . . , 3}), while the construction of M1 and (M ′)1 is straightforward.

Regarding the price-performance ratio, we do not have to store or sort a table, so the

price is 2128/6 (and this for any potential filter function), while performance is much

larger than one, because there are many collisions (one can choose 3 messages and 1

difference of 348 bits arbitrarily). This contrasts with the cost of 2256 for a serial attack

on a 512-bit digest hash function.

On the Importance of Feedforward. In Davies-Meyer-based hash functions as well as in

MD5 or SHA-1, the final feedforward is an obvious requirement for one-wayness. In

Rumba, the feedforward is applied in each Fi, before a XOR of the four branches, and

omitting this operation does not trivially lead to an inversion of the function, because

of the incremental construction. However, as we will demonstrate, preimage resistance is

not guaranteed with this setting. Let Fi(mi) = x20
i for i = 0, . . . , 3 and assume that we

are given a 512-bit value h, and our goal is to find M such that Rumba(M) = h. This can

be achieved by choosing random blocks m0, m1, m2, and set

y = F0(m0)⊕ F1(m1)⊕ F2(m2)⊕ h . (8.10)

We can find then the 512-bit state x0
3 such that y = x20

3 . If x0
3 has the correct diagonal

values (the 128-bit constant of F3), we can extract m3 from x3
0 with respect to Rumba’s

104 8. Attacks on Salsa20 and Related Primitives

definition. This randomized algorithm succeeds with probability 2−128, since there are

128 constant bits in an initial state. Therefore, a preimage of an arbitrary digest can be

found within about 2128 trials, against 2512/3 with the generalized birthday method.

8.7.3 Scenarios of Differential Attacks

To obtain a collision for RumbaR, it is sufficient to find two messages m and m′ such that

F0(m0)⊕ F0(m
′
0) = F2(m2)⊕ F2(m

′
2) , (8.11)

with m0 ⊕ m′
0 = m2 ⊕ m′

2, m1 = m′
1 and m3 = m′

3. The freedom in choosing m1

and m3 trivially allows to derive many other collisions (multi-collision). We use the

following differential notation: Let the initial states xi and x′
i have the input difference

∆i = xi ⊕ x′
i. After r rounds, the observed difference is denoted ∆r

i = xr
i ⊕ (x′

i)
r, and the

output-difference OD (without feedforward) becomes ∆R
i = xR

i ⊕ (x′
i)

R. If feedforward is

included in the OD, we use the notation∇R
i = (xi+xR

i)⊕(x′
i+(x′

i)
R). With this notation,

Eq. 8.11 becomes ∇R
0 = ∇R

2 , and if the feedforward operation is ignored, then Eq. 8.11

simplifies to ∆R
0 = ∆R

2 . To find messages that satisfy these equations, we use an R-round

differential path of high-probability, with intermediate target difference δr after r rounds,

0 ≤ r ≤ R. Notice that the differential is applicable for both F0 and F2 (thus we do

not have to subscript the target difference). The probability that a random message pair

(with input-difference δ) conforms to δr is denoted pr. To satisfy the equation ∆R
0 = ∆R

2

it suffices to find message pairs such that the observed differentials equal the target one,

that is, ∆R
0 = δR and ∆R

2 = δR. The naive approach is to try about 1/pr random messages

each. This complexity can however be lowered down by

• Finding constraints on the message pair so that it conforms to the difference δ1 after

one round with certainty (this will be achieved by linearization).

• From a pair conforming to δr, deriving other pairs also conforming to δr (this will

be achieved by the neutral bits technique).

Finally, to satisfy the equation ∇R
0 = ∇R

2 , it suffices to find message pairs such that

∇R
0 = δR ⊕ δ and ∇R

2 = δR ⊕ δ (i.e. the additions are not producing carry bits). Given

a random message pair that conforms to δR, this holds with probability about 2−v−w

where v and w are the respective weights of the ID δ and of the target OD δR (excluding

the linear msb’s). The three next subsections are respectively dedicated to finding an

optimal differential, describing the linearization procedure, and describing the neutral

bits technique.

Remark 11. One can observe that the constants of F0 and F2 are almost similar, as well

as the constants of F1 and F3. To improve the generalized birthday attack suggested

in [20], a strategy is to find a pair (m0, m2) such that F0(m0) ⊕ F2(m2) is biased in any

c bits after R rounds (where c ≈ 114, cf. [20]), along with a second pair (m1, m3) with

F1(m1)⊕F3(m3) biased in the same c bits. The sum F0(m0)⊕F2(m2) can be seen as the

feedforward OD of two states having an ID which is nonzero in some diagonal words.

8.7 Analysis of Rumba 105

However, differences in the diagonal words result in a large diffusion, and this approach

seems to be much less efficient than differential attacks for only one function Fi.

8.7.4 Finding High-Probability Differentials

We search for a linear differential, i.e. a differential holding with certainty in the linearized

function Fi of Rumba (where addition is replaced by XOR, see Sect. 8.3.1). The differential

is independent of the diagonal constants, and it is expected to have high probability in the

genuine Rumba if the linear differential has low weight. An exhaustive search for suitable

ID’s is not traceable for linear Rumba, so we choose another method. As in Sect. 8.4, we

focus on a single column in Xi and consider the weight of the input (starting with the

diagonal element, which must be zero). With a fixed relative position of the non-zero bits

in this input, one can obtain an output of low weight after the first linear quarterround.

Here is a list of the mappings (showing the weight only) which have at most weight 2 in

each word of the input and output:

g1 : (0, 0, 0, 0) → (0, 0, 0, 0) g8 : (0, 1, 2, 0) → (1, 1, 1, 0)

g2 : (0, 0, 1, 0) → (2, 0, 1, 1) g9 : (0, 1, 2, 2) → (1, 1, 1, 2)

g3 : (0, 0, 1, 1) → (2, 1, 0, 2) g10 : (0, 2, 1, 1) → (0, 1, 0, 0)

g4 : (0, 1, 0, 1) → (1, 0, 0, 1) g11 : (0, 2, 1, 2) → (0, 0, 1, 1)

g5 : (0, 1, 1, 0) → (1, 1, 0, 1) g12 : (0, 2, 2, 1) → (0, 1, 1, 1)

g6 : (0, 1, 1, 1) → (1, 0, 1, 0) g13 : (0, 2, 2, 1) → (2, 1, 1, 1)

g7 : (0, 0, 2, 1) → (2, 1, 1, 1) g14 : (0, 2, 2, 2) → (2, 0, 2, 0)

These relations can be used algorithmically to construct a suitable ID with all 4 columns.

Consider the following example, where the state after the first round is again a combination

of useful rows: (g1, g10, g1, g11)→ (g1, g2, g4, g1). After 2 rounds, the difference has weight

6 (with weight 3 in the diagonal words). There is a class of ID’s with the same structure:

(g1, g10, g1, g11), (g1, g11, g1, g10), (g10, g1, g11, g1), (g11, g1, g10, g1). The degree of freedom is

large enough to construct these 2-round linear differentials: the positions of the nonzero

bits in a single mapping gi are symmetric with respect to rotation of words (and the

required gi have an additional degree of freedom). Any other linear differential constructed

with gi has larger weight after 2 rounds. Eventually, here is the input difference we will

consider for our attacks on Rumba (with optimal rotation, such that many msb’s are

involved):

∆i,2 = 0x00000002 ∆i,8 = 0x80000000

∆i,4 = 0x00080040 ∆i,12 = 0x80001000

∆i,6 = 0x00000020 ∆i,14 = 0x01001000

and ∆i,j = 0 for the other indices j. The weight of differences for the first four linearized

rounds is as follows (the subscript of the arrows denotes the probability pr that a random

message pair conforms to this differential):

106 8. Attacks on Salsa20 and Related Primitives











0 0 1 0

2 0 1 0

1 0 0 0

2 0 2 0











col−→
2−4











0 0 0 0

0 0 0 0

1 0 0 0

1 0 1 0











row−→
2−7











0 0 0 0

0 0 0 0

1 1 2 0

0 0 1 1











col−→
2−41











2 2 3 1

0 3 4 2

1 1 7 3

1 1 1 6











row−→
2−194











8 3 2 4

5 10 3 4

9 11 13 7

6 9 10 9











With this fixed ID, we can determine the probability that the OD obtained by genuine

Rumba corresponds to the OD of linear Rumba. Note that integer addition is the only

nonlinear operation. Each nonzero bit in the ID of an integer addition behaves linearly

(i.e. it does not create or annihilate a sequence of carry bits) with probability 1/2, while

a difference in the msb is always linear. In the first round, there are only four bits with

associated probability 1/2, hence p1 = 2−4 (see also the subsection on linearization). The

other cumulative probabilities are p2 = 2−7, p3 = 2−41, p4 = 2−194. For 3 rounds, we have

weights v = 7 and w = 37, thus the overall complexity to find a collision after 3 rounds is

about 241+37+7 = 285. For 4 rounds, v = 7 and w = 112, leading to a complexity 2313. The

probability that feedforward behaves linearly can be increased by choosing low-weight

inputs.

8.7.5 Linearization

The first round of our differential has a theoretical probability of p1 = 2−4 for a random

message. This is roughly confirmed by our experiments, where exact probabilities depend

on the diagonal constants (for example, we experimentally observed p1 = 2−6.6 for F0, and

p1 = 2−6.3 for F2, the other two probabilities are even closer to 2−4). We show here how

to set constraints on the message so that the first round differential holds with certainty.

Let us begin with the first column of F0, where c0,0 = x0,0 = 0x73726966. In the

first addition x0,0 + x0,12, we have to address ∆0,12, which has a nonzero (and non-msb)

bit on position 12 (counting from 0). The bits of the constant are [x0,0]12−10 = (010)2,

hence the choice [x0,12]11,10 = (00)2 is sufficient for linearization. This corresponds to

x0,12 ← x0,12 ∧ 0xFFFF3FFF. The subsequent 3 additions of the first column are always

linear as only msb’s are involved. Then, we linearize the third column of F0, where

c0,2 = x0,10 = 0x30326162. In the first addition x0,10+x0,6, we have to address ∆0,6, which

has a nonzero bit on position 5. The relevant bits of the constant are [x0,10]5−1 = (10001)2,

hence the choice [x0,6]4−1 = (1111)2 is sufficient for linearization. This corresponds to

x0,6 ← x0,6∨0x0000001E. In the second addition y0,14+x0,10, the updated difference ∆1
0,14

has a single bit on position 24. The relevant bits of the constant are [x0,10]24,23 = (00)2,

hence the choice [y0,14]23 = (0)2 is sufficient. Notice that conditions on the updated words

must be transformed to the initial state words. As y0,14 = x0,14⊕(x0,10+x0,6) ≪ 8, we find

8.7 Analysis of Rumba 107

the condition [x0,14]23 = [x0,10+x0,6]16. If we let both sides be zero, we have [x0,14]23 = (0)2

or x0,14 ← x0,14 ∧ 0xFF7FFFFF, and [x0,10 + x0,6]16 = (0)2. As [x0,10]16,15 = (00)2, we can

choose [x0,6]16,15 = (00)2 or x0,6 ← x0,6∧0xFFFE7FFF. Finally, the third addition y0,2+y0,14

must be linearized with respect to the single bit in ∆1
0,14 on position 24. A sufficient

condition for linearization is [y0,2]24,23 = (00)2 and [y0,14]23 = (0)2. The second condition

is already satisfied, so we can focus on the first condition. The update is defined by

y0,2 = x0,2⊕(y0,14+x0,10) ≪ 9, so we set [x0,2]24,23 = (00)2 or x0,2 ← x0,2∧0xFE7FFFFF, and

require [y0,14 + x0,0]15,14 = (00)2. As [x0,10]15−13 = (011)2, we can set [y0,14]15−13 = (101)2.

This is satisfied by choosing [x0,14]15−13 = (000)2 or x0,14 ← x0,14 ∧ 0xFFFF1FFF, and by

choosing [x0,10 + x0,6]8−6 = (101)2. As [x0,10]8−5 = (1011)2, we set [x0,6]8−5 = (1111)2

or x0,6 ← x0,6 ∨ 0x000001E0. Altogether, we fixed 18 (distinct) bits of the input, other

linearizations are possible.

The first round of F2 can be linearized with exactly the same conditions. This way, we

save an average factor of 24 (additive complexities are ignored). This linearization with

sufficient conditions does not work well for more than one round because of an avalanche

effect of fixed bits. We lose many degrees of freedom, and contradictions are likely to

occur.

8.7.6 Neutral Bits

Thanks to linearization, we can find a message pair conforming to δ2 within about

1/(2−7+4) = 23 trials. Our goal now is to to efficiently derive from such a pair many

other pairs that are conforming to δ2, so that a search for three rounds can start after the

second round, by using the notion of neutral bits again (cf. Sect. 8.5.2).

Neutral bits can be identified easily for a fixed pair of messages, but if several neu-

tral bits are complemented in parallel, then the resulting message pair may not conform

anymore. A heuristic approach was introduced in [22], using a maximal 2-neutral set.

A 2-neutral set of bits is a subset of neutral bits, such that the message pair obtained

by complementing any two bits of the subset in parallel also conform to the differential.

The size of this set is denoted n. In general, finding a 2-neutral set is an NP-complete

problem (the problem is equivalent to the Maximum Clique Problem from graph theory),

but good heuristic algorithms for dense graphs exist, e.g. see [31]. In the case of Rumba,

we compute the value n for different message pairs that conform to δ2 and choose the pair

with maximum n. We observe that about 1/2 of the 2n message pairs (derived by flipping

some of the n bits of the 2-neutral set) conform to the differential3. This probability

p is significantly increased, if we complement at most ℓ ≪ n bits of the 2-neutral set,

which results in a message space (not contradicting with the linearization) of size about

p ·
(

n
ℓ

)

. At this point, a full collision for 3 rounds has a reduced theoretical complexity of

285−7/p = 278/p (of course, p should not be smaller than 2−3). Since we will have p > 1
2

for a suitable choice of ℓ, the complexity gets reduced from 285 to less than 279.

3In the case of SHA-0, about 1/8 of the 2n message pairs (derived from the original message pair by
complementing bits from the 2-neutral set) conform to the differential for the next round.

108 8. Attacks on Salsa20 and Related Primitives

8.7.7 Experimental Results

We choose a random message of low weight, apply the linearization for the first round

and repeat this about 23 times until the message pairs conforms to δ2. We compute then

the 2-neutral set of this message pair. This protocol is repeated a few times to identify a

message pair with large 2-neutral set.

• For F0, we find the pair of states (x0, x
′
0) of low weight, which has 251 neutral bits

and a 2-neutral set of size 147. If we flip a random subset of the 2-neutral bits, then

the resulting message pair conforms to δ2 with probability Pr = 0.52.

x0 =











0x73726966 0x00000400 0x00000080 0x00200001

0x00002000 0x6d755274 0x000001fe 0x02000008

0x00000040 0x00000042 0x30326162 0x10002800

0x00000080 0x00000000 0x01200000 0x636f6c62











• For F2, we find the pair of states (x2, x
′
2) of low weight, which has 252 neutral bits

and a 2-neutral set of size 146. If we flip a random subset of the 2-neutral bits, then

the resulting message pair conforms to δ2 with probability Pr = 0.41.

x2 =











0x72696874 0x00000000 0x00040040 0x00000400

0x00008004 0x6d755264 0x000001fe 0x06021184

0x00000000 0x00800040 0x30326162 0x00000000

0x00000300 0x00000400 0x04000000 0x636f6c62











Given these pairs for 2 rounds, we perform a search in the 2-neutral set by flipping at

most 10 bits (which gives a message space of about 250), to find pairs that conform to δ3.

This step has a theoretical complexity of about 234 for each pair, which could be verified

in practice. For example, in the case of (x0, x
′
0), we can flip the bits {59, 141, 150, 154,

269, 280, 294, 425} in order to get a pair of states (x̄0, x̄
′
0) that conforms to δ3. In the

case of (x2, x
′
2), the bits {58, 63, 141, 271, 304, 317, 435, 417, 458, 460} are flipped in

order to get a pair of states (x̄2, x̄
′
2) that conforms to δ3.

x̄0 =











0x73726966 0x08000400 0x00000080 0x00200001

0x04400000 0x6d755274 0x000001fe 0x02000008

0x01002040 0x00000002 0x30326162 0x10002800

0x00000080 0x00000200 0x01200000 0x636f6c62











x̄2 =











0x72696874 0x84000000 0x00040040 0x00000400

0x0000a004 0x6d755264 0x000001fe 0x06021184

0x00008000 0x20810040 0x30326162 0x00000000

0x00000300 0x00080402 0x04001400 0x636f6c62











At this point, we have collisions for 3 rounds of Rumba without feedforward, hence ∆3
0 ⊕

∆3
2 = 0. If we include feedforward for the above pairs of states, then ∇3

0 ⊕ ∇3
2 has

8.8 Summary 109

weight 16, which corresponds to a near-collision. Notice that a near-collision of low

weight indicates non-randomness of the reduced-round compression function (we assume

a Gaussian distribution centered at 256). This near-collision of low weight was found by

using a birthday method: we produce a list of pairs for F0 that conform to δ3 (using

neutral bits as above), together with the corresponding value of ∇3
0. The same is done for

F2. If each list has size N , then we can produce N2 pairs of ∇3
0 ⊕∇3

2 in order to identify

near-collisions of low weight.

However, there are no neutral bits for the pairs (x̄0, x̄
′
0) and (x̄2, x̄

′
2) with respect to

δ3. This means that we can not completely separate the task of finding full collisions with

feedforward, from finding collisions without feedforward (and we can not use neutral bits

to iteratively find pairs that conform to δ4). To find a full collision after three rounds,

we could perform a search in the 2-neutral set of (x0, x
′
0) and (x2, x

′
2), by flipping at

most 20 bits. In this case, the resulting pairs conform to δ2 with probability at least

Pr = 0.68, and the message space has a size of about 280. The overall complexity becomes

278/0.68 ≈ 279 (compared to 285 without linearization and neutral bits). Then, we try

to find near-collisions of low weight for 4 rounds, using the birthday method described

above. Within less than one minute of computation, we found pairs (¯̄x0, ¯̄x′
0) and (¯̄x2, ¯̄x′

2)

such that ∇4
0 ⊕∇4

2 has weight 129. Consequently, the non-randomness of the differential

is propagating up to 4 rounds.

¯̄x0 =











0x73726966 0x00020400 0x00000080 0x00200001

0x00002400 0x6d755274 0x000001fe 0x02000008

0x00000040 0x00220042 0x30326162 0x10002800

0x00000080 0x00001004 0x01200000 0x636f6c62











¯̄x2 =











0x72696874 0x00001000 0x80040040 0x00000400

0x00008804 0x6d755264 0x000001fe 0x06021184

0x00000000 0x80800040 0x30326162 0x00000000

0x00000300 0x00000450 0x04000000 0x636f6c62











8.8 Summary

Salsa20 is widely viewed as a very promising proposal. Nothing in this chapter affects the

security of the full version of the cipher. A new method for attacking Salsa20 and ChaCha

(and maybe other ciphers) inspired by correlation attacks and by the notion of neutral

bits has been presented. This allows to give the first attack faster than exhaustive search

on the stream cipher Salsa20/8 with a 256-bit key. Thus Salsa20 still appears to be a

conservative design, and Salsa20/12 could turn out to be a well-balanced proposal. For

the compression function Rumba, which is built on Salsa20, the methods of linearization

and neutral bits are applied to a high probability differential to find collisions on Rumba

reduced to 3 rounds with expected 279 trials, and to efficiently find low weight near

collisions on 3-round and 4-round Rumba.

110 8. Attacks on Salsa20 and Related Primitives

Chapter 9

Chosen IV Statistical Analysis

In the previous chapter, we have introduced the concept of probabilistic neutral bits

(PNB’s) in the key for the chosen IV scenario. Based on a recent framework for chosen

IV statistical distinguishing analysis of stream ciphers, PNB’s can be exploited to provide

new and general methods for key recovery attacks. As an application, a key recovery

attack on simplified versions of two eSTREAM candidates is given.

9.1 Introduction

The initialization function of a stream cipher should have good mixing properties, and it

should be efficient (especially in hardware-oriented stream ciphers). If the initialization

function uses a round-based approach, one can find a tradeoff between security and effi-

ciency with a well-chosen number of rounds. In [55, 105, 112,58], a framework for chosen

IV statistical analysis of stream ciphers is suggested to investigate the structure of the

initialization function. If mixing is not perfect, then the initialization function has an

algebraic normal form which can be distinguished from a random one (e.g. if some high

degree monomials are not produced). In this chapter, we optimize these methods with

heuristic approaches (such as probabilistic neutral bits), and we present a framework to

mount key recovery attacks. In [55], they say ”It is an open question how to utilize these

weaknesses of state bits to attack the cipher.”. The aim of this chapter is to contribute

to this problem. As in [55, 105] one selects a subset of IV bits as variables. Assuming all

other IV values as well as the key fixed, one can write a keystream symbol as a Boolean

function. By running through all possible values of these bits and generating a keystream

output each time, one can compute the truth table of this Boolean function. Each coef-

ficient in the algebraic normal form of this Boolean function is parametrized by the bits

of the secret key. We now ask whether in the parametrized expression of a coefficient,

every key bit does occur, or more generally, how much influence each key bit does have

on the value of the coefficient. If a coefficient depends on less than all key bits, this

fact can be exploited to filter those keys which do not satisfy the imposed value for the

coefficient. In [120], it is shown that in the eSTREAM Phase 3 candidate Trivium with

IV initialization reduced to 576 iterations, linear relations on the key bits can be derived

111

112 9. Chosen IV Statistical Analysis

for well chosen sets of variable IV bits. Our framework is more general, as it works with

the concept of (probabilistic) neutral key bits, i.e. key bits which have no influence on

the value of a coefficient with some (high) probability. This way, we can get information

on the key for many more iterations in the IV initialization of Trivium, and similarly for

the eSTREAM Phase 3 candidate Grain-128. On the other hand, extensive experimental

evidence indicates clear limits to our approach: With our methods, it is unlikely to get

information on the key faster than exhaustive key search for Trivium or Grain-128 with

full IV initialization.

9.2 Problem Formalization

Suppose that we are given a fixed Boolean function F (K, V) : {0, 1}n × {0, 1}t → {0, 1}.
An oracle chooses a random and unknown K = (k0, . . . , kn−1) and returns us the value

of z = F (K, V) for every query V = (v0, . . . , vt−1) of our choice. The function F could

stand e.g. for the Boolean function which maps the key K and IV V of a stream cipher to

the (let say) first output bit. Our goal as an adversary is to determine the unknown key

K (or to distinguish F from a random function) in the chosen IV attack model only by

dealing with the function F . If F mixes its inputs in a proper way, then one needs to try

all possible 2n keys by sending O(n) queries to the oracle in order to find the correct key

(since each query gives one bit information about the key for a balanced F). Here, we are

going to investigate methods which can potentially lead to faster reconstruction of the key

in the case where the function F does not properly mix its inputs. This could occur for

example when the initialization phase of a stream cipher is performed through an iterated

procedure for which the number of iterations has not been suitably chosen. On the other

hand these methods may help to give the designers more insight to choose the required

number of iterations. The existence of faster methods for finding the unknown key K

highly depends on the structure of F . It may be even impossible to uniquely determine

the key K. Let F (K, V) =
⊕

κ cκ(V)Kκ where Kκ = kκ0

0 · · · kκn−1

n−1 for the multi-index

κ = (κ0, . . . , κn−1). Then the following lemma makes this statement more clear.

Lemma 3. No adversary can distinguish between the two keys K1 and K2 for which

Kκ
1 = Kκ

2 for all κ ∈ {0, 1}n such that cκ(V) 6= 0.

Indeed, it is only possible to determine the values of {Kκ|∀κ, cκ(V) 6= 0} which is not

necessarily equivalent to determination of K. As a consequence of Lemma 3, the function

F divides {0, 1}n into equivalence classes K1, K2, . . . ,KJ (with J ≤ 2n). See Ex. 28 as an

application on a reduced version of Trivium.

9.3 Scenarios of Attacks

The algebraic description of the function F (K, V) is too complex in general to be amenable

to direct analysis. Therefore, from the function F (K, V) and with the partition V =

(U, W) we derive simpler Boolean functions C(K, W) with the help of the oracle. In

9.4 Derived Functions from Polynomial Description 113

our main example, C(K, W) is a coefficient of the algebraic normal form of the function

deduced from F by varying over the bits in U only (see Sect. 9.4 for more details). If this

function C(K, W) does not have a well-distributed algebraic structure, it can be exploited

in cryptanalytic attacks. Let us investigate different scenarios:

1. If C(K, W) is imbalanced for (not necessarily uniformly) random W and many fixed

K, then the function F (or equivalently the underlying stream cipher) with unknown

K can be distinguished from a random one, see [55, 105, 112,58].

2. If C(K, W) is evaluated for some fixed W , then C(K, W) is an expression in the key

bits only. In [120], it was shown that in Trivium case for reduced iterations, linear

relations on the key bits can be derived for a well chosen IV part.

3. If C(K, W) has many key bits, which have (almost) no influence on the values of

C(K, W), a suitable approximation may be identified and exploited for key recovery

attacks. This is the target scenario of this chapter and will be discussed in detail.

In scenario 2, the underlying idea is to find a relation C(K, W), evaluated for some W ,

which depends only on a subset of m (< n) key bits. The functional form of this relation

can be determined with 2m evaluations of C(K, W). By trying all 2m possibilities for the

involved m key bits, one can filter those keys which do not satisfy the imposed relation.

The complexity of this precomputation is 2m times needed to compute C(K, W), see

Sect. 9.4. More precisely, if p = Pr(C(K, W) = 0) for the fixed W , the key space is

filtered by a factor of H(p) = p2 +(1−p)2. For example, in the case of a linear function it

is p = H(p) = 1/2. In addition, if several imposed relations on the key bits are available,

it is easier to combine them to filter wrong keys if they have a simple structure, see

e.g. [120]. In scenario 3, our main idea is to find a function A(M, W) which depends on

a key part M of m bits, and which is correlated to C(K, W) with correlation coefficient

ε, that is Pr(C(K, W) = A(M, W)) = 1/2 + ε. Then, by asking the oracle N queries we

get some information (depending on the new equivalence classes produced by A) about

m bits of the secret K in time N2m by carefully analyzing the underlying hypothesis

testing problem. We will proceed by explaining how to derive such functions C from the

coefficients of the ANF of F in Sect. 9.4, and how to find such functions A using the

concept of probabilistic neutral bits in Sect. 9.5.

9.4 Derived Functions from Polynomial Description

The function F can be written in the form F (K, V) =
⊕

ν,κ cν,κV
νKκ with binary

coefficients cν,κ. We can make a partition of the IV according to V = (U, W) and

ν = (α, β) with u bit segments U and α, and w = t − u bit segments W and β.

This gives the expression F (K, V) =
⊕

α,β,κ c(α,β),κU
αW βKκ =

⊕

α cα(K, W)Uα where

cα(K, W) =
⊕

β,κ c(α,β),κW
βKκ. For every α ∈ {0, 1}u, the function cα(K, W) can serve

as a function C derived from F . Here is a toy example to illustrate the notation:

114 9. Chosen IV Statistical Analysis

Example 26. Let n = t = 3 and F (K, V) = k1v1 ⊕ k2v0v2 ⊕ v2. Let U := (v0, v2) of u = 2

bits and W := (v1) of w = 1 bit. Then C0(K, W) = k1v1, C1(K, W) = 0, C2(K, W) = 1,

C3(K, W) = k2.

Note that an adversary with the help of the oracle can evaluate cα(K, W) for the unknown

key K at any input W ∈ {0, 1}w for every α ∈ {0, 1}u by sending at most 2u queries to

the oracle, i.e. the partitioning of V helps us to define a computable function cα(K, W)

if u is small enough (even though the explicit form of cα(K, W) remains unknown). To

obtain the values cα(K, W) for all α ∈ {0, 1}u, an adversary asks for the output values of

all 2u inputs V = (U, W) with the fixed part W . This gives the truth table of a Boolean

function in u variables for which the coefficients of its algebraic normal form (i.e. the

values of cα(K, W)) can be found in time u2u and memory 2u using the Walsh-Hadamard

transform. Alternatively, a single coefficient cα(K, W) for a specific α ∈ {0, 1}u can be

computed by XORing the output of F for all 2|α| inputs V = (U, W) for which each bit of

U is at most as large as the corresponding bit of α. This bypasses the need of 2u memory.

One can expect that a subset of IV bits receives less mixing during the initialization

process than other bits. These IV bits are called weak, and they would be an appropriate

choice of U in order to amplify the non-randomness of C. However, it is an open question

how to identify weak IV bits by systematic methods.

9.5 Functions Approximation

We are interested in the approximations of a function C(K, W) : {0, 1}n×{0, 1}w → {0, 1}
which depend only on a subset of key bits. To this end we make an appropriate partition

of the key K according to K = (L, M) with M (called subkey) of m bits and L of l = n−m

bits, and construct the function A(M, W). Such a partitioning can be identified using the

concept of probabilistic neutral bits (PNB’s), see Sect. 8.5.2 (where the notion of PNB’s

was used to derive a suitable function A in the case of W = V and C = F). We recall that

the neutrality measure of the key bit ki is defined as γi where 1/2 + γi is the probability

(over all K and W) that complementing the key bit ki does not change the output of

C. A key bit with large |γi| is called weak key bit (and it is called a significant key bit

otherwise). In practice, we will set a threshold γ, such that all key bits with |γi| < γ

are included in the subkey M . The approximation A(M, W) could then be defined by

C(K, W) either with a fixed or a randomly chosen value for non-significant key bits L.

Here is another toy example to illustrate the method:

Example 27. Let n = t = 3, u = 2 and C(K, W) = k0k1k2v0v1⊕k0v1⊕k1v0. For uniformly

random K and W , we find γ0 = 1/8, γ1 = 1/8, γ2 = 7/8. Consequently, it is reasonable

to use M := (k0, k1) as the subkey. With fixed k2 = 0, we obtain the approximation

A(M, W) = k0v1 ⊕ k1v0 which depends on m = 2 key bits only.

Note that, if L consists only of neutral key bits, then the approximation A is exact,

because C(K, W) does not depend on these key bits.

9.6 Description of the Attack 115

9.6 Description of the Attack

In the precomputation phase of the attack, we need a suitable partitioning of the IV and

the key (i.e. a function C and an approximation A). The weak IV bits are often found

by a random search, while the weak key bits can be easily found with the neutrality

measure for some threshold γ. Given C and A, we can find a small subset of candidates

for the subkey M with a probabilistic guess-and-determine attack. In order to filter the

set of all 2m possible subkeys into a smaller set, we need to distinguish a correct guess of

the subkey M ′ from an incorrect one. Our ability in distinguishing subkeys is related to

the correlation coefficient between A(M ′, W) and C(K, W) with K = (L, M ′) under the

following two hypotheses. H0 : the guessed part M ′ is correct, and H1 : the guessed part

M ′ is incorrect. More precisely, the values of ε0 and ε1 defined in the following play a

crucial role:

Pr
W

(A(M ′, W) = C(K, W)|K = (L, M ′)) =
1

2
+ ε0 (9.1)

Pr
M ′,W

(A(M ′, W) = C(K, W)|K = (L, M)) =
1

2
+ ε1 . (9.2)

In general, both ε0 and ε1 are random variables, depending on the key. If the distribu-

tions of ε0 and ε1 are separated, we can achieve a small non-detection probability pβ and

false alarm probability pα = 2−c by using enough samples. In the special case where ε0

and ε1 are constants (corresponding to the binary distributions D0 and D1), the opti-

mum distinguisher is Neyman-Pearson, see Sect. 2.8. The attack will be successful with

probability 1 − pβ and the complexity is as follows: For each guess M ′ of the subkey,

the bias ε of A(M ′, W) ⊕ C(K, W) must be computed, which requires computation of

the coefficients A(M ′, W) by the adversary, and computation of the coefficient C(K, W)

through the oracle, for the same N values of W , having a cost of N2u at most. This must

be repeated for all 2m possible guesses M ′. The set of candidates for the subkey M has a

size of about pα2m = 2m−c. The whole key can then be verified by an exhaustive search

over the key part L with a cost of 2m−c2l = 2n−c evaluations of F . The total complexity

becomes CT = N2u2m + 2m−c2n−m = N2u+m + 2n−c. The required number of samples is

N = d/∆(D0, D1) (assuming that C(K, W) are independent) to obtain an overall error

pe = Φ(−
√

d/2) ≈ pα. Using more than one function C or considering several chosen IV

bits U may be useful to reduce complexity; however, we do not deal with this case here.

Remark 12. In practice the distributions of ε0 and ε1 for different subkeys may not be fully

separated, and hence a very small pβ and pα may not be possible to achieve. However,

we propose the following non-optimal distinguisher. We choose a threshold ε′0 such that

Pr(ε0 > ε′0) has a significant value, e.g. 1/2. We also identify a threshold ε′1, if possible,

such that Pr(ε1 < ε′1) = 1. Then, we estimate the sample size by replacing ε0 and ε1 by

ε′0 and ε′1, respectively, to obtain pα ≤ 2−c and desired pβ ≈ 1/2. If ε′0 and ε′1 are close,

then the estimated number of samples becomes very large. In this case, it is better to

chose the number of samples intuitively, and then estimate the related pα.

116 9. Chosen IV Statistical Analysis

Remark 13. It is reasonable to assume that a false subkey M ′, which is close to the correct

subkey, may lead to a larger value of ε. Here, the measure for being ”close” could be the

neutrality measure γi and the Hamming weight: if only a few key bits on positions with

large γi are false, one would expect that ε is large. However, we only observed an irregular

(i.e. not continuous) deviation for very close subkeys. The effect on pα is negligible because

subkeys with difference of low weight are rare.

9.7 Application to Trivium

The eSTREAM Phase 3 candidate Trivium [32] has an internal state of 288 bits. To

initialize the cipher, the n = 80 key bits and t = 80 IV bits are written into the registers.

The cipher state is then updated R = 18 × 64 = 1152 times without producing output

in order to provide a good mixture of the key and IV bits in the initial state. We

consider the Boolean function F (K, V) which computes the first keystream bit after r

rounds of initialization. In [55], Trivium was analyzed with chosen IV statistical tests and

non-randomness was detected for r = 10 × 64, 10.5× 64, 11 × 64, 11.5 × 64 rounds with

u = 13, 18, 24, 33 IV bits, respectively. In [120], the key recovery attack on Trivium was

investigated with respect to scenario 2 (see Sect. 9.3) for r = 9 × 64. In this section we

provide more examples for key recovery attack with respect to scenario 3 for r = 10× 64

and r = 10 × 10.5. In the following two examples, weak IV bits have been found by a

random search. We first concentrate on equivalence classes of the key:

Example 28. For r = 10× 64 rounds, a variable IV part U with the u = 10 bit positions

{34, 36, 39, 45, 63, 65, 69, 73, 76, 78}, and the coefficient with index α = 1023, we could

experimentally verify that the derived function cα(K, W) only depends on m = 10 key

bits M with bit positions {15, 16, 17, 18, 19, 22, 35, 64, 65, 66}. By assigning all 210

different possible values to these 10 key bits and putting those M which gives the same

function cα(K, W) (by trying enough samples of W), we could determine the equivalence

classes for M with respect to cα. Our experiment shows the existence of 65 equivalence

classes: one with 512 members for which k15k16 ⊕ k17 ⊕ k19 = 0 and 64 other classes with

8 members for which k15k16⊕ k17⊕ k19 = 1 and the vector (k18, k22, k35, k64, k65, k66) has a

fixed value. This shows that cα provides 1
2
× 1 + 1

2
× 7 = 4 bits of information about the

key in average. �

Example 29. For r = 10× 64 rounds, a variable IV part U with the u = 11 bit positions

{1, 5, 7, 9, 12, 14, 16, 22, 24, 27, 29}, and the coefficient with index α = 2047, the derived

function cα(K, W) depends on all 80 key bits. A more careful look at the neutrality

measure of the key bits reveals that max(γi) ≈ 0.18 and only 7 key bits have a neutrality

measure larger than γ = 0.09, which is not enough to get a useful approximation A(M, W)

for an attack. However, we observed that cα(K, W) is independent of the key for W = 0,

and more generally the number of significant bits depends on |W |. �

It is difficult to find a good choice of variable IV’s for larger values of r, using a random

search. The next example shows how we can go a bit further with some insight.

9.8 Application to Grain 117

Example 30. Now we consider r = 10.5×64 = 10×64+32 = 672 rounds. The construction

of the initialization function of Trivium suggests that shifting the bit positions of U in

Ex. 29 may be a good choice. Hence we choose U with the u = 11 bit positions {33, 37,

39, 41, 44, 46, 48, 54, 56, 59, 61}, and α = 2047. In this case, cα(K, W) for W = 0 is

independent of 32 key bits, and p = Pr(cα(K, 0) = 1) ≈ 0.42. This is already a reduced

attack which is 1/H(p) ≈ 1.95 times faster than exhaustive search. �

The following example shows how we can connect a bridge between scenarios 2 and 3 and

come up with an improved attack.

Example 31. Consider the same setup as in Ex. 30. If we restrict ourself to W ’s with

|W | = 5 and compute the value of γi conditioned over these W , then maxi(γi) ≈ 0.34.

Assigning all key bits with |γi| < γ = 0.13 as significant, we obtain a key part M with the

m = 29 bit positions {1, 3, 10, 14, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 34, 37, 39, 41, 46,

49, 50, 51, 52, 57, 59, 61, 63, 68, 74}. Our analysis of the function A(M, W) shows that

for about 44% of the keys we have ε0 > ε′0 = 0.1 when the subkey is correctly guessed.

If the subkey is not correctly guessed, we observe ε1 < ε′1 = 0.08. Then, the correct

subkey of 29 bits can be detected using at most N ≈ 215 samples, with time complexity

N2u+m ≈ 255. Note that the condition N <
(

69
5

)

is satisfied here. �

9.8 Application to Grain

The eSTREAM Phase 3 candidate Grain-128 [73] consists of an LFSR, an NFSR and an

output function h(x). It has n = 128 key bits, t = 96 IV bits and the full initialization

function has R = 256 rounds. We consider again the Boolean function F (K, V) which

computes the first keystream bit of Grain-128 after r rounds of initialization. In [55],

Grain-128 was analyzed with chosen IV statistical tests. With N = 25 samples and u = 22

variable IV bits, they observed a non-randomness of the first keystream bit after r = 192

rounds. They also observed a non-randomness in the initial state bits after the full

number of rounds. In [105], a non-randomness up to 313 rounds was reported (without

justification). In this section we provide key recovery attack for up to r = 180 rounds with

slightly reduced complexity compared with exhaustive search. In the following example,

weak IV bits for scenario 2 have been found again by a random search.

Example 32. Consider u = 7 variable IV bits U with bit positions {2, 6, 8, 55, 58, 78,

90}. For the coefficient with index α = 127 (corresponding to the monomial of maximum

degree), a significant imbalance for up to r = 180 rounds can be detected: the monomial of

degree 7 appears only with a probability of p < 0.2 for 80% of the keys. Note that in [55],

the attack with u = 7 could only be applied to r = 160 rounds, while our improvement

comes from the inclusion of weak IV bits. �

In the following examples, our goal is to show that there exists some reduced key recovery

attack for up to r = 180 rounds on Grain-128. We use the same weak IV’s as in the

previous example.

118 9. Chosen IV Statistical Analysis

Example 33. Consider again the u = 7 IV bits U with bit positions {2, 6, 8, 55, 58, 78,

90}. For r = 150 rounds we choose the coefficient with index α = 117 and include key

bits with neutrality measure less than γ = 0.49 in the list of significant key bits. This

gives a subkey M of m = 99 bits. Our simulations show that ε0 > ε′0 = 0.48 for about

95% of the keys, hence pβ = 0.05. On the other hand, for 128 wrong guesses of the subkey

with N = 200 samples, we never observed that ε1 > 0.48, hence pα < 2−7. This gives an

attack with time complexity N2m+u +2npα ≈ 2121 which is an improvement of a factor of

(at least) 1/pα = 27 compared to exhaustive search. �

Example 34. With the same choice for U as in Ex. 32 and 33, we take α = 127 for r = 180

rounds. We identified m = 110 significant key bits for M . Our simulations show that

ε0 > ε′0 = 0.4 in about 30% of the runs when the subkey is correctly guessed. For 128

wrong guesses of the subkey with N = 128 samples, we never observed that ε1 > 0.4.

Here we have an attack with time complexity N2m+u + 2npα ≈ 2124, i.e. an improvement

of a factor of 24. �

9.9 Summary

A recent framework for chosen IV statistical distinguishers for stream ciphers has been

exploited to provide new methods for key recovery attacks. This is based on a polynomial

description of output bits as a function of the key and the IV. A deviation of the algebraic

normal form (ANF) from random indicates that not every bit of the key or the IV has full

influence on the value of certain coefficients in the ANF. It has been demonstrated how this

can be exploited to derive information on the key faster than exhaustive key search through

approximation of the polynomial description and using the concept of probabilistic neutral

key bits. Two applications of our methods through extensive experiments have been

given: A reduced complexity key recovery for Trivium with IV initialization reduced to

672 of its 1152 iterations, and a reduced complexity key recovery for Grain-128 with IV

initialization reduced to 180 of its 256 iterations. This answers positively the question

whether statistical distinguishers based on polynomial descriptions of the IV initialization

of a stream cipher can be successfully exploited for key recovery. On the other hand, our

methods are not capable to provide reduced complexity key recovery of the eSTREAM

Phase 3 candidates Trivium and Grain-128 with full initialization.

Chapter 10

Conclusions

The design and analysis of stream ciphers is a fascinating field of activity. It is scientifi-

cally interesting to investigate how much the number of mathematical operations can be

reduced to construct a cipher that is still secure. For example, are a few integer additions

and bitwise operations sufficient to provide a high level of security? Any insight of this

type can also be useful in the design of efficient cryptographic hash functions. On the

other hand, there is a practical need for stream ciphers, which will likely be increasing

in the coming future due to lightweight applications such as RFID. In this thesis, we ad-

dressed cryptanalysis of lightweight stream ciphers. We presented the whole range from

full attacks, identification of some partial weaknesses, or verification of security, and we

derived or improved cryptanalytic methods for different building blocks (with a focus on

algebraic attacks). In particular, we conclude that T-functions have not delivered a good

performance in practice, while shift registers with carry are still promising. The security

of the reputable hardware-oriented designs Trivium and Grain-128 could be verified with

respect to our methods, but the security margin seems larger for software-oriented stream

ciphers: only 8 out of 20 rounds of Salsa20 can be broken yet. It will be interesting to see

how the winners of eSTREAM will prove in practice.

119

120 10. Conclusions

Appendix A

Attack on MAG

MAG is a synchronous stream cipher submitted to the eSTREAM project. We present a

very simple distinguishing attack (with some predicting feature) on MAG, requiring only

129 successive bytes of known keystream, computation and memory are negligible. The

attack has been verified.

A.1 Brief Description

In the standard version of the stream cipher MAG [121], the internal state consists of 127

registers xi of 32 bit size, as well as a carry register C of 32 bit size. The secret key

is used to initialize all registers x0, . . . , x126 and C (where the details of the key setup

are not important for the attack). In order to produce the keystream, MAG is applied

iteratively; a single iteration consists of an update and an output period. The description

of the update does not seem to be consistent in the paper and in the provided code; we

will refer to the code (however, the attack is of very general nature and may also work for

other versions). In update period i, the carry C and register xi are modified. In a first

step of the algorithm, two neighboring registers are compared in order to determine the

operation for the carry update, and in a second step, the carry is used to update register

xi; more precisely,

C ′ =

{

C ⊕ xi+1 if xi+2 > xi+3

C ⊕ x̄i+1 otherwise
(A.1)

x′
i = xi ⊕ C ′. (A.2)

Here, x̄ denotes the complement of x; updated variables are primed. Notice that a register

xi is updated only once in 127 iterations, whereas the carry C is updated in each step

of iteration. We point out that comparison of registers is the only operation on words,

whereas XOR and complementation are operations on bits. It remains to describe the

(cryptographic) output of MAG: in output period i, the string xi mod 256 is sent to

the keystream zi (notice that addition of indices in xi is performed modulo 128, whereas

indices in zi are continuous).

121

122 A. Attack on MAG

A.2 Distinguishing Attack

The first 127 bytes of keystream zi reveal the 8 least significant bits (lsb’s) of all registers

xi, and the additional keystream byte z127 reveals the 8 lsb’s of the updated register x′
0.

Given these 128 successive bytes of keystream byte z0, . . . , z127, it is possible to compute

two strings, one of them corresponding to the next keystream byte z128: first, Eq. A.2

defines how to reveal the corresponding carry, namely C ′ = x0⊕x′
0. According to Eq. A.1,

the carry is updated by C ′′ = C ′⊕x1 or by C ′′ = C ′⊕ x̄1 (with equal probability). Finally,

the register x1 is updated by x′
1 = C ′′ ⊕ x1. These relations can be reduced modulo 256

(in order to make use of the known keystream bytes) and combined; using the fact that

they also hold for other indices, we conclude

zi+128 =

{

zi ⊕ zi+1 ⊕ zi+2 ⊕ zi+127 with Pr = 1/2

zi ⊕ zi+1 ⊕ z̄i+2 ⊕ zi+127 with Pr = 1/2
(A.3)

Prediction of zi+128 may be used to distinguish the keystream of the cipher from a truly

random sequence: given the actual keystream byte zi+128, the attacker may verify if it

corresponds to one of the two results of Eq. A.3. If not, the keystream is not produced by

MAG. If yes, the keystream is produced by MAG with a probability of error corresponding

to pα = 1/128. In order to reduce the error pα (false alarms), more keystream may be

used to verify Eq. A.3. Furthermore, the distinguisher may be used to recover some part

of the state; each byte of keystream reveals one bit of information, namely the path of

the branching. However, we did not study the state-recovery attack in more detail.

We conclude that the design of MAG has substantial weaknesses; revealing some part

of the internal state, and sparse use of operations on words may be delicate choices of

design for a secure stream cipher.

A.3 Example of an Attack

The attack was verified, using the code provided in [121]. In Tab. A.1, we give an example

of keystream produced by the standard implementation of MAG, initialized with the zero

seed. According to the previous section, we verify the non-randomness of the last red-

colored byte z128 (where the index counts from 0): Eq. A.3 yields that either z128 =

0x05 ⊕ 0xF0 ⊕ 0x53 ⊕ 0x16 = 0xB0 or z128 = 0x05 ⊕ 0xF0 ⊕ 0x53 ⊕ 0xE9 = 0x4F;

obviously, the first result is the appropriate one.

A.3 Example of an Attack 123

Table A.1: Some example keystream produced by standard implementation of MAG for
the zero seed.

0x05 53 16 29 77 23 33 5C 05 FC F8 57 26 1A 98 6B

0xAD 33 E2 2F 02 1B 3D 2E 82 44 82 E9 BF 8E C3 88

0x0F FE 88 21 2E 5D 6E EA 6B 62 1C 62 4D 7B 51 27

0x75 CE 34 53 CA 2A 32 B9 56 23 43 2C 19 5C 14 AE

0xC5 42 BA A8 59 11 8F 41 F0 48 2B 81 4D 52 C7 EA

0xB0 F5 BA 76 62 9B 93 7D 93 24 9C C2 7B 70 EE 3D

0x44 02 B8 E3 CF DF 36 7D EE F3 00 79 20 23 7A 60

0xB3 8B AD 3E 1B F4 BB 57 AF 99 53 AF 5C C7 88 F0

0xB0 23 6B 16 8E 3D 57 0D 0C A0 29 BD 19 F0 51 5B

124 A. Attack on MAG

Bibliography

[1] Ross J. Anderson. Searching for the Optimum Correlation Attack. In Bart Preneel,

editor, FSE, volume 1008 of Lecture Notes in Computer Science, pages 137–143.

Springer, 1994.

[2] Frederik Armknecht. Improving Fast Algebraic Attacks. In Roy and Meier [110],

pages 65–82.

[3] Frederik Armknecht, Claude Carlet, Philippe Gaborit, Simon Künzli, Willi Meier,

and Olivier Ruatta. Efficient Computation of Algebraic Immunity for Algebraic and

Fast Algebraic Attacks. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of

Lecture Notes in Computer Science, pages 147–164. Springer, 2006.

[4] Frederik Armknecht and Matthias Krause. Constructing Single- and Multi-output

Boolean Functions with Maximal Algebraic Immunity. In Michele Bugliesi, Bart

Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP (2), volume 4052 of

Lecture Notes in Computer Science, pages 180–191. Springer, 2006.

[5] François Arnault and Thierry P. Berger. Design and Properties of a New Pseudo-

random Generator Based on a Filtered FCSR Automaton. IEEE Transactions on

Computers, 54(11):1374–1383, 2005.

[6] François Arnault, Thierry P. Berger, and Cédric Lauradoux. Update on F-FCSR

Stream Cipher. Technical Report 2006/025, eSTREAM, ECRYPT Stream Cipher

Project, 2006.

[7] François Arnault, Thierry P. Berger, and Marine Minier. On the Security of FCSR-

based Pseudorandom Generators. In SASC [54], pages 179–190.

[8] François Arnault, Thierry P. Berger, and Marine Minier. Some Results on FCSR

Automata with Applications to the Security of FCSR-based Pseudorandom Gener-

ators. To appear in IEEE Transactions on Information Theory, 2008.

[9] Gwénolé Ars. Application des Bases de Gröbner à la Cryptographie. PhD thesis,

Université de Rennes (France), 2005.

[10] Steve Babbage. A Space/Time Tradeoff in Exhaustive Search Attacks on Stream

Ciphers. IEE Conference Publication, European Convention on Security and Detec-

tion, 408, 1995.

125

126 Bibliography

[11] Thomas Baignères, Pascal Junod, and Serge Vaudenay. How Far can we go Beyond

Linear Cryptanalysis? In Lee [90], pages 432–450.

[12] Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson. Efficient Methods for

Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomials

over GF(2) via SAT-Solvers. Technical Report 2007/024, Cryptology ePrint Archive,

2007.

[13] Mihir Bellare and Daniele Micciancio. A New Paradigm for Collision-Free Hashing:

Incrementality at Reduced Cost. In Walter Fumy, editor, EUROCRYPT, volume

1233 of Lecture Notes in Computer Science, pages 163–192. Springer, 1997.

[14] Vincent Bénony, François Recher, Eric Wegrzynowski, and Caroline Fontaine.

Cryptanalysis of a Particular Case of Klimov-Shamir Pseudo-Random Generator.

In Tor Helleseth, Dilip V. Sarwate, Hong-Yeop Song, and Kyeongcheol Yang, ed-

itors, SETA, volume 3486 of Lecture Notes in Computer Science, pages 313–322.

Springer, 2004.

[15] Côme Berbain, Henri Gilbert, and Alexander Maximov. Cryptanalysis of Grain. In

Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer

Science, pages 15–29. Springer, 2006.

[16] Daniel J. Bernstein. Related-key Attacks: Who Cares? eSTREAM Discussion

Forum, ECRYPT Stream Cipher Project, 2005.

[17] Daniel J. Bernstein. Salsa20. Technical Report 2005/025, eSTREAM, ECRYPT

Stream Cipher Project, 2005.

[18] Daniel J. Bernstein. Salsa20/8 and Salsa20/12. Technical Report 2006/007, eS-

TREAM, ECRYPT Stream Cipher Project, 2006.

[19] Daniel J. Bernstein. Salsa20 and ChaCha. eSTREAM Discussion Forum, ECRYPT

Stream Cipher Project, 2007.

[20] Daniel J. Bernstein. What Output Size Resists Collisions in a XOR of Independent

Expansions? In ECRYPT Hash Workshop. ECRYPT Network of Excellence in

Cryptology, 2007.

[21] Daniel J. Bernstein. Chacha, a Variant of Salsa20. In SASC, pages 273–278.

ECRYPT Network of Excellence in Cryptology, 2008.

[22] Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Franklin [59], pages 290–305.

[23] Eli Biham and Orr Dunkelman. Differential Cryptanalysis in Stream Ciphers. Tech-

nical Report 2007/218, Cryptology ePrint Archive, 2007.

[24] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.

J. Cryptology, 4(1):3–72, 1991.

Bibliography 127

[25] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs for

Stream Ciphers. In Tatsuaki Okamoto, editor, ASIACRYPT, volume 1976 of Lecture

Notes in Computer Science, pages 1–13. Springer, 2000.

[26] Alex Biryukov, Adi Shamir, and David Wagner. Real Time Cryptanalysis of A5/1

on a PC. In Bruce Schneier, editor, FSE, volume 1978 of Lecture Notes in Computer

Science, pages 1–18. Springer, 2000.

[27] An Braeken and Joseph Lano. On the (Im)Possibility of Practical and Secure

Nonlinear Filters and Combiners. In Bart Preneel and Stafford E. Tavares, editors,

Selected Areas in Cryptography, volume 3897 of Lecture Notes in Computer Science,

pages 159–174. Springer, 2005.

[28] An Braeken, Joseph Lano, Nele Mentens, Bart Preneel, and Ingrid Verbauwhede.

SFINKS: A Synchronous Stream Cipher for Restricted Hardware Environments.

Technical Report 2005/026, eSTREAM, ECRYPT Stream Cipher Project, 2005.

[29] An Braeken and Bart Preneel. On the Algebraic Immunity of Symmetric Boolean

Functions. In Subhamoy Maitra, C. E. Veni Madhavan, and Ramarathnam Venkate-

san, editors, INDOCRYPT, volume 3797 of Lecture Notes in Computer Science,

pages 35–48. Springer, 2005.

[30] Gilles Brassard, editor. Advances in Cryptology - CRYPTO 1989, 9th Annual In-

ternational Cryptology Conference, Santa Barbara, California, USA, August 20-24,

1989, Proceedings, volume 435 of Lecture Notes in Computer Science. Springer,

1990.

[31] Samuel Burer, Renato D.C. Monteiro, and Yin Zhang. Maximum Stable Set For-

mulations and Heuristics Based on Continuous Optimization. Mathematical Pro-

gramming, 64:137–166, 2002.

[32] Christophe De Cannière. Trivium: A Stream Cipher Construction Inspired by Block

Cipher Design Principles. In Sokratis K. Katsikas, Javier Lopez, Michael Backes,

Stefanos Gritzalis, and Bart Preneel, editors, ISC, volume 4176 of Lecture Notes in

Computer Science, pages 171–186. Springer, 2006.

[33] Anne Canteaut. Open Problems Related to Algebraic Attacks on Stream Ciphers.

In Øyvind Ytrehus, editor, Coding and Cryptography, volume 3969 of Lecture Notes

in Computer Science, pages 120–134. Springer, 2005.

[34] Anne Canteaut and Michaël Trabbia. Improved Fast Correlation Attacks Using

Parity-Check Equations of Weight 4 and 5. In Preneel [106], pages 573–588.

[35] Claude Carlet. A Method of Construction of Balanced Functions with Optimum

Algebraic Immunity. Technical Report 2006/149, Cryptology ePrint Archive, 2006.

128 Bibliography

[36] Claude Carlet, Khoongming Khoo, Chu-Wee Lim, and Chuan-Wen Loe. Generalized

Correlation Analysis of Vectorial Boolean Functions. In Alex Biryukov, editor, FSE,

volume 4593 of Lecture Notes in Computer Science, pages 382–398. Springer, 2007.

[37] Philippe Chose, Antoine Joux, and Michel Mitton. Fast Correlation Attacks: An

Algorithmic Point of View. In Knudsen [89], pages 209–221.

[38] Don Coppersmith, Hugo Krawczyk, and Yishay Mansour. The Shrinking Generator.

In Douglas R. Stinson, editor, CRYPTO, volume 773 of Lecture Notes in Computer

Science, pages 22–39. Springer, 1993.

[39] Nicolas Courtois. Higher Order Correlation Attacks, XL algorithm and Cryptanal-

ysis of Toyocrypt. Technical Report 2002/087, Cryptology ePrint Archive, 2002.

[40] Nicolas Courtois. Algebraic Attacks on Combiners with Memory and Several Out-

puts. Technical Report 2003/125, Cryptology ePrint Archive, 2003.

[41] Nicolas Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear Feedback.

In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science,

pages 176–194. Springer, 2003.

[42] Nicolas Courtois. Cryptanalysis of Sfinks. In Dongho Won and Seungjoo Kim,

editors, ICISC, volume 3935 of Lecture Notes in Computer Science, pages 261–269.

Springer, 2005.

[43] Nicolas Courtois, Blandine Debraize, and Eric Garrido. On Exact Algebraic (Non)

Immunity of S-boxes based on Power Functions. Technical Report 2005/203, Cryp-

tology ePrint Archive, 2005.

[44] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient

Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations.

In Preneel [106], pages 392–407.

[45] Nicolas Courtois and Willi Meier. Algebraic Attacks on Stream Ciphers with Linear

Feedback. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in

Computer Science, pages 345–359. Springer, 2003.

[46] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with Overde-

fined Systems of Equations. In Yuliang Zheng, editor, ASIACRYPT, volume 2501

of Lecture Notes in Computer Science, pages 267–287. Springer, 2002.

[47] Paul Crowley. Truncated Differential Cryptanalysis of Five Rounds of Salsa20.

Technical Report 2005/073, eSTREAM, ECRYPT Stream Cipher Project, 2005.

[48] Deepak Kumar Dalai, Kishan Chand Gupta, and Subhamoy Maitra. Cryptograph-

ically Significant Boolean Functions: Construction and Analysis in Terms of Alge-

braic Immunity. In Gilbert and Handschuh [60], pages 98–111.

Bibliography 129

[49] Deepak Kumar Dalai, Kishan Chand Gupta, and Subhamoy Maitra. Notion of

Algebraic Immunity and its Evaluation related to Fast Algebraic Attacks. In BFCA,

pages 107–124, 2006.

[50] Deepak Kumar Dalai, Subhamoy Maitra, and Sumanta Sarkar. Basic Theory in

Construction of Boolean Functions with Maximum Possible Annihilator Immunity.

Des. Codes Cryptography, 40(1):41–58, 2006.

[51] Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard [30], pages

416–427.

[52] Christophe de Canniére, Joseph Lano, and Bart Preneel. Comments on the Redis-

covery of Time Memory Data Tradeoffs. Technical Report 2005/040, eSTREAM,

ECRYPT Stream Cipher Project, 2005.

[53] Frédéric Didier. Using Wiedemann’s Algorithm to Compute the Immunity Against

Algebraic and Fast Algebraic Attacks. In Rana Barua and Tanja Lange, editors,

INDOCRYPT, volume 4329 of Lecture Notes in Computer Science, pages 236–250.

Springer, 2006.

[54] ECRYPT Network of Excellence in Cryptology. SASC - The State of the Art of

Stream Ciphers, ECRYPT Workshop, Bochum, Germany, January 31 - February

1, 2007, Workshop Record, 2007.

[55] H̊akan Englund, Thomas Johansson, and Meltem Sönmez Turan. A Framework

for Chosen IV Statistical Analysis of Stream Ciphers. In K. Srinathan, C. Pandu

Rangan, and Moti Yung, editors, INDOCRYPT, volume 4859 of Lecture Notes in

Computer Science, pages 268–281. Springer, 2007.

[56] Jean-Charles Faugère. A New Efficient Algorithm for Computing Gröbner Bases

without Reduction to Zero (F5). In ISSAC: Proceedings of the 2002 International

Symposium on Symbolic and Algebraic Computation, pages 75–83, 2002.

[57] Jean-Charles Faugère and Gwénolé Ars. An Algebraic Cryptanalysis of Nonlinear

Filter Generators using Gröbner Bases. Technical Report 4739, INRIA, 2003.

[58] Eric Filiol. A New Statistical Testing for Symmetric Ciphers and Hash Functions.

In Robert H. Deng, Sihan Qing, Feng Bao, and Jianying Zhou, editors, ICICS,

volume 2513 of Lecture Notes in Computer Science, pages 342–353. Springer, 2002.

[59] Matthew K. Franklin, editor. Advances in Cryptology - CRYPTO 2004, 24th Annual

International CryptologyConference, Santa Barbara, California, USA, August 15-

19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer Science. Springer,

2004.

[60] Henri Gilbert and Helena Handschuh, editors. Fast Software Encryption, 12th In-

ternational Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised

Selected Papers, volume 3557 of Lecture Notes in Computer Science. Springer, 2005.

130 Bibliography

[61] Jovan Dj. Golic. On the Security of Nonlinear Filter Generators. In Dieter Gollmann,

editor, FSE, volume 1039 of Lecture Notes in Computer Science, pages 173–188.

Springer, 1996.

[62] Jovan Dj. Golic. Correlation Analysis of the Shrinking Generator. In Joe Kilian,

editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 440–

457. Springer, 2001.

[63] Jovan Dj. Golic. Embedding Probabilities for the Alternating Step Generator. IEEE

Transactions on Information Theory, 51(7):2543–2553, 2005.

[64] Jovan Dj. Golic, Vittorio Bagini, and Guglielmo Morgari. Linear Cryptanalysis of

Bluetooth Stream Cipher. In Knudsen [89], pages 238–255.

[65] Jovan Dj. Golic and Renato Menicocci. Edit Distance Correlation Attack on the

Alternating Step Generator. In Burton S. Kaliski Jr., editor, CRYPTO, volume

1294 of Lecture Notes in Computer Science, pages 499–512. Springer, 1997.

[66] Jovan Dj. Golic and Renato Menicocci. Edit Probability Correlation Attack on the

Alternating Step Generator. Sequences and Their Applications - SETA 1998, pages

213–227, 1998.

[67] Jovan Dj. Golic and Renato Menicocci. Edit Probability Correlation Attacks on

Stop/Go Clocked Keystream Generators. J. Cryptology, 16(1):41–68, 2003.

[68] Jovan Dj. Golic and Renato Menicocci. Correlation Analysis of the Alternating Step

Generator. Des. Codes Cryptography, 31(1):51–74, 2004.

[69] Jovan Dj. Golic and Renato Menicocci. Statistical Distinguishers for Irregularly

Decimated Linear Recurring Sequences. IEEE Transactions on Information Theory,

52(3):1153–1159, 2006.

[70] Mark Goresky and Andrew Klapper. Fibonacci and Galois Representations of

Feedback-with-Carry Shift Registers. IEEE Transactions on Information Theory,

48(11):2826–2836, 2002.

[71] C. G. Günther. Alternating Step Generators Controlled by De Bruijn Sequences.

In David Chaum and Wyn L. Price, editors, EUROCRYPT, volume 304 of Lecture

Notes in Computer Science, pages 5–14. Springer, 1987.

[72] Philip Hawkes and Gregory G. Rose. Rewriting Variables: The Complexity of Fast

Algebraic Attacks on Stream Ciphers. In Franklin [59], pages 390–406.

[73] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A Stream

Cipher Proposal: Grain-128. In IEEE International Symposium on Information

Theory, pages 1614–1618, 2006.

Bibliography 131

[74] Tor Helleseth, editor. Advances in Cryptology - EUROCRYPT 1993, Workshop

on the Theory and Application of of Cryptographic Techniques, Lofthus, Norway,

May 23-27, 1993, Proceedings, volume 765 of Lecture Notes in Computer Science.

Springer, 1994.

[75] Jin Hong. Some Trivial States of Trivium. eSTREAM Discussion Forum, ECRYPT

Stream Cipher Project, 2005.

[76] Jin Hong, Dong Hoon Lee, Yongjin Yeom, and Daewan Han. A New Class of Single

Cycle T-Functions. In Gilbert and Handschuh [60], pages 68–82.

[77] Jin Hong and Palash Sarkar. New Applications of Time Memory Data Tradeoffs.

In Roy [109], pages 353–372.

[78] Shaoquan Jiang and Guang Gong. On Edit Distance Attack to Alternating Step

Generator. Mathematical Properties of Sequences and Other Combinatorial Struc-

tures, pages 85–92, 2003.

[79] Thomas Johansson. Reduced Complexity Correlation Attacks on Two Clock-

Controlled Generators. In Kazuo Ohta and Dingyi Pei, editors, ASIACRYPT,

volume 1514 of Lecture Notes in Computer Science, pages 342–356. Springer, 1998.

[80] Fredrik Jönsson. Some Results on Fast Correlation Attacks. PhD thesis, Lund

University (Sweden), 2002.

[81] Pascal Junod and Serge Vaudenay. Optimal Key Ranking Procedures in a Statistical

Cryptanalysis. In Thomas Johansson, editor, FSE, volume 2887 of Lecture Notes

in Computer Science, pages 235–246. Springer, 2003.

[82] John Kelsey, Bruce Schneier, and David Wagner. Mod n Cryptanalysis, with Ap-

plications Against RC5P and M6. In Lars R. Knudsen, editor, FSE, volume 1636

of Lecture Notes in Computer Science, pages 139–155. Springer, 1999.

[83] Andrew Klapper and Mark Goresky. Feedback Shift Registers, 2-Adic Span, and

Combiners with Memory. J. Cryptology, 10(2):111–147, 1997.

[84] Alexander Klimov. Applications of T-Functions in Cryptography. PhD thesis, Weiz-

mann Institute of Science (Israel), 2004.

[85] Alexander Klimov and Adi Shamir. A New Class of Invertible Mappings. In Burton

S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of

Lecture Notes in Computer Science, pages 470–483. Springer, 2002.

[86] Alexander Klimov and Adi Shamir. Cryptographic Applications of T-Functions. In

Mitsuru Matsui and Robert J. Zuccherato, editors, Selected Areas in Cryptography,

volume 3006 of Lecture Notes in Computer Science, pages 248–261. Springer, 2003.

132 Bibliography

[87] Alexander Klimov and Adi Shamir. New Cryptographic Primitives Based on Mul-

tiword T-Functions. In Roy and Meier [110], pages 1–15.

[88] Alexander Klimov and Adi Shamir. The TFi Family of Stream Ciphers. Technical

report, Weizmann Institute of Science, 2004.

[89] Lars R. Knudsen, editor. Advances in Cryptology - EUROCRYPT 2002, Inter-

national Conference on the Theory and Applications of Cryptographic Techniques,

Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings, volume 2332 of

Lecture Notes in Computer Science. Springer, 2002.

[90] Pil Joong Lee, editor. Advances in Cryptology - ASIACRYPT 2004, 10th Inter-

national Conference on the Theory and Application of Cryptology and Information

Security, Jeju Island, Korea, December 5-9, 2004, Proceedings, volume 3329 of Lec-

ture Notes in Computer Science. Springer, 2004.

[91] Bernhard Löhlein. Attacks based on Conditional Correlations against the Nonlinear

Filter Generator. Technical Report 2003/020, Cryptology ePrint Archive, 2003.

[92] Yi Lu, Willi Meier, and Serge Vaudenay. The Conditional Correlation Attack: A

Practical Attack on Bluetooth Encryption. In Shoup [114], pages 97–117.

[93] James Massey. Shift-Register Synthesis and BCH Decoding. IEEE Transactions on

Information Theory, 15(1):122–127, 1969.

[94] Mitsuru Matsui. Linear Cryptoanalysis Method for DES Cipher. In Helleseth [74],

pages 386–397.

[95] Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic Attacks and Decomposi-

tion of Boolean Functions. In Christian Cachin and Jan Camenisch, editors, EU-

ROCRYPT, volume 3027 of Lecture Notes in Computer Science, pages 474–491.

Springer, 2004.

[96] Willi Meier and Othmar Staffelbach. Fast Correlation Attacks on Certain Stream

Ciphers. J. Cryptology, 1(3):159–176, 1989.

[97] Willi Meier and Othmar Staffelbach. Analysis of Pseudo Random Sequence Gener-

ated by Cellular Automata. In Donald W. Davies, editor, EUROCRYPT, volume

547 of Lecture Notes in Computer Science, pages 186–199. Springer, 1991.

[98] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.

[99] Joydip Mitra and Palash Sarkar. Time-Memory Trade-Off Attacks on Multiplica-

tions and T-Functions. In Lee [90], pages 468–482.

Bibliography 133

[100] Dukjae Moon, Daesung Kwon, Daewan Han, Jooyoung Lee, Gwon Ho Ryu,

Dong Wook Lee, Yongjin Yeom, and Seongtaek Chee. T-function Based Stream-

cipher TSC-4. Technical Report 2006/024, eSTREAM, ECRYPT Stream Cipher

Project, 2006.

[101] Frédéric Muller and Thomas Peyrin. Personal Communication, 2005.

[102] Frédéric Muller and Thomas Peyrin. Linear Cryptanalysis of the TSC Family of

Stream Ciphers. In Roy [109], pages 373–394.

[103] Yassir Nawaz, Kishan Chand Gupta, and Guang Gong. Algebraic Immunity of

S-boxes based on Power Mappings: Analysis and Construction. Technical Report

2006/322, Cryptology ePrint Archive, 2006.

[104] ECRYPT Network of Excellence in Cryptology. eSTREAM - The ECRYPT Stream

Cipher Project. See http://www.ecrypt.eu.org/stream.

[105] Sean O’Neil. Algebraic Structure Defectoscopy. Technical Report 2007/378, Cryp-

tology ePrint Archive, 2006.

[106] Bart Preneel, editor. Advances in Cryptology - EUROCRYPT 2000, International

Conference on the Theory and Application of Cryptographic Techniques, Bruges,

Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer

Science. Springer, 2000.

[107] Longjiang Qu, Chao Li, and Keqin Feng. A Note on Symmetric Boolean Functions

with Maximum Algebraic Immunity in Odd Number of Variables. IEEE Transac-

tions on Information Theory, 53(8):2908–2910, 2007.

[108] Sondre Rønjom and Tor Helleseth. A New Attack on the Filter Generator. IEEE

Transactions on Information Theory, 53(5):1752–1758, 2007.

[109] Bimal K. Roy, editor. Advances in Cryptology - ASIACRYPT 2005, 11th Inter-

national Conference on the Theory and Application of Cryptology and Information

Security, Chennai, India, December 4-8, 2005, Proceedings, volume 3788 of Lecture

Notes in Computer Science. Springer, 2005.

[110] Bimal K. Roy and Willi Meier, editors. Fast Software Encryption, 11th International

Workshop, FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, volume

3017 of Lecture Notes in Computer Science. Springer, 2004.

[111] Rainer A. Rueppel. Analysis and Design of Stream Ciphers. Springer, 1986.

[112] Markku-Juhani Olavi Saarinen. Chosen-IV Statistical Attacks on eSTREAM Ci-

phers. In Manu Malek, Eduardo Fernández-Medina, and Javier Hernando, editors,

SECRYPT, pages 260–266. INSTICC Press, 2006.

http://www.ecrypt.eu.org/stream

134 Bibliography

[113] Claude Shannon. Communication Theory of Secrecy Systems. Bell System Technical

Journal, 28(4):656715, 1949.

[114] Victor Shoup, editor. Advances in Cryptology - CRYPTO 2005, 25th Annual In-

ternational Cryptology Conference, Santa Barbara, California, USA, August 14-18,

2005, Proceedings, volume 3621 of Lecture Notes in Computer Science. Springer,

2005.

[115] Thomas Siegenthaler. Decrypting a Class of Stream Ciphers Using Ciphertext Only.

IEEE Transactions on Computers, 34(1):81–85, 1985.

[116] Dirk Stegemann. Extended BDD-Based Cryptanalysis of Keystream Generators.

In Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, Selected Areas in

Cryptography, volume 4876 of Lecture Notes in Computer Science, pages 17–35.

Springer, 2007.

[117] Rajesh Sundaresan. Guessing Under Source Uncertainty. IEEE Transactions on

Information Theory, 53(1):269–287, 2007.

[118] Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki, and Hiroki

Nakashima. Differential Cryptanalysis of Salsa20/8. In SASC [54], pages 39–50.

[119] Serge Vaudenay. A Classical Introduction to Cryptography: Applications for Com-

munications Security. Springer, 2006.

[120] Michael Vielhaber. Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential

Attack. Technical Report 2007/413, Cryptology ePrint Archive, 2007.

[121] Rade Vuckovac. MAG My Array Generator (A New Strategy for Random Number

Generation). Technical Report 2005/014, eSTREAM, ECRYPT Stream Cipher

Project, 2005.

[122] David Wagner. A Generalized Birthday Problem. In Moti Yung, editor, CRYPTO,

volume 2442 of Lecture Notes in Computer Science, pages 288–303. Springer, 2002.

[123] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full

SHA-1. In Shoup [114], pages 17–36.

[124] Kencheng Zeng, Chung-Huang Yang, and T. R. N. Rao. On the Linear Consistency

Test (LCT) in Cryptanalysis with Applications. In Brassard [30], pages 164–174.

[125] Muxiang Zhang and Agnes Hui Chan. Maximum Correlation Analysis of Nonlinear

S-boxes in Stream Ciphers. In Mihir Bellare, editor, CRYPTO, volume 1880 of

Lecture Notes in Computer Science, pages 501–514. Springer, 2000.

Curriculum Vitae

Personal Details

Family name: Fischer (birth name Künzli)

First name: Simon

Nationality: Swiss

Birthday: 13 November 1978 (Solothurn)

Education

March 2004 - February 2008 : PhD candidate in cryptology under supervisions of Prof.

Serge Vaudenay, Laboratory of Cryptography and Security (LASEC), Department of

Computer & Communication Sciences, École Polytechnique Fédérale de Lausanne (EPFL),

Switzerland, and Dr Willi Meier, University of Applied Sciences, Northwestern Switzer-

land (FHNW).

March 2001 - October 2003 : M.Sc. in physics, University of Bern. I graduated with a

master thesis entitled ”Accretion and Gas Flow” in computational physics (final assess-

ment 6/6).

September 1998 - December 2000 : B.Sc. in physics, University of Bern.

August 1993 - January 1998 : Matura Typus E (economy), Kantonsschule Solothurn.

135

	Title
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	Introduction
	Preliminaries
	Notational Preliminaries
	Definition of a Cryptosystem
	Stream Ciphers
	Other Cryptosystems
	Cryptographic Hash Functions
	Designs of Stream Ciphers
	Attacks on Stream Ciphers
	Statistical Tests

	Algebraic Immunity against Fast Algebraic Attacks
	Introduction
	Efficient Computation of Immunity
	Immunity of Symmetric Functions
	Summary

	Algebraic Immunity of Augmented Functions
	Introduction
	Algebraic Properties of S-boxes
	Algebraic Attacks based on the Augmented Function
	Generic Scenarios for Filter Generators
	First Application: Some Specific Filter Generators
	Second Application: Trivium
	Conditional Correlations
	Summary

	Attacks on the Alternating Step Generator
	Introduction
	Previous Attacks on ASG
	Johansson's Reduced Complexity Attacks
	New Reduced Complexity Attack
	Experimental Results
	Summary

	Analysis of F-FCSR
	Introduction
	Theoretical Background
	Sequences Produced by a Single Galois Register Cell
	A Canonical Representative
	Analysis of F-FCSR in Fibonacci Representation
	Summary

	Attacks on T-functions
	Introduction
	Cryptanalysis of Square Mappings
	Cryptanalysis of TSC-1
	Cryptanalysis of TSC-2
	Non-randomness of TSC-4
	Summary

	Attacks on Salsa20 and Related Primitives
	Introduction
	Description of Salsa20
	Key-Recovery Attack on Salsa20/6
	Related-Key Attack on Salsa20/7
	Key-Recovery Attack on Salsa20/8
	Key-Recovery Attack on ChaCha7
	Analysis of Rumba
	Summary

	Chosen IV Statistical Analysis
	Introduction
	Problem Formalization
	Scenarios of Attacks
	Derived Functions from Polynomial Description
	Functions Approximation
	Description of the Attack
	Application to Trivium
	Application to Grain
	Summary

	Conclusions
	Attack on MAG
	Brief Description
	Distinguishing Attack
	Example of an Attack

	Curriculum Vitae

