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ABSTRACT

Acoustic tomography is a type of inverse problem. The idea of estimating physical quantities that influence

sound propagation by measuring the parameters of propagation has proven to be successful in many practical

domains, including temperature and wind estimation in the atmosphere. However, in most of the previous

work in this area, the algorithms used have not been proven mathematically to provide the correct solution to

the inverse problem.

This paper considers the problem of reconstructing 2D temperature and wind fields by using acoustic

tomography setups. Primarily, it shows that the classical time-of-flight measurements are not sufficient to

reconstruct wind fields. As a solution, an additional set of measurements related solely to the parameters of

sound propagation—more precisely, to the angles of departure/arrival of sound waves—is suggested. To take

the full benefit of this additional information, the bent-ray model of sound propagation is introduced. In this

work, it is also shown that, when a temperature and a source-free 2D wind field are observed on bounded

domains, the complete reconstruction is possible using only measurements of the time of flight. Conversely,

the angles of departures/arrivals are sufficient to reconstruct a temperature and a curl-free 2D wind fields on

bounded domains. Further, an iterative reconstruction algorithm is proposed and possible variations to the

main scheme are discussed. Finally, the performed numerical simulations confirm the theoretical results,

demonstrate fast convergence, and show the advantages of the adopted bent-ray model for sound propa-

gation over the straight-ray model.

1. Introduction

Tomography aims at recovering an unknown multi-

dimensional field based on the interactions between the

considered medium and the signals that are emitted by

radiating devices and captured by appropriate sensors.

For many decades, tomography methods have been

widely used in physics, geophysics, medicine, and tech-

nology for nondestructive testing. Examples include the

use of magnetic resonance imaging to detect physio-

logical alterations of living tissues (Haacke et al. 1999)

and seismic tomography to image the interior of the

earth (Stewart 1991). The success of the tomographic

approach primarily stems from its noninvasive nature

and the fact that a significantly larger amount of data can

be obtained compared to the classical one-sensor–one-

measurement setup. Furthermore, tomographic mea-

surements acquire a global, as opposed to punctual,

knowledge of the measured field.

Acoustic tomography for monitoring phenomena in

the atmosphere, particulary temperature and wind, was

first proposed in the 1990s (Spiesberger and Fristrup

1990; Wilson and Thomson 1994) as an attempt to use

the techniques successfully applied in monitoring ocean

structure (Munk and Wunsch 1982). The application of

acoustic tomography is enabled by the strong depen-

dence of sound propagation on the spatial distribution

of air temperature and wind flow. Moreover, imaging

these physical quantities in near-ground atmosphere

with acoustic tomography has been already demon-

strated in field experiments (Wilson and Thomson 1994;

Chunchuzov et al. 1997; Ziemann et al. 1999b). How-

ever, in most of the previous work, the used algorithms

have not been proven mathematically to provide the

correct solution to the inverse problem. Hence, the goal

of this paper is to bring forth related material from
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adjacent fields of research and to present some known,

as well as new, results. In particular, the questions of

joint two-dimensional (2D) temperature and wind field

reconstruction, for general and specific cases of wind

field, are settled.

a. Temperature and wind field estimation

The temperature estimation is known to be a scalar

tomography problem in the sense that it amounts re-

covering a scalar function from its line integrals by

means of the Radon transform and its inverse.1 These

integrals can be typically computed from the time taken

by a sound wave to propagate from a transmitter to a

receiver, referred to as ‘‘time of flight.’’ The recon-

struction of wind fields, however, deals with vector to-

mography, in which the unknown field is described by a

vector function. Although time of flight is theoretically

sufficient to recover the complete wind field, the inverse

problem that needs to be solved in this case is highly

nonlinear, hence analytically intractable. Thus, it is then

necessary to resort to linearization, which, although

attractive from a computational standpoint, seriously

limits the reconstruction ability. In fact, Johnson et al.

(1977) were the first to notice that linearizing the rela-

tionship between the time of flight and the wind field

makes that one wind component become ‘‘invisible’’ to

the reconstruction process. Later, Norton (1992) laid

the groundwork for a theoretical treatment of this

problem by showing that, according to Helmholtz’s

theorem, every vector field can be written as the sum

of an irrotational (or curl free) and a solenoidal (or

source free) component and that only the solenoidal

part can be imaged from the time of flight. Additional

measurements are thus required to reconstruct the

missing component. It should be noted that this essen-

tial phenomenon is often left out in the literature of

acoustic tomography in the atmosphere. This has an

unpredictable effect on the reconstruction and perpet-

uates the incorrect belief that the inverse problem is ill-

conditioned, whereas it is actually ill-posed.

In this paper, an additional set of acoustic measure-

ments, related to the angles of departure and arrival of

sound waves, is suggested. An iterative algorithm that

uses both the time-of-flight and the angle-of-departure/

arrival measurements to recover the full temperature

and wind field is proposed. Note that a related approach

was suggested by Braun and Hauck (1991) in the con-

text of fluid tomography. They proposed an additional

set of measurements based on an optical Schlieren tech-

nique. However, their method is only applicable in rather

specialized scenarios with an optical access, whereas our

method is solely based on sound propagation.

b. Bounded domains and special cases of
wind fields

In most physical setups, we observe an unknown field

on a bounded domain where the boundary corresponds

to the closed curve on which the transmitters and re-

ceivers reside. The reconstruction of source-free vector

fields observed on a bounded domain is an important

problem and is studied in detail in the present manu-

script. Because the bounded domain admits harmonic

vector fields that are both irrotational and solenoidal,

the Helmholtz decomposition of the field is not any more

unique. The commonly studied transform-based solu-

tions (e.g., the solutions given by the Radon and Fourier

transforms) fail to give the correct result because they

separately reconstruct the solenoidal and irrotational

components. In this case, it is no longer clear which part

of the solenoidal component is reconstructed. To over-

come this problem, Norton (1992) proposed to measure

the normal component of the source-free wind (vector)

field on the boundary in addition to the time of flight.

Instead, we show that the time of flight is sufficient

for the reconstruction of a source-free wind field on a

bounded domain; that is, no additional measurements are

needed. Moreover, the estimation of the wind field is re-

duced to the estimation of its solenoidal component and,

consequently, the dimension of the problem is reduced to

half of the original one. We also design an algorithm that

reconstructs the temperature and the source-free wind

field from the time-of-flight measurements.

Other special cases of wind fields, namely, (i) the 2D

wind fields that are obtained as a slice of a 3D source-

free wind and (ii) irrotational wind fields, are also

studied. It is shown what types of measurements are

needed for their reconstruction.

c. Outline and notations

This paper is organized as follows: section 2 gives a

brief introduction to inverse problems, presents the the-

ory of sound propagation, introduces the bent-ray model,

and shows the limitations of the time-of-flight measure-

ments. It then emphasizes the importance of Helmholtz’s

theorem and introduces the angle-of-departure/arrival

measurements. A new method to obtain these measure-

ments is also proposed. In section 3, important practical

scenarios are discussed, emphasizing the cases for which

the required measurements can be reduced to only one of

1 Strictly speaking, because the sound rays bend when propa-

gating through inhomogeneous medium, the generalized Radon

transform needs to be applied.
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the two proposed sets. Section 4 describes the algorithms

needed for reconstruction of both general and special

temperature and wind field cases. The simulation results

are shown in section 5. Finally, in section 6, we give

concluding remarks.

Vectors and matrices will be noted in bold and the

mean (or reference) value of any parameter f will be

noted as f0. The scalar product of two vectors will be

denoted with � and the vector product will be denoted

with 3.

2. The inverse problem in acoustic tomography

a. General formulation

In the usual terminology of inverse problems (Wilson

and Thomson 1994), the set of parameters to be deter-

mined, which describes the state of the field, is called the

model. We denote the model as M. To obtain the in-

formation on the model parameters, measurements of

some observable parameters are needed. The experi-

mental measurements are called the data D. To com-

pute the model parameters, first the forward problem is

defined by devising a mapping G such that D 5 GM.

The inverse mapping M 5 G21D is then constructed

from the forward mapping.

Usually solving a nonlinear problem is analytically

not possible and computationally intractable; thus, for-

ward problems are often linearized. Commonly, it is

done by using the Taylor series expansion in terms of

the models,

D5GM
0

1G
l
(M�M

0
) 1 � � � ,

and keeping only the first-order terms, so that

D�D
0

5G
l
(M�M

0
), (1)

where Gl is a linearized mapping around the un-

perturbated modelM0. Although inverse problems are

often formulated in infinite dimensional spaces (or

continuous domain), limitations to a finite number of

measurements and the practical consideration of re-

covering only a finite number of unknown parameters

usually lead to the problems being recast in discrete

form. The discrete version of the problem is going to be

discussed in the reconstruction algorithms; however, for

showing the existence and the uniqueness of solution,

we will use the more convenient continuous form.

In the rest of this section, our goal is to define a set of

data acquired by acoustic tomography that enables wind

and temperature reconstruction. The choice, of course,

depends on the physics of sound propagation.

b. Sound propagation in the atmosphere and the
influence of wind and temperature

The propagation of sound waves in an inhomogeneous

moving medium, e.g., the atmosphere, is completely de-

termined by the system of linearized equations of fluid

dynamics. When the medium inhomogeneities are large

compared to the wavelength, the energy propagation is

well described by the ray theory of sound propagation.

The most simplified ray model is the straight-ray model,

and it has been widely used in the previous research

(Ziemann et al. 1999a; Barth et al. 2006). In this study, a

more accurate model is adopted (the bent-ray model)

that accounts for ray refraction.

The sound propagation is described by the group ve-

locity and a vector b, which is defined below (Ostashev

1997). The group velocity ug is given by

dx

dt
5 u

g
5 cn 1 v, (2)

where x is the position, t is the time, c is the sound speed,

n is the unit vector normal to the wave front, and v is

the wind velocity (see Fig. 1). The vector b is defined

as b 5 k/k0, where k being the wave vector. The direc-

tion of b is normal to the wave front, and b changes in

time as

db

dt
5�

c
0
$c

c
� $(b � v) 1

(b � v)$c

c
, (3)

where $ is the gradient operator. From Eqs. (2) and (3),

the ray path can be computed by imposing some initial

conditions on x and b. For example, the starting point

may correspond to the transmitter position x(0) 5 xT,

and the initial b(0) is chosen such that the ray reaches the

receiver while ensuring that at every point, k 1 k � v/c 5

k0c0/c. Also, the sound speed depends on the tempera-

ture as

c 5 20.05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T(1 1 0.511q)
p

, (4)

FIG. 1. Sound propagation. An example of a ray trajectory with

the following notation: T is the transmitter; R is the receiver; c is

the sound speed; n 5 [cosu sinu] is the unit vector normal to the

wave front; v is the wind field; s is the unit vector tangent to the

trajectory; and s? is the unit vector orthogonal to s.
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where T is the air temperature measured in kelvins, the

value 20.05 stands for the square root of the product of

specific gas constant for dry air (287.05 J kg21 K21) and

the ratio of specific heat at constant volume and con-

stant pressure for dry air (1.4), and q is the specific hu-

midity of the air (usually between 0 and 0.03 kg kg21).

Finally, taking into account Eqs. (2)–(4), it can be

concluded that the sound propagation in the atmo-

sphere strongly depends on temperature distribution

and wind flow. In the following, we are going to see

the observable parameters of the sound propagation

that will permit the reconstruction of the temperature

and wind fields. Because the temperature is uniquely

determined from the sound speed, the aim will be to

reconstruct c and v.

c. Time-of-flight measurements and linearization

Time-of-flight measurements are the classical mea-

surements provided by acoustic tomography methods.

The time of flight from a transmitter to a receiver is

equal to

t 5

ð

G

1

(cn 1 v) � s ds, (5)

where s is the unit vector tangent to the ray path G and

parallel to the group velocity. Note that time of flight

contains the information on c and v, but it is rather

impractical to choose Eq. (5) as the forward model.

Instead, Eq. (5) is linearized as

t ’
ð

G

1

c
0
n � s ds�

ð

G

(Dcn 1 v) � s
(c

0
n � s)2

ds,

’ t
0
� 1

c2
0

ð

G

(Dcn 1 v) � ds,

where Dc 5 c 2 c0 and Dc and jjvjj are typically much

smaller than c0. Now, the time-of-flight perturbations

are linearly related to Dc and v, as

(t
0
� t) c2

0 5

ð

G

(Dcn 1 v) � ds. (6)

The line integral on the right-hand side of Eq. (6) is also

called the longitudinal interaction lG by analogy with the

line integrals of the vector field defined in Braun and

Hauck (1991), namely

l
G

5

ð

G

(Dcn 1 v) � ds. (7)

It is important to check if we can uniquely determine

the changes in c and v from Eq. (7) or if lG is sufficient

for estimating c and v. The following example shows

that it is not the case.

EXAMPLE 1 (INVISIBLE WIND)

Assume the synthetic wind field shown in Fig. 2 [i.e.,

v1(r) 5 r] and a particular measurement setup (i.e., the

transmitters and the receivers are placed on a circle

centered at the origin). For simplicity of exposure, the

temperature is assumed to be constant (Dc 5 0). Using

the previously proposed linearization, the time of flight

between any two points on the boundary ›D is

t ’
ðL

�L

1

c
0

ds� 1

c2
0

ðL

�L

v
1
� ds 5

2L

c
0

5 t
0
,

because the integral of an odd function over a sym-

metric interval is always equal to zero. As a result, the

first-order time-of-flight perturbations or, equivalently,

the longitudinal interactions do not depend on this

particular wind and hence no information on the field

can be obtained whatsoever. More importantly, in our

model, the time-of-flight perturbations t2 caused by any

other ‘‘realistic’’ wind field v2 would not differ from the

perturbations caused by the wind v2 1 v1, because v1

shows to be an ‘‘invisible wind.’’ Conversely, if we

measure the time of flight t2, what is the underlying

wind? Now, it is clear that both v2 and v2 1 v1 are

the correct answers and the inverse problem has no

unique solution. Therefore, we need more information

to resolve this ambiguity. Again, the nonlinear model

provides more information because

t 5

ðL

�L

1

(c
0
n 1 v

1
) � s ds 5

ðL

�L

1

c
0
n � s 1 r � s ds,

5

ðL

�L

1

c
0

1 s
ds 5 log(c

0
1 L)� log(c

0
� L) 6¼ t

0
,

but it is of little practical interest, because of the diffi-

culty in solving a nonlinear inverse problem.

d. Vector tomography

Vector function cannot be recovered from the values

of its line integrals. The latter become obvious if one

considers the Helmholtz decomposition of vector fields.

Recall that according to Helmholtz’s theorem, every

vector field can be decomposed into an irrotational vI

(or curl-free $ 3 vI 5 0) and solenoidal vS (or source-

free $ � vS 5 0) component

v(x) 5 v
I
(x) 1 v

S
(x).
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The decomposition is not unique because there exist

fields (referred to as harmonic fields) that can be both

curl-free and source-free. For example, in a bounded

domain D, the harmonic fields are the special cases of

curl-free fields having the sources outside the domain D

or the source-free fields whose curls are closing outside

the domain D. Sometimes, it is appropriate to separate

this third harmonic component and to make the

decomposition unique, but for now we will keep the

two-component representation. The two components

can be described using potential functions

v
I
(x) 5 $f(x),

v
S
(x) 5 $ 3 c(x),

where f and c are the scalar and vectorial potentials of

the field v, respectively. For a 2D field (e.g., in the x–y

plane), c has only a component along the z axis: c 5 cez.

The representation using potentials is equivalent to the

full knowledge of the vector field and it amounts to rep-

resenting a vector field with the two scalar functions f(x)

and c(x). Applying the Helmholtz decomposition on v

in Eq. (7) and assuming, for simplicity, that Dc 5 0, we

have

l
G

5

ð

G

($f 1 $ 3 c) � ds,

5 f(x
R

)� f(x
T

) 1

ð

G

›c

›y
s

x
� ›c

›x
s

y
ds,

where the latter equality comes from the gradient the-

orem; that is,
Ð

a
b $f � ds 5 f(b) 2 f(a). Notice that, except

for the boundary values f(xR) and f(xT), the longitu-

dinal interaction does not give any information on the

irrotational wind component.

e. Additional set of measurements for irrotational
wind component

In the past, several researchers working in the

field of fluid tomography came to the conclusion that

time-of-flight measurements are not sufficient for vector

field reconstruction. Braun and Hauck (1991) proposed

a new set of measurements, called the transversal in-

teractions, which corresponds to the integration of the

normal component of the vector field along the propa-

gation path

t
G

5

ð

G

v � ds?,

where s? is normal to s, as shown in Fig. 1. The trans-

versal interaction provides the information on the ir-

rotational component of the vector field because

t
G

5

ð

G

($f 1 $ 3 c) � ds?,

5�c(x
R

) 1 c(x
T

) 1

ð

G

›f

›y
s

x
� ›f

›x
s

y
ds.

To obtain the transversal interaction, we suggest a new

method based solely on acoustic measurements.

Let us first slightly modify the definition of the trans-

versal interaction so that it also takes into account the

temperature fields; that is,

t
G

5

ð

G

(Dcn 1 v) � ds?.

Notice that the group velocity along the trajectory is

tangent to the trajectory; hence, at every point,

(c
0
n 1 Dcn 1 v) � s?5 0.

The transversal interaction can thus be written as

t
G

5�c
0

ð

G

n � ds?.

To estimate tG, we need to know n 5 (cosu sinu)T along

the trajectory G. As a first approximation, it can be

supposed that n is constant along G, which is true when

the temperature and wind fields are uniform (Sbaiz and

Vetterli 2003). Then,

FIG. 2. One example of an invisible wind field. The wind field v is

assumed to be radial: v(r) 5 r. For any two points on the boundary

xT and xR, the longitudinal interactions (i.e., the line integral of the

vector field) sum up to zero.
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t
G

5 c
0

ð

G

cosu

sinu

 !

� (s 3 e
z
) ds,

’ c
0
[cosu(y

R
� y

T
)� sinu(x

R
� x

T
)],

(8)

where s? 5 2s 3 ez, and tG can be approximately

computed if we know the angle u and the exact position

of the transmitter and the receiver. A better approxi-

mation of tG can be obtained if we take u 5 (uT 1 uR)/2,

where uT and uR are the corresponding angles at the

transmitter and the receiver side, respectively. Possible

further improvement can be achieved if we assume that

G is known (from the previous iteration) and that the

vector n changes linearly from nT at the transmitter side

to nR at the receiver side. It is also important to add that

the approximation in Eq. (8) will only be applied to the

error fields, and only the difference between n and its

current estimate n̂ is assumed to be constant. The error

introduced by the approximation will be evaluated in

the numerical example 1 of section 5.

The angles uT and uR can be estimated from the angles

of departure/arrival of the sound wave, as explained in

the following. Assume we want to measure the angle uR.

This angle can be estimated from nR, which is found as

n
R

5
u

g
� v

ku
g
� vk . (9)

The group velocity ug can be found using the acoustic

tripole shown in Fig. 3. We measure the time of flight

for R0, R1, and R2 and set Dt1 5 tR1 2 tR0 and Dt2 5

tR2 2 tR0, where tRi is the time of flight measured at the

receiver Ri. Then, it holds that

u
g
� p

1
5 ku

g
k2

Dt
1

and (10)

u
g
� p

2
5 ku

g
k2

Dt
2
, (11)

where p1 and p1 are shown in Fig. 3. The previous two

equations are both the acoustic dipole equation. We

need two of them because the speed ug is unknown.

From Eqs. (10) and (11), we can find ug. The same

configuration of the acoustic tripole can be used to

measure the local wind v at the receiver side. This can

be done using the principles of the sonic anemometer

(Coppin and Taylor 1983). Once ug and v are esti-

mated, we can compute nR and the angle uR from

Eq. (9). The method dual to this one can be used

to measure the angle uT. In this case, we would use

the time of flight from the transmitters T0, T1, and T2

(see Fig. 3).

f. Definition of the inverse problem

Finally, the transversal and the longitudinal interactions

together uniquely determine the temperature and the

wind field and they both can be estimated by measuring

the parameters of sound propagation. The correct general

formulation of the forward problem is then

l
G

5

ð

G

(Dcn 1 v) � ds and (12a)

t
G

5

ð

G

(Dcn 1 v) � ds?. (12b)

In the following, important practical scenarios will be

discussed emphasizing the situations in which the set of

measurements can be reduced to either Eq. (12a) or

Eq. (12b). Before we continue, note that when v 5 0,

the temperature estimation can be obtained from either

Eq. (12a) or Eq. (12b). In this case, the problem reduces

to a scalar tomography problem.

FIG. 3. The vectors nT and nR can be estimated by measuring the angles of departure and

arrival of the sound wave, and by measuring v and ug locally at the transmitter T or the

receiver R side. The angles of departure and arrival and the local wind measurements are

measured using the acoustic tripole (i.e., T0–T2 and R0–R2).
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3. Important practical cases

There are important practical scenarios that deserve

to be studied in more detail. They are all related to the

special cases of wind field because the temperature es-

timation was shown to be an ‘‘easy’’ problem. Also, they

all consider the physical fields on a bounded region.

a. 2D projection of a 3D source-free wind field

In a usual practical scenario, the 2D wind field that

will be reconstructed represents a slice of a 3D source-

free wind field. This is a common case in the atmo-

sphere, because the 3D wind field is indeed source-free.

However, because the flow leaves and enters the slice,

the assumption of the absence of sources is no longer

valid. Indeed, it is easy to see that the source-free con-

dition for a 3D wind field, $ � v 5 0, generally does not

extend to any of its 2D slices. For example, in the x–y

plane, we have

$ � v
xy

5
›y

x

›x
1

›y
y

›y
5�

›y
z

›z
6¼ 0. (13)

It should be then concluded that, in this case, both lG and

tG are needed for the reconstruction and no simplifica-

tion can be made.

b. Horizontal slice in the stratified atmosphere
and source-free wind field

In the atmosphere, there is a usual stratification caused

by gravity and the horizontal component vxy of wind field

is, as a rule, greater than the vertical component vz by

factor of 10–100. This gives a possibility to assume

sometimes that vz 5 0. More precisely, the vertical

component is commonly neglected for temporarily av-

erage wind data in micrometeorological studies, if the

influence of mesoscale vertical advection (e.g., con-

vection) is neglected. Hence, by inserting this assumption

into Eq. (13), the source-free condition in the horizontal

plane is now satisfied (i.e., $ � vxy 5 0). The wind field vxy

can thus be approximated by the solenoidal field.

We have seen that the longitudinal interaction con-

tains the information on the solenoidal wind field and

the problem seems to be solved. However, recall that

bounded domains admit harmonic fields that can be seen

both as solenoidal or irrotational. For example, Braun

and Hauck (1991) proposed to decompose the solenoidal

field into the ‘‘pure’’ solenoidal homogeneous compo-

nent vS0
and the residual harmonic component vH,

v
S

5 v
S0

1 v
H

,

where vS0
is homogeneous in that its normal component

is zero on the boundary (completely tangential). In their

solution, derived from the original inverse Radon trans-

form, it is shown that, in the case of a circular geometry

setup, the obtained result consists of vS0
and only one-

half of vH. The problem that the harmonic field is re-

constructed with only one-half of its magnitude can

be further treated by reapplying the same inversion

to achieve the correct reconstruction. However, the

harmonic component will be imagined differently in

different geometry setups and the successful recon-

struction might not be always possible. Another more

general approach was suggested by Norton (1992), where

he showed that the measurements of the normal com-

ponent of vS taken on the boundary of the region can be

used to resolve the ambiguity of the harmonic part.

c. Reconstruction of the source-free wind fields
on bounded domain

Here, we want to show that no additional measure-

ments are required to determine the source-free wind

field on the bounded domain. Toward this end, it suf-

fices to prove that the time of flight (in terms of the line

integrals) uniquely represents the field. This result is

stated in the following theorem.

1) THEOREM 1

The source-free vector field v in a bounded simply

connected domain D is uniquely determined from the

longitudinal interaction through D.

2) PROOF 1

Assume that there exist two different source-free vec-

tor fields v and u with the same line integrals through D:

ð

G

v � ds 5

ð

G

u � ds, for all G in D. (14)

Applying the 2D version of Stokes’ theorem on the dif-

ference field (v 2 u) and taking G 5 ›V for any V 2 D,

we have

þ

›V

(v� u) � ds 5

ð ð

V

$ 3 (v� u) � e
z

ds dl

þ

›V

v � ds�
þ

›V

u � ds 5

ð ð

V

$ 3 (v� u) � e
z

ds dl.

(15)

The left-hand side of Eq. (15) is identically equal to zero

by the hypothesis in Eq. (14), because the correspond-

ing line integrals along G1–G4 (see Fig. 4) are equal.

Taking the derivative over l (note that V can change

with l; e.g., by fixing G3 and moving G1(l) in the vertical

direction), we get
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0 5

ð

G1

$ 3 (v� u) � e
z

ds. (16)

In the previous equation, $ 3 (v 2 u) � ez is a scalar value

and does not depend on the mutual orientation of G and

v 2 u. Therefore, Eq. (16) coincides with the Radon

transform of this value; because it is always zero, we can

conclude that the value itself is identical to zero almost

everywhere:

$ 3 (v� u) 5 0.

Hence,

v� u 5 $u

almost everywhere for some potential function u defined

on D. Then, it also holds that

0 5

ð

G

(v� u) � ds 5

ð

G

$u � ds 5 u(x
R

)� u(x
T

).

Here, G is arbitrary, which leads to the conclusion that

u 5 const. on ›D,

Also, the field $u is by construction irrotational; be-

cause it represents the difference of the two solenoidal

fields, it is also solenoidal. These two conditions are

satisfied only when the field is a harmonic field. The

harmonic fields on D satisfy the solutions of the Laplace

equation, and they are uniquely determined by its

boundary values. Therefore,

u 5 const. on D, and then

$u 5 0 on D,

which proves that v 5 u, and that the source-free field

v is uniquely determined from its line integrals. QED

The above theorem demonstrates that the line inte-

grals contain sufficient information for the reconstruc-

tion of source-free vector fields. Although we show

that the transform is injective and therefore the inverse

transform exists, we do not provide an explicit inversion

formula. Instead, we are going to use algebraic recon-

struction methods to reconstruct the unknown field.

These methods are discussed in section 4.

d. Reconstruction of the irrotational wind fields
on bounded domains

It is possible to draw an analogy between the previous

case and the case of irrotational wind fields.

1) THEOREM 2

The curl-free vector field v in a bounded simply

connected domain D is uniquely determined from the

transversal interaction tG through D.

2) PROOF 2

Assume that there exist two different curl-free vector

fields v and u with the same tG integrals through D,

ð

G

v � ds?5

ð

G

u � ds? for all G in D.

Because the fields are irrotational, we have

v 5 $f
1

and

u 5 $f
2
,

and the transversal interaction can be rewritten as

ð

G

v � ds?5

ð

G

$ 3 f
1
e

z
� ds 5

ð

G

v9 � ds and

ð

G

u � ds?5

ð

G

$ 3 f
2
e

z
� ds 5

ð

G

u9 � ds.

It then also holds that

ð

G

v9 � ds 5

ð

G

u9 � ds for all G in D.

Applying the results from theorem 1, we have v9 5 u9

and

FIG. 4. Figure used in theorem 1 to show that a source-free

vector field in a bounded domain D is uniquely determined from

its line integrals taken over D. The surface V is enclosed by the

trajectories G1–G4.
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$ 3 f
1
e

z
5 $ 3 f

2
e

z
.

From the previous equation it also holds that

$f
1

5 $f
2

0 v 5 u,

which proves the claimed result. QED

Theorem 2 proves that the transversal interaction

uniquely determines an irrotational wind field on a

bounded region. This can be useful in case we are spe-

cifically interested in the irrotational wind component.

4. Reconstruction algorithms

So far, we have used continuous transforms (e.g., the

Radon transform) on which we could choose to apply

continuous inversions (e.g., the inverse Radon trans-

form, Fourier slice theorem, and back projection).

However, the Radon transform requires the knowledge

of the line integrals of the unknown function for all

possible lines and all directions. Even its discrete ver-

sion requires a large number of projections with a spe-

cial geometric setup (e.g., the projections have to be

uniformly distributed over 1808 or 3608) to produce re-

sults with a reasonable accuracy. An entirely different

approach for tomographic reconstruction consists of

first assuming that the measured field can be repre-

sented by an array ofM parameters m1, m2, . . . , mM and

then setting up a linear set of equations for the un-

knowns in terms ofD (i.e., the measured data d1, d2, . . . ,

dN). This allows the forward problem in Eq. (1) to be

written in the following matrix form:

d 5 Gm, (17)

where d and m are column vectors whose elements are

di 2 d0i and mi 2 m0i, with i being the index of the

transmitter–receiver path, and G is an N 3 M matrix

whose elements are

G
ij

5
›d

i

›m
j

.

Actually, Eq. (17) is a discretized version of Eqs. (12a)

and (12b).

a. Linear versus nonlinear tomography algorithm

From Eq. (17), we can define two problems. The first

one is linear and consists of recovering m, given G and d.

The assumption here is that the ray paths are known a

priori. Typically, they are assumed to be straight lines.

The second one is nonlinear and consists of recovering

m and incidentally G, given d. In this case, the ray paths

are unknown and the dependence between the paths

and the unknown fields is acknowledged. In nonlinear

tomography, an iterative algorithm is needed to find the

solution. The iterations alternate between 1) computing

an estimate of m (i.e., m̂) and 2) computing the trajec-

tories Ĝ that are then used to estimate Ĝ and d̂. The next

estimate d̂ is then found as a solution of the linear sys-

tem of equation

Gm� Ĝm̂ 5 d� d̂, assuming that

Gm� Ĝm̂ ’ Ĝ(m� m̂).

The basic structure of such an algorithm is given in

Table 1 (Sbaiz and Vetterli 2003).

Analyzing the algorithm, we see that there are only

two significant calculations contained in it. First, the

second step is just the solution of the forward problem

and it should not introduce any instability, because it

can be performed as accurately as the computing power

permits. The fourth step, on the other hand, is crucial

for the stability of the algorithm and it is actually the

main step both in the linear and nonlinear tomography.

The desired solution to the inverse problem will not, in

general, be the simple matrix inversion because (i) not

all of the data are linearly independent and/or (ii) not all

of the models are linearly independent. The latter in-

dicates that there are multiple solutions to the same

dataset and the results of the theoretical analysis carried

in the previous section should be used to choose the

proper datasets and the proper model to avoid this

case. Additionally, the matrix G might be poorly con-

ditioned and the noisy data may prevent finding the

exact solution to the system in Eq. (17). We now give a

brief overview of available methods. A more thorough

TABLE 1. Nonlinear inverse tomography algorithm.

Algorithm 1: Nonlinear tomography

Step 1: Set the iteration i 5 0 and mi as an initial model

(a constant or the previously best-known model).

Step 2: Compute the trajectories Ĝ, matrix Ĝ, and the

measurements d̂ for the current model mi.

Step 3: Set Dd 5 d� d̂. If Dd is sufficiently small, stop.

Step 4: Find the corrections Dm as the solution of the linear

system of equations:*

ĜDm 5 Dd. (25)

Step 5: Update the current version of the model as

mi11 5 mi 1 Dm.

Step 6: Set i 5 i 1 1 and go to step 2.

* It is also possible to solve the system Ĝmi11 5 d.
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treatment of inverse scheme can be found in Jovanović

(2008).

b. Inverse methods overview

A common idea behind most of the inversion

methods is to minimize the error e 5 d 2 Gm in some

sense.

1) GROUP 1

The l2-norm minimization is achieved, for example,

directly by means of the Moore–Penrose pseudoinverse

(Golub and Van Loan 1996), or iteratively, using gradi-

ent methods (Moon and Stirling 2000). When the matrix

G is large, the direct inversion is practically limited by

computational complexity and memory constraints, and

methods referred to as row action or algebraic recon-

struction technique (ART; Kak and Slaney 2001) are

more attractive. The main idea is that the solution is

updated by successively processing each equation sep-

arately. Improvements that lead to better convergence

are suggested in the simultaneous iterative reconstruc-

tion technique (SIRT; Kak and Slaney 2001).

2) GROUP 2

Another group of methods tries also to minimize the

squared error but in the statistical sense (on average).

This results in the stochastic methods based on Wiener

or Kalman filtering. In these methods, a priori knowl-

edge about the correlation structure of the solution and

the noise is needed. The methods can be extended to

include the correlation over space and time (Vecherin

et al. 2007).

3) GROUP 3

Depending on the specific example, the notion of the

a priori knowledge can be extended to any other useful

information that is available about the field (e.g., the

temperature is localized, the wind is a ‘‘smooth’’ function,

etc.). In many cases, the information cannot be incorpo-

rated into the covariance matrix and other deterministic

methods like parametric estimation (Jovanovic et al.

2007a,b) need to be applied. For example, it may be

known that in a certain transform domain the model

parameters m have a sparse representation (i.e., Tm 5

ms, where ms is a sparse vector). In that case, the new

solution ms to the system

GTyTm 5 GTym
s
5 d

is searched as a minimum l0-norm solution and it can be

achieved by different algorithms as linear programming

or convex projections. The concept is known as com-

pressed sensing (Donoho 2006) and has been shown

to be very useful for tomographic sampling in general

(Jovanović 2008).

In the proposed algorithm, we use a method from the

first group, because at this point no a priori information is

assumed. The main goal is to show that the approximation

steps applied in deriving the longitudinal and the trans-

versal components are valid and allow reconstructing of

the temperature and wind fields. Therefore, no regulari-

zation is applied and only the pure resolving power of the

method is considered.

As the inversion step, we use the conjugate-gradient

method with only few iterations (internal iteration of the

inversion method). The choice of only a few iterations

is motivated by the fact that our goal is not really to

solve Eq. (25) in Table 1 but to converge to the solution

of the nonlinear problem G(m) m 5 d. Although the

convergence is never insured, it is always ‘‘safer’’ to

make a smaller update Dm assuming that the direction

of the global minimum is close to the direction of the

minimum in Eq. (25).

c. Reconstruction of temperature and full wind field

To solve the problem, the unknown fields have to

be discretized. We define a grid encompassing the to-

mographic region and assume that the field can be

represented by values assigned at the nodes. Some in-

terpolation scheme is then used to find values between

the nodes. The limiting case of having infinitely many

grid points is equivalent to the continuous case assum-

ing that the underlying field is smooth.

In our algorithms, we use a model in which every

point of an unknown parameter m is approximated by a

linear combination of the nodal values

m(x) 5 �
N

k51
m

k
a

k
(x), (18)

where mk is the corresponding value at the node k and

ak(x) is an interpolating function. In general, the

points between the nodes are interpolated using

polynomials of a certain degree. For example, one can

cover the domain with a tiling of triangles, in which

case N 5 3, and the function ak(x) can be the two-

dimensional polynomial of order 1 (i.e., the compo-

nents are approximated by a plane for every triangle).

This is a standard interpolation in finite element

methods (Brenner and Scott 2002) called linear La-

grange triangle interpolation. The space generated by

the nodal variables is the space of two-dimensional
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continuous piecewise linear functions. This space is

appropriate if the wind field is represented by its yx

and yy components, because the continuity of the field

is ensured. If the trajectories are known, Eq. (18) al-

lows us to write the set of interactions in Eqs. (12a)

and (12b) as a linear combination of the unknown

components yx, yy, and Dc. For the longitudinal com-

ponent, we have

where the index j corresponds to the index of the cur-

rent triangle and Gj 5 G \ trianglej. The index k denotes

the vortex index within the current triangle. A similar

set of equations can be developed for the transversal

components by exchanging vector s with vector s?. In

matrix notation, we can write

G
l

G
t

� �

�m 5
l

t

� �

, (20)

where mT 5 (vx
Tvy

TDcT) and l and t are the vectors

with the longitudinal and transversal component, re-

spectively. The matrices Gl and Gt describe the lin-

ear relationship between the measurements and the

unknowns, as given in Eq. (19). Equation (20) can be

then solved by applying algorithm 1, which is given in

section 4a.

d. Reconstruction of temperature and source-free
wind field

In section 4b, it is shown that the longitudinal inter-

action allows the recovery of the temperature and 2D

source-free wind field. Therefore, the system in Eq. (20)

can be reduced to

G
l
�m 5 l. (21)

In the previous case, we chose to represent the wind

field as v 5 [yx, yy]. However, this representation does

not reflect the fact that the unknown field has only a

solenoidal component. Without this constraint, the

system in Eq. (21) is not invertible and admits an infinite

number of solutions. On the contrary, the representation

with the potentials c, more precisely with the derivatives

of c (i.e., v 5 $ 3cez 5 [›c/›y, �›c/›x]), automati-

cally imposes the source-free condition and discards all

invisible winds. To ensure the continuity of the wind field,

c and its derivatives need to be continuous. Therefore,

the linear Lagrange triangles are no longer appropriate

and we choose another finite element, namely the re-

duced Hseih–Clogh–Tocher (HCT) triangles (Braess

2001). The HCT interpolates the third-order polynomial

function that is continuous together with its first-order

derivatives. In the HCT representation, the region of

interest is covered with the triangular tiles and the points

inside the triangles are parameterized using the value of

the three vortex nodes mk, and six directional first-order

derivatives ›m/›x, ›m/›y (two per node):

m(x) 5 �
9

k51
m

k
a

k
(x).

This more complex tessellation adds complexity to the

algorithm because now every triangle is determined by

nine parameters, but the reconstructed wind is a second-

order polynomial function, whereas the reconstructed

temperature is a third-order polynomial. The coeffi-

cients in Gl have to be computed accordingly to the new

representation but similarly as before:

l
G

5 �
J

j51

ð

G
j

(Dcn 1 v) � ds 5 �
J

j51

ð

G
j

�
3

k51
a

k
(s)(Dc

k
n 1 v

k
) � ds

5 �
J

j51
�

3

k51

ð

G
j

a
k
(s)n � ds

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a
k

Dc
k

1 �
J

j51
�

3

k51

ð

G
j

a
k
(s)s

x
ds

 !

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

b
k

y
x,k

1 �
J

j51
�

3

k51

ð

G
j

a
k
(s)s

y
ds

 !

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

c
k

y
y,k

, (19)

l
G

5

ð

G

(Dcn 1 $ 3 ce
z
) � ds 5 �

J

j51

ð

G
j

(Dcn 1 $ 3 ce
z
) � ds

5 �
J

j51

ð

G
j

�
9

k51
a

k
(s) Dc

k

0

@

1

A

n � s 1 $ 3 �
9

k51
b

k
(s) c

k

0

@

1

A

e
z
� s ds,
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where ck and Dck are now the unknowns in the HCT

model. The previous equation is then incorporated in

the global nonlinear algorithm 1.

5. Simulation results

The simulation setup consists of a circular array that is

10 m in diameter; it is equipped with 20 transmitters and

20 receivers. Every transmitter sends a signal to every

receiver, which results in 400 transmission paths. The re-

gion of interest is covered with triangular cells of the

same size. Ideally, to resolve the sound speed and the

wind field at one nodal point the number of transmis-

sions affected by that node needs to be equal or greater

than the number of unknowns that characterize the

node, and also the total number of transmission paths

needs to be equal or greater than the total number of

unknowns. However, if no a priori knowledge is con-

sidered, the system of equations to be solved is usually

poorly conditioned. It can be stabilized by having more

measurements than the number of unknowns.

We first simulate the forward problem. Our code

implements Eqs. (2) and (3) for the ray tracing in an

inhomogeneous moving medium. A fifth-order Runge–

Kutta algorithm is applied to integrate the ray equations

forward in time. The shooting method is used to search

for the correct ray. The algorithm has an adjustable

integration step size and error tolerance at the receiver

side. The resulting time-of-flight and angle-of-departure/

arrival measurements are then taken as the measurement

set. The solution is computed using the iterative algo-

rithm described in section 4, with the conjugate-gradient

method in the fourth step of Table 1.

a. Error analysis

To evaluate the effect of noisy measurements we

add some error to both the time-of-flight and angle-of-

departure/arrival measurements. For a specific signal-

to-noise ratio (SNR) at the received signal, we can

estimate the error in the measurements as follows.

When the acoustic dipoles are used for measuring the

angle of arrivals, the error is determined by the error in

the time of flight and the error in the distance between

the two receivers in the acoustic dipole. Therefore, let

us first compute the Cramer–Rao lower bound of the

time-of-flight estimates. This bound determines the

lower bound for the error standard deviation st, and it is

actually admitted when the time of flight is estimated

from the peak of the cross correlation between the sent

and the received signal. In Woodward (1953), it is

computed that

s2
t $

1

8p2

1

SNR

1

T
o
B

1

f 2
c

1

(1 1 B2/12f 2
c)

, (22)

where To is the observation time, fc the central frequency,

and B the signal bandwidth. If we change the parameters

in Eq. (22) with the ones that we use in our experiments

(To 5 2 ms, fc 5 40 kHz, and B 5 2 kHz; Jovanović et al.

2006) and for the two cases of SNR, we get2

SNR 5 30 dB! s
t
’ 4.4 3 10�8 s and

SNR 5 10 dB! s
t
’ 4.4 3 10�7 s.

We can further use the previous result to compute the

error of the angle-of-arrival estimates. In an acoustic

dipole, the angle is computed from the time difference

cosu 5
(t

1
� t

2
)c

0

d
,

where d is the distance between the two receivers in the

dipole. The error standard deviation is then equal to

s
cosu

5
2s

t
c

0

d
.

Assuming that d 5 0.1 m and c0 5 334 m s21, we find

SNR 5 30 dB! s
cosu

5 2.9 3 10�4 and

SNR 5 10 dB! s
cosu

5 2.9 3 10�3.
(23)

The error in the angle measurements is then

s
u

5
s

cosu

sinu
. (24)

The error added to the angles of departure/arrival is then

generated as a uniformly distributed white noise with the

standard deviation computed in the previous equations.

FIG. 5. (left) Lagrange and (right) HCT triangles, where dots

denote the values, circles denote the first derivative, and arrows

denote the first directional derivatives.

2 Note that the SNR in Eq. (22) represents the signal energy

over the noise energy (S2/N2) and it is not given in decibels, which

we have used for later comparison.
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FIG. 6. Original (dashed) and reconstructed (solid) wind field for (a) the straight-ray model, with rmsey 5 1.63 m s21; (b) the bent-ray

model, with rmsey 5 1.35 m s21; (c) the bent-ray model with noise, with SNR 5 30 dB and rmsey 5 2.28 m s21; and (d) the bent-ray model

with noise, with SNR 5 20 dB and rmsey 5 2.46 m s21.
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FIG. 7. Deviation from the average sound speed for (a) true sound speed deviation and reconstruction error using

(b) the straight-ray model, with rmsec 5 1.95 m s21; (c) the bent-ray model, with rmsec 5 0.81 m s21; (d) the bent-ray

model with noise, with SNR 5 30 dB and rmsec 5 2.10 m s21; and (e) the bent-ray model with noise, with SNR 5 20 dB

and rmsec 5 2.02 m s21.
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b. Results

1) NUMERICAL EXAMPLE 1 (TEMPERATURE AND

FULL WIND)

In this example, we want to reconstruct a general

full wind and temperature field using the time-of-flight

and the angle-of-departure/arrival measurements. The

region of interest is covered with the Lagrangian tri-

angles (see Fig. 5). In every iteration, we aim at solving

the linearized system in Eq. (20). Figure 6a shows the

original wind field and the reconstructed wind field,

which is obtained after the first iteration and using the

straight-ray model. The arrows represent the amplitude

and the direction of the wind. The maximal wind speed

is 5 m s21. The root mean squared error (rmse) of

the wind reconstruction in this example is rmsey 5

1.63 m s21. Figure 6b shows the original and re-

constructed wind fields when the bent-ray model is used.

The rmse lowers to rmsey 5 1.35 m s21. This shows that

the bent-ray model and the nonlinear iterative algo-

rithm outperform the straight-ray model. Further, the

noise is added to the angle-of-arrival measurements.

In Fig. 6c, the assumed SNR is 30 dB (corresponds to

scosu 5 2.9 3 1024), which results in rmsey 5 2.28 m s21.

Figure 6d shows the original and the reconstructed wind

field when SNR 5 20 dB (corresponds to scosu 5 9.2 3

1024), which induces rmsey 5 2.46 m s21.

The original sound speed variation is shown in Fig. 7a.

The reconstruction errors for the straight- and bent-ray

models are represented in Fig. 7b (rmsec 5 1.63 m s21)

and Fig. 7c (rmsec 5 0.81 m s21), respectively. The re-

construction errors for the noisy received signals, with

SNR 5 30 dB and SNR 5 20 dB, are represented in

Figs. 7d,e, respectively. Such as for the wind field, the

reconstruction with the bent-ray model outperforms the

straight-ray model reconstruction. A comparative error

overview is given in Table 2, and it additionally includes

the rmse for the SNR 5 15 dB and the straight-ray

model with noise.

2) NUMERICAL EXAMPLE 2 (TEMPERATURE AND

SOURCE-FREE WIND)

In the second example, it is assumed that the 2D slice

of a wind field is source-free. The temperature and the

wind field are reconstructed from the time-of-flight

measurements. The measurement setup is identical to

the previous one, except that, in this case, the region of

interest is covered by the HCT triangles (see Fig. 5). We

assume that the SNR is 30 and 10 dB and corresponds to

st 5 4.4 3 1028 and st 5 4.4 3 1027, respectively. The

original wind and the reconstructed wind fields with

noisy data are shown in Fig. 8. For SNR 5 30 dB, the

difference between the original and reconstructed wind

fields is not noticeable. Only a slight difference can be

seen for SNR 5 10 dB. This proves that the recon-

structions are robust to the error in the time-of-flight

measurements. The original sound speed variation and

the corresponding reconstructions are shown in Figs. 9.

As for the wind, the results show to be robust to the

error in the time-of-flight measurements.

For both examples, the error inside the region of in-

terest is usually smaller than the error on the border.

This is because the points inside the region are common

to many trajectories; hence, more information about

these points is available. Therefore, we can say that

the points inside are better conditioned (in terms of the

condition number) than the points on the border. Con-

sequently, because the error in the measurements trans-

lates to the error in the reconstruction proportionally to

the inverse of the condition number, the error on the

border is always higher than the error inside the region of

interest.

The idea of performing only a few (one or two inner)

iterations in the conjugate-gradient method showed to

be successful. Numerical simulations confirmed that the

iterative algorithm achieves better reconstruction than

the one-step inversion. For both examples, the iterative

algorithm stops after at most 5 iterations. The stopping

conditions are defined based on 1) the error between the

measurements and the forward prediction of the current

system, 2) the number of iterations, and 3) the variation

in the solution over the past iterations.

6. Conclusions

The goal of this paper was to cover important points

related to the use of 2D acoustic tomography for esti-

mating temperature and wind in the atmosphere. It

TABLE 2. Comparative error for temperature and full wind reconstruction.

Straight ray Bent ray

rmsey (m s21) rmsec (m s21) rmsey (m s21) rmsec (m s21)

No noise 1.63 1.95 1.35 0.81

SNR 5 30 dB 3.51 2.10 2.28 2.34

SNR 5 20 dB 3.9 2.02 2.46 2.55

SNR 5 15 dB 3.67 2.07 2.66 2.59
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aimed in setting up the inverse problem properly and

showing the techniques for obtaining the solution.

Particularly, we showed that, when estimating a 2D slice

of temperature and wind, the time-of-flight measure-

ments are not sufficient. Only the cases of source-free

2D wind fields (that are not automatically extended

from a 3D source-free condition) can be faithfully

reconstructed. Otherwise, a new set of measurements

related to the angles of departure/arrival of a sound

wave is needed. We showed how these measurements

can be obtained in practice. When an acoustic tripole is

used, the angles of departure/arrival are estimated from

the time-of-flight measurements. Hence, in that case,

the full reconstruction can be realized using only the

time-of-flight measurements.

Numerical simulations confirmed that the approxi-

mation steps applied in deriving the longitudinal and

transversal interactions lead to a good reconstruction.

Also, the bent-ray model outperforms the straight-ray

model. An interesting question was to see how the noise

in the measurements affects the reconstruction. Nu-

merical simulations showed that the algorithms are ro-

bust to the error in the time-of-flight measurements (see

numerical example 2). The method is less robust to the

error in the angle-of-departure/arrival measurements.

Simulation results showed that the additional mea-

surements improved the reconstruction when the re-

ceived signal has the SNR $ 20 dB. For smaller SNR,

the improvement of the bent-ray reconstruction is

smaller compared to the reconstruction with the straight

rays, for which we do not need additional angle-of-

departure/arrival measurements. However, this obser-

vation is dependent on the specific example that we

consider, and the choice between the straight-ray (no

angle-of-departure/arrival measurements and linear to-

mography) and bent-ray (additional angle-of-departure/

arrival measurements and nonlinear tomography) methods

needs to be taken by considering the following questions:

1) In the given scenario, can we neglect the downdraft

and the updraft winds? Equivalently, how strong is the

irrotational wind field? 2) What error in the measure-

ments can we expect? Consequently, given this error, is

the use of more precise bent-ray algorithms justified? It is

worth studying these questions in relation to specific

practical situations (e.g., flat terrain versus complex ter-

rain), and we envision these topics in our future research.

We also studied the problem of recovering source-free

vector fields. As opposed to the previously suggested

solution, we show that the time-of-flight measurements

are indeed sufficient for the reconstruction. However, to

obtain a correct solution, it is important to include the

source-free condition in the reconstruction process. As

an example, we referred to the case of estimating a

horizontal slice of the wind field in the stratified atmo-

sphere. Numerical simulation showed that the method is

robust to the error in the time-of-flight measurements.

FIG. 8. Original (dashed) and reconstructed (solid) wind field for (a) the original and reconstructed wind field overlap for SNR 5 30 dB of

the received signal and (b) the original and reconstructed wind fields for SNR 5 10 dB of the received signal.
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From a practical point of view, acoustic tomography

showed to be a powerful method for studying small-

scale temperature and wind distributions in the atmo-

sphere with a high spatial resolution. In this context, it

can be a very important tool in the study and validation

of the theories of turbulence flow. One method for

reconstructing turbulent flow based on acoustic to-

mography is already suggested in Vecherin et al. (2007).

Although, the authors ignore the main results of this

paper (that the time-of-flight measurements are not

sufficient for the full wind reconstruction), the exposed

ideas can be useful when applied with appropriate

changes. The time resolution in acoustic tomography is

high as well, because the information is obtained with-

out interaction with the atmosphere and without inertia.

Still, the time and effort to apply the tomographic

method outside the laboratory are high. One of the

problems is that a precise calibration should take into

account all delays in the system. However, the precise

calibration can be avoided when only a variation of

sound speed is monitored. In that case, the variation is

calculated with respect to the measurements taken at

some referent time instant.
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