Refining preference-based search results through Bayesian filtering

Preference-based search (PBS) is a popular approach for helping consumers find their desired items from online catalogs. Currently most PBS tools generate search results by a certain set of criteria based on preferences elicited from the current user during the interaction session. Due to the incompleteness and uncertainty of the user's preferences, the search results are often inaccurate and may contain items that the user has no desire to select. In this paper we develop an efficient Bayesian filter based on a group of users' past choice behavior and use it to refine the search results by filtering out items which are unlikely to be selected by the user. Our preliminary experiment shows that our approach is highly promising in generating more accurate search results and saving user's interaction effort. Copyright 2007 ACM.


Published in:
International Conference on Intelligent User Interfaces, Proceedings IUI, 294-297
Year:
2007
Publisher:
Association for Computing Machinery, New York, NY 10036-5701, United States
Keywords:
Note:
Human Computer Interaction Group, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland
Laboratories:




 Record created 2008-01-14, last modified 2018-01-28

External link:
Download fulltext
n/a
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)