
A Comparative Study of Compound Critique
Generation in Conversational Recommender

Systems

Jiyong Zhang and Pearl Pu

Human Computer Interaction Group,
Ecole Polytechnique Fédérale de Lausanne (EPFL),

CH-1015, Switzerland
{jiyong.zhang, pearl.pu}@epfl.ch

Abstract. Critiquing techniques provide an easy way for users to feed-
back their preferences over one or several attributes of the products in
a conversational recommender system. While unit critiques only allow
users to critique one attribute of the products each time, a well-generated
set of compound critiques enables users to input their preferences on
several attributes at the same time, and can potentially shorten the in-
teraction cycles in finding the target products. As a result, the dynamic
generation of compound critiques is a critical issue for designing the
critique-based conversational recommender systems. In earlier research
the Apriori algorithm has been adopted to generate compound critiques
from the given data set. In this paper we propose an alternative approach
for generating compound critiques based on the multi-attribute utility
theory (MAUT). Our approach automatically updates the weights of the
product attributes as the result of the interactive critiquing process. This
modification of weights is then used to determine the compound critiques
according to those products with the highest utility values. Our exper-
iments show that the compound critiques generated by this approach
are more efficient in helping users find their target products than those
generated by the Apriori algorithm.

Keywords: conversational recommender system, critiquing, compound
critique, multi-attribute utility theory, interaction cycle.

1 Introduction

Critiquing techniques have proven to be a popular and successful approach in
conversational recommender systems because it can help users express their pref-
erences and feedbacks easily over one or several aspects of the available product
space[1][2][3][4]. The simplest form of critiquing is unit critiquing which allows
users to give feedback on a single attribute or feature of the products at a
time[1]. For example, [CPU Speed: faster] is a unit critique over the CPU Speed
attribute of the PC products. If a user wants to express preferences on two or
more attributes, multiple interaction cycles between the user and the system

V. Wade, H. Ashman, and B. Smyth (Eds.): AH 2006, LNCS 4018, pp. 234–243, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Comparative Study of Compound Critique Generation 235

are required. To make the critiquing process more efficient, a wise treatment is
to generate compound critiques dynamically to enable users to critique on sev-
eral attributes in one interaction cycle[2][3]. Typically, for each interaction cycle
there are a large number of compound critiques available. However, the system
is able to show only a few of them on the user interface. Thus a critical issue for
recommender systems based on compound critiques is to dynamically generate
a list of high quality compound critiques in each interaction cycle to save the
users’ interaction effort.

McCarthy et al.[5] have proposed a method of discovering the compound cri-
tiques through the Apriori algorithm used in the market-basket analysis method
[6]. It treats each critique pattern as the shopping basket for a single customer,
and the compound critiques are the popular shopping combinations that the
consumers would like to purchase together. Based on this idea, Reilly et al.[2]
have developed an approach called dynamic critiquing to generate compound
critiques. As an improved version, the incremental critiquing[3] approach has
also been proposed to determine the new reference product based on the user’s
critique history. A typical interaction process of both dynamic critiquing and
incremental critiquing approach is as follows. First the system shows a reference
product to the user. At the same time the system generates hundreds of com-
pound critiques from the data set via the Apriori algorithm, and then determines
several of them according to their support values for the user to critique. After
the user’s critique is chosen, the system then determines a new reference prod-
uct and updates the list of critiques for the user to select in the next interaction
cycle. This process continues until the target product is found.

The Apriori algorithm is efficient in discovering compound critiques from a
given data set. However, selecting compound critiques by their support values
may lead to some problems. The critiques determined by the support values
can only reveal “what the system would provide,” but cannot predict “what the
user likes.” For example, in a PC data domain if 90 percent of the products
have a faster CPU and larger memory than the current reference product, it is
unknown whether the current user may like a PC with a faster CPU and larger
memory. Even though the system based on the incremental critiquing approach
maintains a user preference model to determine which product to be shown in
the next interaction cycle, some good compound critiques may still be filtered
out before the user could choose because their support values do not satisfy the
requirement. If the users find that the compound critiques cannot help them find
better products within several interaction cycles, they would be frustrated and
give up the interaction process. As a result, a better approach for generating
compound critiques should allow the users to gradually approach the products
they preferred and to find the target products with less number of interaction
cycles.

In this paper we argue that determining the compound critiques based on
the user’s preference model would be more efficient in helping users find their
target products. We propose a new approach to generate compound critiques
for conversational recommender systems with a preference model based on

236 J. Zhang and P. Pu

multi-attribute utility theory(MAUT)[7]. In each interaction cycle our approach
first determines a list of products via the user’s preference model, and then
generates compound critiques by comparing them with the current reference
product. In our approach, the user’s preference model is maintained adaptively
based on user’s critique actions during the interaction process, and the com-
pound critiques are determined according to the utilities they gain instead of
the frequency of their occurrences in the data set. We also carry out a set of
simulation experiments to show that the compound critiques generated by our
approach can be more efficient than those generated by the Apriori algorithm.

This paper is organized as follows. The related research work is reviewed in
section 2. Section 3 describes our approach of generating compound critiques
based on MAUT. Section 4 reports a set of simulation experiments to compare
the performance of various critique approaches. Discussions and conclusions are
given in section 5 and 6 respectively.

2 Related Work

Other than the unit critiquing and compound critiquing approaches that we
have mentioned, a number of various critiquing approaches based on examples
also have been proposed in recent years. The ATA system [8] uses a constraint
solver to obtain a set of optimal solutions and shows five of them to the user
(three optimal ones and two extreme solutions). The Apt Decision [9] uses learn-
ing techniques to synthesize a user’s preference model by critiquing the example
apartment features. The SmartClient approach[10] gradually refines the user’s
preference model by showing a set of 30 possible solutions in different visual-
izations to assist the user making a travel plan. The main advantage of these
example-based critiquing approaches is that users’ preferences can be stimulated
by some concrete examples and users are allowed to reveal preferences both im-
plicitly (choosing a preferred product from a list) and explicitly (stating preferred
values on specific attributes). In fact, these example-based critiquing approaches
can also “generate” compound critiques easily by comparing the critique ex-
amples with the current recommended product. But they are more viewed as
tradeoff navigation because users have to state the attribute values that they
are willing to compromise against those that they are hoping to improve[11].
The approach of generating compound critiques that we proposed here can be
regarded as an example-based critiquing approach because we determine the
compound critiques from a list of critique examples. However, the difference is
that our approach concentrates on constructing user’s preferences automatically
through the choice of the compound critiques, and the user can save some effort
in stating the specific preferences values during the interaction process.

Generating diverse compound critiques is also an important issue for conser-
vational recommender systems as a number of researchers have pointed out that
diversity has the potential to make the interaction more efficient[12][13][14]. For
example, in [14] diversity is enhanced by reducing the overlap among those com-
pound critiques generated by the dynamic critiquing approach. In our approach

A Comparative Study of Compound Critique Generation 237

PM— user’s preference model; ref — the current reference product;
IS— item set; CI— critique items; CS— critique strings; U— utility value;
β— the weight adaptive factor

//The main procedure
1. procedure Critique MAUT ()
2. PM = GetUserInitialPreferences ()
3. ref = GenInitialItem (PM)
4. IS ←− all available products – ref
5. while not UserAccept (ref)
6. CI = GenCritiqueItems (pm, IS)
7. CS = GenCritiqueStrings (ref, CI)
8. ShowCritiqueInterface (CS)
9. id = UserSelect (CS)

10. ref’ = CIid

11. ref ←− ref’
12. IS ←− IS – CI
13. PM = UpdateModel (PM, ref)
14. end while
15. return

//user select the critique string
16. function UserSelect (CS)
17. cs = the critique string user selects
18. id = index of cs in CS
19. return id

//select the critique items by utilities
20. function GenCritiqueItems (PM, IS)
21. CI = {}
22. for each item Oi in IS do
23. U(Oi) = CalcUtility(PM, Oi)
24. end for
25. IS′ = Sort By Utility (IS, U)
26. CI = Top K (IS′)
27. return CI

//Update user’s preferences model
28. function UpdateModel(PM, ref)
29. for each attribute xi in ref do
30. [pvi, pwi] ←− PM on xi

31. if (V (xi) ≥ pvi)
32. pw′

i = pwi × β
33. else
34. pw′

i = pwi/β
35. end if
36. PM ←− [V (xi), pw′

i]
37. end for
38. return PM

Fig. 1. The algorithm of critiquing based on MAUT

the weight of each product attribute is revised adaptively during the critiquing
process, thus we believe that there is a certain degree of diversity between the
compound critiques determined by our approach. The detail investigation of
generating diverse compound critiques will be left in our future work.

3 Generating Compound Critiques Based on MAUT

MAUT[7] is a well known and powerful method in decision theory for ranking
a list of multi-attribute products according to their utilities. Here we only use
its simplified weighted additive form to calculate the utility of a product O =
〈x1, x2, ..., xn〉 as follows:

U(〈x1, · · · , xn〉) =
n∑

i=1

wiVi(xi) (1)

where n is the number of attributes that the products may have, the weight
wi(1 ≤ i ≤ n) is the importance of the attribute i, and Vi is a value function of
the attribute xi which can be given according to the domain knowledge during
the design time.

238 J. Zhang and P. Pu

The general algorithm of the interaction process with this proposed approach
(called Critique MAUT) is illustrated by Figure 1. We use a preference model
which contains the weights and the preferred values for the product attributes
to represent the user’s preferences. At the beginning of the interaction process,
the initial weights are equally set to 1/n and the initial preferences are stated by
the user. In each interaction cycle, the system generates a set of critique strings
for the user to select as follows. Instead of mining the critiques directly from
the data set based on the Apriori algorithm, the Critique MAUT approach first
determines top K (in practice we set K = 5) products with maximal utilities,
and then for each of the top K products, the corresponding critique string is
determined by comparing it with the current reference product. This “from case
to critique pattern” process of producing compound critique strings is straight-
forward and has been illustrated in [5].

After the user has selected one of the critique strings, the corresponding cri-
tique product is assigned as the new reference product, and the user’s preference
model is updated based on this critique selection. For each attribute, the at-
tribute value of the new reference product is assigned as the preference value,
and the weight of each attribute is adaptively adjusted according to the differ-
ence between the old preference value and the new preference value. If the new
preference value is equal or better than the old preference value, the current
weight on the given attribute is multiplied by a factor β, otherwise it is divided
by β (See line 30-36 on Figure 1). In practice we set the factor β = 2.0. Based
on the new reference product and the new user preference model, the system is
able to recommend another set of critique strings for the user to critique until
the user finds the target product or stops the interaction process.

Figure 2 shows a screen shot of a personal computer recommender system
that we have developed based on the proposed approach. In this interface, the
user can see the detail of a reference product, and he or she can either conduct
a unit critique or a compound critique to reveal additional preferences. It is
very similar to the user interface proposed in [3] except that we show 5 different
compound critiques generated by our approach in each interaction cycle.

4 Experiments and Results

We carried out a set of simulation experiments to compare the performance of
the basic unit critiquing approach (Critique Unit), the incremental critiquing
approach which generates compound critiques with the Apriori algorithm (Cri-
tique Apriori)[3], and our approach generating compound critiques based on
MAUT (Critique MAUT). In the The experiment procedure is similar to the
simulation process described in [3] except for two differences. One is that we as-
sume at the beginning the user will reveal several preferences to the system. We
observed that an average user states about 3 initial preferences. Thus we ran-
domly determine the number of the initial preferences from 1 to 5. Another differ-
ence is that in each interaction process we simply appoint a product as the target
product directly instead of the leave-one-out strategy. Both the Critique Apriori

A Comparative Study of Compound Critique Generation 239

Current

Reference

Product

Compound

CritiquesUnit

Critiques

Fig. 2. The user interface with both unit and compound critiques

and the Critique MAUT approaches generate 5 different compound critiques for
user to choose in each interaction cycle. The Critiue Apriori approach adopts
the lowest support (LS) strategy with a minimum support threshold of 0.25 to
generate compound critiques. In our experiments each product in the data set
is appointed as the target choice for 10 times and the number of interaction
cycles for finding the target choice are recorded. Two different types of data set
are utilized in our experiments. The apartment data set used in [11] contains 50
apartments with 6 attributes: type, price, size, bathroom, kitchen, and distance.
The PC Data set [2] contains 120 PCs with 8 different attributes. This data set
is available at http://www.cs.ucd.ie/staff/lmcginty/PCdataset.zip.

Figure 3 (1) and (2) show the average interaction cycles of different ap-
proaches. Compared to the baseline Critique Unit approach, the Critique Apriori
approach can reduce the average interaction cycles by 15% (for apartment data
set) and 28% (for PC data set) respectively. This validates earlier research that
the interaction cycles can be reduced substantially by utilizing compound cri-
tiques. Moreover, the results show that the proposed Critique MAUT approach
can reduce the interaction cycles over 20% compared to the Critique Apriori
approach (significant difference, p < 0.01).

We define the accuracy as the percentage of finding the target product suc-
cessfully within a certain number of interaction cycles. As shown in Figure 3 (3)

240 J. Zhang and P. Pu

Average Interaction Cycles

(Apartment Dataset)

4.66

3.65

5.42

0

1

2

3

4

5

6

1

C
y
c
le

s

Critique_Unit Critique_Apriori Critique_MAUT

Average Interaction Cycles

(PC Dataset)

6.42

4.70

9.03

0

2

4

6

8

10

1

c
y
c
le

s

Critique_Unit Critique_Apriori Critique_MAUT

 (1) (2)

Interaction Cycles vs. Accuracy

(Apartment Dataset)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

Interaction Cycles

A
c
c
u

ra
c
y

Critique

_Unit

Critique

_Apriori

Critique

_MAUT

Interaction Cycles vs. Accuracy

(PC Dataset)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

Interaction Cycles

A
c
c
u

ra
c
y

Critique

_Unit

Critique

_Apriori

Critique

_MAUT

 (3) (4)

Fig. 3. The results of the simulation experiments with the PC data set and the apart-
ment data set. (1)The average interaction cycles for the apartment data set; (2)The
average interaction cycles for the PC data set; (3) the accuracy of finding the target
choice within given number of interaction cycles for the apartment data set; (4) the
accuracy of finding the target choice within given number of interaction cycles for the
PC data set.

and (4), the Critique MAUT approach has a much higher accuracy than both
the Critique Unit and the Critique Apriori approach when the number of inter-
action cycles is small. For example, in the apartment data set, when the user is
assumed to make a maximum of 4 interaction cycles, the Critique MAUT ap-
proach enables the user to reach the target product successfully 85% of the time,
which is 38% higher than the Critique Unit approach, and 18% higher than the
Critique Apriori approach.

Compound critiques allow users to specify their preferences on two or more
attributes simultaneously thus they are more efficient than unit critiques. When
the compound critiques are shown to the user, it is interesting to know how
often they are applied during the interaction process. Here we also compared
the application frequency of compound critiques generated by MAUT and the

A Comparative Study of Compound Critique Generation 241

Application Frequency of Compound Critiques

47%

36%

76%

49%

0%

20%

40%

60%

80%

100%

PC Dataset Apartment Dataset

F
re

q
u

en
cy Critique

_Apriori

Critique

_MAUT

Fig. 4. Application frequency of compound critiques generated by MAUT and the
Apriori algorithm

Apriori algorithm in our experiments. As shown in Figure 4, the application
frequency of compound critiques generated by the Critique MAUT method are
much higher than those generated by the Critique Apriori method for both the
PC data set (29% higher) and the Apartment Data set (13% higher). We believe
this result offers an explanation of why the Critique MAUT method can achieve
fewer interaction cycles than the Critique Apriori method.

5 Discussions

The key improvement of the proposed Critique MAUT approach is that the
compound critiques are determined through their utility values given by MAUT
instead of their support values given by the Apriori algorithm. Since a utility
value measures the product’s attractiveness according to a user’s stated pref-
erences, our approach has the potential to help the user find the target choice
in an earlier stage. The simulation experiment results verified this advantage of
the Critique MAUT approach by comparing it with the Critique Unit and the
Critique Apriori approaches.

Modeling user’s preferences based on MAUT is not a new idea. In fact, MAUT
approach can enable users to make tradeoff among different attributes of the
product space. For example, Stolze has proposed the scoring tree method for
building interactive e-commerce systems based on MAUT[15]. However, in our
approach we designed an automatic manner to gradually update the user’s pref-
erence model according to the critique actions. The users are not obliged to state
their preference value or to adjust the weight value on each attribute explicitly
thus the interaction effort can be substantially reduced.

There are several limitations in our current work. The user’s preference model
is based on the weighted additive form of the MAUT approach, which might lead
to some decision errors when the attributes of the products are not mutually

242 J. Zhang and P. Pu

preferentially independent.1 If some attributes are preferentially dependent, our
approach is still able to generate the compound critiques. However, the user
needs to spend some extra effort to determine the utility function which is more
complicated than equation (1). Furthermore, currently the experiments are based
on artificial users with simulated interaction processes. We assume that the ar-
tificial user has a clear and firm target in mind during the interaction process.
In reality this assumption is not always true because the user may change his or
her mind during the interaction process. Moreover, our approach determines the
compound critiques only based on utility values. Some researchers have pointed
out that the approach of combining similarity and diversity may provide bet-
ter performance[12]. So far we haven’t compared the Critique MAUT approach
with the approach based on similarity and diversity. Nevertheless, in this paper
the newly proposed Critique MAUT approach can generate compound critiques
which are more efficient in helping users find their target product than those
compound critiques based on the Apriori algorithm.

6 Conclusions and Future Work

Generating high quality compound critiques is essential in designing critique-
based conversational recommender systems. The main contribution of this pa-
per is that we propose a new approach in generating compound critiques based
on the multi-attribute utility theory. Unlike the popular method of generating
compound critiques directly by the Apriori algorithm, our approach adaptively
maintains the user’s preference model based on MAUT during the interaction
process, and the compound critiques are determined according to the utility val-
ues. Our simulation experiments show that our approach can reduce the number
of interaction cycles substantially compared to the unit critiques and the com-
pound critiques generated by the Apriori algorithm. Especially when the user is
willing to make only a few interactions with the system, our approach enables
the user with a much higher chance in finding the final target product. In the
future, we plan to organize a set of real user studies to compare the performance
of these critiquing approaches in terms of the actual number of interaction cy-
cles as well as the degree of users’ satisfaction. We will also further improve the
performance of our approach by integrating a certain degree of diversities into
the compound critique generation process.

Acknowledgments

Funding for this research was provided by Swiss National Science Foundation
under grant 200020-103490. The authors thank the anonymous reviewers for
their helpful comments.

1 The attributes X1, · · · , Xn are mutually preferentially independent if every sub-
set Y of these attributes is preferentially independent of its complementary set of
attributes[7].

A Comparative Study of Compound Critique Generation 243

References

1. Burke, R.D., Hammond, K.J., Young, B.C.: The FindMe approach to assisted
browsing. IEEE Expert 12(4) (1997) 32–40

2. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In Funk,
P., González-Calero, P.A., eds.: Proceedings of the European Conference on Case-
Based Reasoning (ECCBR-04). Volume 3155 of Lecture Notes in Computer Sci-
ence., Springer (2004) 763–777

3. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental critiquing. Knowl-
edge Based Systems 18(4-5) (2005) 143–151

4. Faltings, B., Pu, P., Torrens, M., Viappiani, P.: Designing example-critiquing in-
teraction. In: International Conference on Intelligent User Interfaces, Island of
Madeira (Portugal), ACM (2004) 22–29

5. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: On the dynamic generation of
compound critiques in conversational recommender systems. In: Proceedings of the
Third International Conference on Adaptive Hypermedia and Adaptive Web-Based
Systems(AH 2004). Volume 3137 of LNCS., Springer (2004) 176–184

6. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Bocca,
J.B., Jarke, M., Zaniolo, C., eds.: Proceedings of the 20th International Conference
Very Large Data Bases(VLDB), Morgan Kaufmann (1994) 487–499

7. Keeney, R., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value
Tradeoffs. John Wiley and Sons, New York (1976)

8. Linden, G., Hanks, S., Lesh, N.: Interactive assessment of user preference models:
The automated travel assistant. In: Proceedings of the 6th International Conference
on User Modeling (UM97). (1997)

9. Shearin, S., Lieberman, H.: Intelligent profiling by example. In: Proceedings of the
Conference on Intelligent User Interfaces, ACM Press New York, NY, USA (2001)
145–151

10. Pu, P., Faltings, B.: Enriching buyers’ experiences: the smartclient approach. In:
Proceedings of the SIGCHI conference on Human factors in computing systems,
ACM Press New York, NY, USA (2000) 289–296

11. Pu, P., Kumar, P.: Evaluating example-based search tools. In: Proceedings of
the ACM Conference on Electronic Commerce (EC’04), New York, USA (2004)
208–217

12. Smyth, B., McClave, P.: Similarity vs. diversity. In Aha, D.W., Watson, I., eds.:
Proceedings of the 4th International Conference on Case-Based Reasoning (IC-
CBR). Volume 2080 of Lecture Notes in Computer Science., Springer (2001) 347–
361

13. McGinty, L., Smyth, B.: On the role of diversity in conversational recommender
systems. In Ashley, K.D., Bridge, D.G., eds.: Proceedings of the 5th International
Conference on Case-Based Reasoning (ICCBR). Volume 2689 of Lecture Notes in
Computer Science., Springer (2003) 276–290

14. McCarthy, K., Reilly, J., Smyth, B., McGinty, L.: Generating diverse compound
critiques. Artificial Intelligence Review 24(3-4) (2005) 339–357

15. Stolze, M.: Soft navigation in electronic product catalogs. International Journal
on Digital Libraries 3(1) (2000) 60–66

	Introduction
	Related Work
	Generating Compound Critiques Based on MAUT
	Experiments and Results
	Discussions
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

