
The Lookahead Principle for Preference
Elicitation: Experimental Results

Paolo Viappiani1, Boi Faltings1, and Pearl Pu2

1 Artificial Intelligence Laboratory (LIA)
2 Human Computer Interaction Group(HCI)

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

{paolo.viappiani, boi.faltings, pearl.pu}@epfl.ch

Abstract. Preference-based search is the problem of finding an item
that matches best with a user’s preferences. User studies show that
example-based tools for preference-based search can achieve significantly
higher accuracy when they are complemented with suggestions chosen
to inform users about the available choices.

We discuss the problem of eliciting preferences in example-based tools
and present the lookahead principle for generating suggestions. We com-
pare two different implementations of this principle and we analyze logs
of real user interactions to evaluate them.

1 Introduction

People increasingly rely on web applications to search products in online cata-
logs. It is common to let the user express preferences on attributes and then let
a database system find the most preferred item according to these preferences.
We call this task preference-based search.

The most common search facility is based on a form that is directly mapped
to a database query and returns a list of the most suitable options. The user
has the option to return to the initial page and change his preferences and then
carry out a new search. This is the case for example when searching for flights
on the most popular travel web sites12. Such tools are only as good as the query
the user formulates. A study [3] has shown that among the users of such sites
only 18% are satisfied with their final choice.

Database researchers have studied query systems that evaluate predicates with
a continuous degree of validity and allow partial matches, as in fuzzy sql (FSQL)
[2] and Preference SQL [8].

A key issue for preference-based search systems is how to acquire or learn
preferences from the user.

One way to obtain the user model is to elicit it by a set of questions. However,
it has been shown that this can lead to significant inaccuracies in the user model,
1 http://www.travelocity.com/
2 http://www.expedia.com

H. Larsen et al. (Eds.): FQAS 2006, LNAI 4027, pp. 378–389, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Legind

The Lookahead Principle for Preference Elicitation: Experimental Results 379

because users may not be able to give the correct answer at the time that they
are asked by the elicitor [14]. In most cases, users do not know exactly what
they are looking for: they might consider different trade-offs or they might even
have conflicting desires about the features the item should have. Psychological
studies [11] have shown that people construct their preferences while learning
about the available products. Therefore preference-based search should also help
users in formulating accurate preferences.

An alternative that often results in models of higher quality is to let users
volunteer their preferences. For example, in [10] it has been shown that in a col-
laborative filtering system, letting users themselves propose items they want to
rate yields better results than a strategy where the items are chosen to optimally
elicit the preference model.

An interesting technique for letting users volunteer their preferences is an
interaction where the system shows proposed options and lets users express
their preferences as critiques stimulated by these examples. This technique is
called example or candidate critiquing, and has been explored by several au-
thors [5, 9, 18, 17].

Fig. 1. Isy-travel is an example-critiquing tool for planning business-trips. Here the
user is planning a one-day trip from Geneva to Hamburg. The preference model is
shown at the bottom, and the user can state additional preferences by clicking on
features of the shown example.

Figure 1 shows Isy-travel, a commercial tool for business travelers [12]. Here,
the user is shown examples of options that fit the current preference model
well. The idea is that an example either is the most preferred one, or there is
some aspect in which it can be improved. Thus, on any of the examples, any
attribute can be selected as a basis for critiquing. For instance, if the arrival time
is too late, then this can be critiqued. The critique then becomes an additional
preference in the model.

380 P. Viappiani, B. Faltings, and P. Pu

The advantage of such a system in the elicitation of preferences is that ex-
amples help users reason about their own preferences, revise them if they are
inconsistent, have an idea of which preferences can be satisfied and make trade-
off decisions.

Example critiquing achieves higher decision accuracy when the displayed op-
tions are complemented with suggestions chosen to inform users about available
choices [16]. The cognitive effort is comparable to simple interfaces such as a
ranked list [15].

In this paper, we discuss the role of suggestions in stimulating preference
expression in form of critiques. We present two alternative implementations of
the lookahead principle on which the generation of suggestions is based and show
the complexity of the computation. Finally we make an evaluation on some real
user interaction logs.

2 Incremental Preference Model Acquisition

In example-critiquing, preferences are stated as reactions to displayed options.
We can classify such critiques according to the context in which the statement
of a preference takes place:

negative reaction none of the options shown satisfy that preference
positive reaction an option is shown that satisfies (partially or completely)

the preference

For instance, if the tool shows the user examples that all arrive at London
Stansted airport, and she requests to land in Heathrow, that critique would be a
negative reaction. If the system indeed showed one flight landing in Heathrow, by
stating that preference she would be positively reacting to the shown examples.

An option that partially satisfies the preference can also cause preference
expression. If the user sees examples of flights landing in Stansted and Gatwick,
by seeing the possibility of landing in Gatwick, considered better than Stansted
but worse than Heathrow, she is stimulated to state a preference about the
landing airports.

This simple distinction is quite fundamental in understanding the cognitive
process of constructing preferences and designing the elicitation process. If cer-
tain preferences are missing from the current model of the user, the system
provides examples that do not satisfy those unknown preferences. If the user is
aware of all of her preferences, she can realize the necessity to state them to the
system by posting what we have called a negative reaction critique. However our
intuition is that this is not always the case, because the user might not know all
the available options. Moreover, stating a preference costs some user effort (in
our prototype, 2 selections and 2 clicks) and she would make that effort only if
she perceives this as beneficial.

To use a metaphor, the process of example-critiquing is hill-climbing: the user
states preferences as long as she perceives it as bringing to a better solution.
However, the process might end in a local optimum; a situation in which the

The Lookahead Principle for Preference Elicitation: Experimental Results 381

user can no longer see potential improvement. For example, a user looking for
a notebook computer might start looking for a low price, and thus find that all
models weigh about 3 kg. Since all of the presented models have about the same
weight, he or she might never bother to look for lighter models. This influence
of current examples prevents the user from refocussing the search in another
direction; this is known as the anchoring effect [19].

For these reasons the displayed set consists of two parts:

– a candidate set of options that are optimal for the preference model, and
– a suggested set of options that are chosen to optimally stimulate the ex-

pression of preferences.

2.1 Suggestions: Diversity and Lookahead Principle

The importance of the diversity of the example shown was recognized by Linden,
S. Hanks and N. Lesh [9] who explicitly generated examples that showed the ex-
treme values of certain attributes, called extreme examples. However, an extreme
example might often be an unreasonable choice: it could be a cheap flight that
leaves in the early morning, a student accommodation where the student has
to work for the family, an apartment extremely far from the city. Moreover, in
problems with many attributes, there will be too many extreme or diverse ex-
amples to choose from, while we have to limit the display of examples to few of
them.

We assume that the user is minimizing her own effort and will add preferences
to the model only when she can expect them to have an impact on the solutions.
This is the case when:

– she can see several options that differ in a possible preference, and
– these options are relevant, i.e. they could be reasonable choices, and
– these options are not already optimal, so a new preference is required to

make them optimal.

In all other cases, stating an additional preference is likely to be irrelevant.
When all options would lead to the same evaluation, or when the preference only
has an effect on options that would not be eligible anyway, stating it would only
be wasted effort. This leads us to the following lookahead principle as a basis for
suggestion strategies:

Suggestions should not be optimal under the current preference model,
but should provide a high likelihood of optimality when an additional
preference is added.

We stress that this is a heuristic principle based on assumptions about human
behavior that we cannot formally prove. However in the last section we will
provide empirical evidence of the correctness of this principle.

382 P. Viappiani, B. Faltings, and P. Pu

3 Theoretical Model

3.1 Modeling Items and Preferences

We assume that items are modeled by a fixed set of m attributes that each take
values in associated domains. Domains can be enumerated, consisting of a set of
discrete elements, or numeric. In this paper, we consider preferences on individ-
ual attributes, i.e. we do not consider conditional preferences. A preference r is
an order relation of the values of an attribute a.

For a practical preference-based search tool, it is convenient to express pref-
erences in a concise way. We consider total orders (each pair is comparable) and
express them by a numerical cost function c, dk → �+, that maps a domain
value dk of an attribute ak to a real number. A preference always applies to the
same attribute ak; we use the notation ci(o) to express the cost that the function
assigns to the value of option o for that attribute. Whenever o1 is preferred to
o2 according to preference i, the first will have lower cost (for preference i) than
the second: ci(o1) < ci(o2).

An overall ranking of options can be obtained by combining the cost functions
for all stated preferences. Some researchers [5] have proposed the use of machine
learning algorithms for finding the best aggregate function for a particular user.
In our systems, we combine them using a weighted sum, which corresponds well
to standard multi-attribute utility theory [6]. Thus, if Rc = {c1, .., cs} is the set
of the cost functions of all preferences that the user has stated, we compute the
cost C(o) =

∑
ci∈Rc

wi · ci(o). Option o1 is preferred over option o2 whenever it
has a lower cost, i.e. C(o1) < C(o2).

The user states preferences in a qualitative way (for example “the price should
be less than 500 dollars”). We map these qualitative statements into parameter-
ized functions that are standardized to fit average users. These are chosen with
respect to the application domain.

Preference modeling for example-critiquing is discussed in more detail in [13].
In [7], the authors propose a similar model of preferences that allows prioritizing
constraints and skyline queries.

3.2 Dominance Relation and Pareto Optimality

We model preferences by standardized functions that correctly reflect the pref-
erence order of individual attribute values but may be numerically inaccurate.
When generating suggestions we would like to use a model that is not sensitive
to this numerical error. We thus use the qualitative combination concepts of
dominance and Pareto optimality:

An option o is (Pareto) dominated by another option ō (equivalently we
say that ō dominates o) if

– ō is not worse than o according to all preferences in the preference model:
∀ci ∈ R : ci(ō) ≤ ci(o)

– ō is strictly better than o for at least one preference: ∃cj ∈ R : cj(ō) < cj(o)

The Lookahead Principle for Preference Elicitation: Experimental Results 383

An option o is Pareto-optimal if it is not Pareto-dominated by any other
option. The dominance relation is a partial order of the options that we will
denote with the � operator; Pareto-optimal options can also be seen as the set
of maximal options with respect to the dominance relation.

The dominating set is the set of options that dominates a particular option.

3.3 Model-Based Suggestion Strategy

In [16] we proposed different strategies that use the concept of pareto optimal-
ity to implement the lookahead principle stated in the introduction: suggestions
should not be optimal yet, but have a high likelihood of becoming optimal when
an additional preference is added. We call them model-based suggestion strate-
gies because they specifically choose examples to stimulate the expression of
additional preferences based on the current preference model.

In our applications, users initially state only a subset R of their true preference
model R. When a preference is added, dominated options with respect to R can
become Pareto-optimal. The lookahead principle can be formulated as follows:
an ideal suggestion is an option that is Pareto-optimal with respect to the full
preference model R, but is dominated in R, the partial preference model.

The model based suggestions try to guess the chance that a (dominated)
option has to become Pareto-optimal. This can happen when a new preference
is added to the model and the option is strictly better than any dominating
option with respect to this new preference.

Supposing that od dominates o, we use a heuristic estimation of the probability
that a hidden preference on attribute ai makes o better than od according to that
preference, hence escaping the dominance relation. Such a heuristic considers the
difference between the attribute values: the higher this difference, the more likely
a new preference will make the option preferred. The reasoning is illustrated in
Figure 2. The chances that a new preference will treat o1 and o2 differently
depends on the difference between their values. Assuming that the shape of
such a cost function is a step function with a sharp increase from 0 to 1 and
the reference point falls at any point with equal probability, then the chance of
breaking the dominance is directly proportional to this difference.

o
1

o
2

domain

1

r

Fig. 2. For an ordered attribute, a new preference will prefer o1 over o2 if the reference
value r falls between the values of the attribute, and the preference is of the right
polarity

384 P. Viappiani, B. Faltings, and P. Pu

For attributes with enumerated domains, it is sufficient to check if the at-
tributes takes different values. If so, there will be equal chances that one is pre-
ferred over the other. If the values are the same, the dominance relation cannot
be broken by a preference on this attribute.

3.4 Utility Dominance

Other forms of dominance can be defined as extensions of Pareto-dominance
such that if o Pareto-dominates o′ then o also dominates o′. In particular, we
might use the total ordering established by the combination function defined in
the preference modeling formalism, such as a weighted sum. We call this utility-
domination, and the utility-optimal option is the most preferred one.

An option can become utility-optimal only if it is strictly better than all
options that currently utility-dominate it, although this is not a sufficient con-
dition. The utility dominance method consists of checking the probability of
breaking utility dominance. The advantage is that the dominating set is easily
computed by simply checking the cost: once we have the ranking for the current
preferences, the utility-dominating set will be composed by all the options with
a higher ranking.

4 Algorithms

In this section we analyze the algorithms to compute the candidates and sug-
gestion examples and their complexity.

4.1 Generation of Candidates

Preference-based search looks for the option that best satisfies a preference
model, given an aggregate cost function that merge the individual preferences.
The best options can be found by sorting the database items according to their
cost. This is known as the top-k query [4]. The set of options retrieved {o1, .., ok}
is such that C(o1) ≤ C(o2) ≤ .. ≤ C(ok) and for any other option ō in the
database C(ō) ≥ C(ok).

While the trivial approach would compute the score of each option in the
database, the Fagin algorithm [4] can do this with complexity O(N (m−1)/mk1/m)
where m is the number of attributes and k the number of candidates we want
to generate. This algorithm can be applied to a different aggregate function
as long as it satisfies some properties (monotonicity, strictness). Even faster
optimizations have been recently proposed [1].

4.2 Generation of Suggestions

The model-based strategy requires the analysis of the dominance relation as
a preliminary phase, so that it is possible to associate a given option to its
set of dominators (the options that dominate it). Pareto dominance or utility
dominance can be used.

The Lookahead Principle for Preference Elicitation: Experimental Results 385

Algorithm 1. Model-based suggestions(int n)
δ heuristics based on the normalized differences

for all option ∈ OPTIONS do
p(option) = 0
for all ai ∈ Au = {attributes with no preferences} do

p(option, ai) = 1 //contribution for attribute ai

for all od ∈ OD = {od ∈ O : od � option} do
//we iterate over the set of options that dominate o
δ̄ ← δi(o, od)
p(option, ai) = update(p(option, ai), δ̄)

p(option) = 1 −
�

i(1 − p(option, ai))
suggList ← order options according p
return first n options in suggList;

We stress that the computation of the suggestions requires more effort than
the Pareto or skyline queries (that do not return the dominating sets).

The algorithm for model-based suggestions is presented in Algorithm 1. Up-
date is responsible for updating the value for the estimation of the probability
p(o, ai) of becoming Pareto-optimal given that the missing preference is on ai;
its precise definition depends on the particular assumptions on the possible pref-
erences.

In the probabilistic strategy, the update multiplies the current value by wi ∗
δi(o, od), where δi(o, od) is the heuristic estimation presented in the previous sec-
tion (based on the normalized distance between the attribute values) calculated
for attribute ai and wi is a weight representing the probability that there is a
preference on that attribute. Intuitively, the more dominating options there are,
the more p(o, ai) decreases.

In another model-based strategy, the attribute strategy, we assume that the
preferences that the user can state are only of the kind LessThan or GreaterThan
(the user cannot express preferences for a value in the middle). Therefore, for
each attribute we check whether the current option has a value that is either
smaller or bigger than any value of the dominating options: only in this case a
preference can break all the dominance relations simultaneously. In this strategy,
update will take the minimum of the absolute values of the δ̄, and returns 0 if
they are of different signs.

Complexity. The main issue is that we do not simply need to find Pareto-
optimal options but also need to know all the options that dominate a given
one. Thus, most of the optimizations used by skyline queries cannot be used.

The analysis of the Pareto dominance relation makes a series of pairwise
checks between the options of the catalog. Each one evaluates two options, say
o1 and o2, to determine whether o1 dominates o2, o2 dominates o1, they are
equally preferred for all the preferences, or they are not comparable (i.e. there
is no dominance in either direction). This is done by considering iteratively each
of the preferences and comparing o1 and o2 for at most m comparisons (as soon
as two preferences give opposite order of o1 and o2, they are not comparable),

386 P. Viappiani, B. Faltings, and P. Pu

where m is the number of preferences, so the complexity is O(m). In the worst
case we have to make n(n − 1)/2 checks. So the complexity of the complete
dominance analysis is O(n2m).

Our model based strategies have complexity O(nmd), where m is the number
of attributes and d is the number of dominating options. It is difficult to cal-
culate an average value for d in function of n, because it depends on the data
and correlation between attribute values. While generally the set of dominating
options is much smaller than the set of options, in the worst case they can be
a linear fraction of n. Sorting the options according to the resulting probability
(to select the best n) costs nlogn in term of complexity.

The overall complexity is O(n2): while this complexity was not a problem for
our prototype, we expect it to be more problematic as the item collections grow.
Approximations will be necessary for large databases.

If utility dominance is considered, the dominating set of an option is the set of
all options with lower cost. However this simplification of the preliminary phase
does not improve the overall complexity of the generation of suggestions. In fact
we have to make, for each option, a comparison to its utility-dominators. These
are 1 for the first option in the rank, 2 for the second, and n for the last. Again,
we have a total complexity of O(n2).

5 Evaluation

In this section, we evaluate the lookahead principle through real user interac-
tions. Previously [16] we conducted user studies to evaluate the decision accuracy
of example critiquing with and without suggestions on a prototype for student
accommodation search called FlatF inder. After picking their choices with dif-
ferent versions of the tool, users were asked to determine their best choice by
carefully examining the entire database. The decision of the tool was deemed
accurate whenever this choice agreed with the tool. We found that with the aid
of suggestions, users state more preferences and, more importantly, achieve a
much higher decision accuracy (up to 70%).

We then investigated more closely how people state preferences, using the logs
from this user test and from more recent experiments. A total of 100 interaction
logs were considered. 40 of these were interactions of users using the interface
without suggestions (showing 6 candidate optimal examples) and the rest were
interactions of users using the interface with suggestions (3 candidates and 3
suggestions shown at each cycle), calculated according to the two semantics
(Pareto and utility dominance).

We expected to find an empirical confirmation of our lookahead principle for
generating suggestions.

First, we counted the frequency of the different types of critiquing described
before. As shown in Table 1, in most cases (79%) a preference is stated as a
positive reaction to one of the displayed options. This supports our intuition:
users are likely to state preferences when they see examples that show options
that differ in a possible preference.

The Lookahead Principle for Preference Elicitation: Experimental Results 387

Table 1. In the majority of cases a preference is stated when the user sees an example
that satisfies it (positive reaction to the displayed options)

Critiques Frequency
Positive reactions 0.79
Negative reactions 0.21

Table 2. Summary of the user experiment comparing the interface with and without
suggestions (average per user). The initial preferences are the ones stated in the initial
cycle of the interaction, before having seen any example, while the final preferences
are those in the last interaction cycle. The number of critiques on new attributes are
a particular case of preference revision. Decision accuracy was evaluated by asking the
subjects to carefully examine the entire database of offers to determine their target
option, that was compared with the choice made with the search tool.

Interface Interface
without suggestions with suggestions

interaction time (min.) 8:09 7:39
number of initial preferences 3.03 3.30

critiques (preference revisions) 5.96 6.49
critiques on new attributes 2.65 3.45
number of final preferences 4.90 5.70

decision accuracy 45% 75%

Table 3. Evaluation of the implementations of the lookahead strategy for each type of
the interface: no suggestions, model-based suggestion implemented with Pareto domi-
nance relation, model-based suggestions with utility dominance. The table shows the
fraction of positive critiques that are either Pareto or utilitarian critiques. In most cases
a critique is stated when there is a displayed example that becomes Pareto-optimal be-
cause of the addition of a preference.

Fraction of positive critiques for each interface
Critiques No sugg. Suggestions (Pareto) Suggestions (Utility) Overall

Pareto critiques 47% 60% 42% 49%
Utilitarian critiques 36% 33% 35% 35%

Surprisingly, there was no significant difference in the fraction of positive
critiques between the users of the interface with suggestions and those of the
interface without suggestions. However as shown in Table 2 the first group made
more critiques on new attributes (3.45 vs 2.65) on average, and achieved higher
decision accuracy (75% against 45%) meaning that the preferences acquired with
the suggestions are more accurate.

Then, we looked more closely at the positive critiques to support the second
part of our intuition, that the user states a preference when she sees options
that can be a reasonable choice and a new preference is required to make them
optimal. We checked how many times the user stated a preference that made one

388 P. Viappiani, B. Faltings, and P. Pu

of the displayed options optimal, considering the two possible definition of dom-
inance relation: Pareto dominance and Utility dominance. We call Pareto the
critiques in which a Pareto-dominated option becomes Pareto-optimal; Utilitar-
ian the critiques in which a Utility dominated option becomes Utility optimal.

In Table 3 we show the results for different kind of interactions: interface with-
out suggestions, interface with suggestions computed with pareto-dominance and
suggestions generated with utility-dominance. Overall, nearly half (49%) of the
positive critiques are stated as Pareto critiques; the fraction increases up to 60%
when suggestions are generated according to this principle. In all the circum-
stances, the frequency of Pareto critiques dominates that of utilitarian critiques.
Therefore, Pareto optimality seems to be a reasonable way to implement the
lookahead principle.

6 Conclusions

Preference-based search is a ubiquitous problem on the web. Tools based on
examples can achieve higher decision accuracy than the traditional form filling
approach. User studies show the importance of suggestions to make the users
aware of possible choices and stimulate the preference expression.

We presented the lookahead principle that identifies good suggestions as items
that have high likelihood of becoming optimal when other possible preferences
are considered. By examining user behavior we found empirical evidence that
suggestions are an important means to stimulate the user to refine the query.
Most of the times (79%) users state preferences when they see examples that are
perceived as improvement.

We discussed two possible implementations of the principle, one based on
Pareto optimality and one based on a Utility ranking. The evaluation shows
that the first seems to better represent the cognitive process of the user as it
explains up to 60% of the cases.

References

1. W.-T. Balke and U. Güntzer. Multi-objective query processing for database sys-
tems. In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley,
and K. B. Schiefer, editors, VLDB, pages 936–947. Morgan Kaufmann, 2004.

2. B. P. Buckles and F. E. Petry. Fuzzy databases in the new era. In SAC, pages
497–502, 1995.

3. M. S. D. W. Equity. Transportation e-commerce and the task of fulfilment, 2000.
4. R. Fagin. Fuzzy queries in multimedia database systems. In PODS ’98: Proceedings

of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 1–10, New York, NY, USA, 1998. ACM Press.

5. S.-w. H. Hwanjo Yu and K. C.-C. Chang. Rankfp: A framework for supporting
rank formulation and processing. In ICDE 2005, pages 514–515, 2005.

6. R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and
Value Tradeoffs. John Wiley and Sons, New York, 1976.

The Lookahead Principle for Preference Elicitation: Experimental Results 389

7. W. Kiesling. Foundations of preferences in database systems. In VLDB 2002, pages
311–322, 2002.

8. W. Kießling and G. Köstler. Preference sql - design, implementation, experiences.
In VLDB, pages 990–1001, 2002.

9. G. Linden, S. Hanks, and N. Lesh. Interactive assessment of user preference models:
The automated travel assistant. In Proceedings, User Modeling ’97, 1997.

10. S. M. McNee, S. K. Lam, J. A. Konstan, and J. Riedl. Interfaces for eliciting new
user preferences in recommender systems. In P. Brusilovsky, A. T. Corbett, and
F. de Rosis, editors, User Modeling 2003, LNCS 2702, pages 178–187. Springer,
2003.

11. J. Payne, J. Bettman, and E. Johnson. The Adaptive Decision Maker. Cambridge
University Press, 1993.

12. P. Pu and B. Faltings. Enriching buyers’ experiences: the smartclient approach. In
SIGCHI conference on Human factors in computing systems, pages 289–296. ACM
Press New York, NY, USA, 2000.

13. P. Pu and B. Faltings. Decision tradeoff using example-critiquing and constraint
programming. Constraints: An International Journal, 9(4), 2004.

14. P. Pu, B. Faltings, and M. Torrens. Effective interaction principles for online
product search environments. In Proceedings of the 3rd ACM/IEEE International
Conference on Web Intelligence. IEEE Press, September 2004.

15. P. Pu and P. Kumar. Evaluating example-based search tools. In ACM Conference
on Electronic Commerce (EC’04), 2004.

16. P. Pu, P. Viappiani, and B. Faltings. Increasing user decision accuracy using
suggestions. In CHI, page to appear, April 2006.

17. H. Shimazu. Expertclerk: Navigating shoppers buying process with the combina-
tion of asking and proposing. In Proceedings of the 17 International Joint Confer-
ence on Artificial Intelligence (IJCAI’01), volume 2, pages 1443–1448, 2001.

18. B. Smyth and L. McGinty. The power of suggestion. In IJCAI, pages 127–132,
2003.

19. A. Tversky. Judgement under uncertainity: Heuristics and biases, 1974.

	Introduction
	Incremental Preference Model Acquisition
	Suggestions: Diversity and Lookahead Principle

	Theoretical Model
	Modeling Items and Preferences
	Dominance Relation and Pareto Optimality
	Model-Based Suggestion Strategy
	Utility Dominance

	Algorithms
	Generation of Candidates
	Generation of Suggestions

	Evaluation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

